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Abstract
Real-time vaccination following an outbreak can effectively mitigate the damage caused by

an infectious disease. However, in many cases, available resources are insufficient to vac-

cinate the entire at-risk population, logistics result in delayed vaccine deployment, and the

interaction between members of different cities facilitates a wide spatial spread of infection.

Limited vaccine, time delays, and interaction (or coupling) of cities lead to tradeoffs that

impact the overall magnitude of the epidemic. These tradeoffs mandate investigation of opti-

mal strategies that minimize the severity of the epidemic by prioritizing allocation of vaccine

to specific subpopulations. We use an SIR model to describe the disease dynamics of an

epidemic which breaks out in one city and spreads to another. We solve a master equation

to determine the resulting probability distribution of the final epidemic size. We then identify

tradeoffs between vaccine, time delay, and coupling, and we determine the optimal vaccina-

tion protocols resulting from these tradeoffs.

Introduction
Upon the outbreak of infectious disease, effective and widespread intervention through vacci-
nation is of immediate concern. However, distributing and deploying vaccine relies on numer-
ous logistical or even political factors that can result in delays. Meanwhile, the extensive
modern network of rapid transportation facilitates the spread of infectious disease between
communities. If the resources available are insufficient to fully immunize the entire population,
strategically allocating vaccine to specific subpopulations can minimize the spread and severity
of infection. The interaction between members of different cities and the time delay until vacci-
nation lead to tradeoffs that can dictate optimal strategies of distributing limited vaccine. Opti-
mizing resource allocation is of great interest to policymakers who must decide who gets
vaccinated and when.

Real-time vaccination after an outbreak has occurred necessarily involves delays resulting
from the production, testing, and/or delivery of vaccine. Such time delays can change the vac-
cine allocation strategy which results in the fewest infections, in addition to greatly impacting
the severity of the epidemic. During the 2009 H1N1 influenza outbreak, a widespread vaccina-
tion campaign in the United States successfully prevented between 0.7 and 1.5 million cases.
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However, had the campaign started one week earlier, it is estimated that approximately 27%
more cases could have been prevented, and had the campaign begun two weeks earlier, approx-
imately 59% more cases could have been prevented [1].

In some cases, stockpiles of vaccine have been established to expedite emergency interven-
tion, but there still remain time delays between the initial outbreak and widespread control.
For example, the International Coordinating Group (ICG) on Vaccine Provision for Epidemic
Meningitis Control, a collaboration between the World Health Organization, UNICEF, Méde-
cins Sans Frontières, and the International Federation of the Red Cross, stockpiles meningo-
coccal vaccines as an emergency control method [2]. However, before deployment of
stockpiled vaccines, the government or organization in need must first submit a request to the
ICG, which then approves or disapproves the request within 48 hours; procurement and deliv-
ery of vaccine takes up to another 7 days. Furthermore, a multinational cooperative effort to
undertake precautionary measures is not readily established [3]. Developed nations usually
have the means to produce and stockpile large quantities of vaccines for themselves in prepara-
tion for an epidemic, but developing nations often rely on vaccines donated by developed
nations or acquired in exchange for virus samples. In the case of the 2009 H1N1 epidemic,
developed and developing nations did not successfully broker a vaccine-sharing deal in time.
Moreover, some nations which have established stockpiles may keep vaccines for themselves
during an epidemic. Fearing shortages at home, some nations may delay exporting their stock-
piled vaccines (or refuse to export outright), another source of the time delay that hinders effi-
cient, effective epidemic control [3].

In this paper, we use an SIR model to simulate the spread of infection and the effects of real-
time vaccination. Commonly used in epidemiology, the SIR model divides a population into
three compartments (susceptible S, infected I, and recovered R) with absorbing transitions
between states S and I and I and R[4]. Most SIR models are formulated as deterministic mean-
field theories consisting of coupled differential equations, especially when vaccination is taken
into account, since this can significantly complicate the model and increase computational
intensity. Stochastic models, on the other hand, take into consideration the variability of the
final epidemic size as well as the nonzero probability that infection fails to spread even in inter-
acting communities.

To investigate the disease dynamics, we utilize a discrete stochastic model complementary
to the deterministic approach. Our stochastic model serves as a critical check on the conclu-
sions drawn from the deterministic model. If an outbreak occurs within the deterministic
model, without intervention, the infection will eventually spread to every population which
interacts with the source of the infection. On the other hand, stochastic effects increase the
temporal uncertainty in infectious spread between cities, and the disease may completely fail to
spread from one city to another.

Rather than proactive (or prophylactic) vaccination, we focus on reactive vaccination
administered after the initial outbreak. The real-time response interacts with the dynamics of
the epidemic, ultimately impacting the final outcome. The disease dynamics in interacting pop-
ulations are not necessarily synchronous; infection can be spreading throughout one city while
it is dying out in another. Simulating reactive vaccination is more computationally intensive
than prophylaxis, necessitating limited population sizes in our simulations, since the state of
the system must be determined at intermediate points during the epidemic, rather than simply
the final end state.

In this paper, we first investigate the spread of disease within an individual population and
identify tradeoffs between the amount of available vaccine and the time delay until vaccine is
administered. We then examine the spread of infection between two interacting cities linked
via implied transportation routes, and we investigate how coupling, vaccine, and time delay
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contribute to tradeoffs which in turn determine optimal vaccine allocation strategies. Finally,
we compare the optimal protocols with those of the deterministic case, and we determine the
differences between the optimal and worst-case scenarios.

Methods

SIR Model
In order to explore the temporal dynamics of an epidemic and investigate the effects of inter-
vention methods, we utilize the mathematical framework of the SIR model [4], which has been
commonly applied to infectious diseases such as influenza [5], measles [6], and whooping
cough [7]. In its simplest form, the SIR model divides a population of N individuals into three
compartments, S, I, and R, representing the quantities of susceptible, infected, and recovered
individuals, respectively. A susceptible individual becomes infected only through contact with
an infective, and an infective, once recovered, develops an immunity to the disease, thus per-
manently remaining in the recovered state.

The processes of infection and recovery can be described as an analog to two chemical reac-
tions, denoted Z1 and Z2, with reaction rates β and γ, respectively:

Z1 : Sþ I !b 2I;

Z2 : I !
g
R: ð1Þ

Assuming a well-mixed population (i.e. an individual has equal probability of interaction
with every other individual), coupled, ordinary differential equations can be used to describe
the epidemic [8]:

dS
dt

¼ �bSI; ð2Þ

dI
dt

¼ bSI � gI; ð3Þ

dR
dt

¼ gI: ð4Þ

Susceptible individuals become infected at rate β, and infected individuals recover at rate γ. The
last equation can be omitted if N is kept fixed, and R can be deduced from R(t) = N − S(t) − I(t).

The infection rate β is defined as the product of the average number of contacts each indi-
vidual makes per unit time, c, and the probability of infection via contact, p, divided by the
total population size, N[8]:

b ¼ contact rate� probability of infection
total population size

¼ cp
N
: ð5Þ

The recovery rate γ is simply the inverse of the characteristic timescale over which an individ-
ual remains infected T:

g ¼ 1

average infection duration
¼ 1

T
: ð6Þ

We also define the reproductive number r0, which represents the average number of indi-
viduals that will be infected by a single infective in a population completely consisting of
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susceptibles [8]:

r0 �
bS0
g

¼ cpTS0
N

: ð7Þ

where S0 = S(t = 0), the initial fraction of susceptibles. If r0 < 1, then in the deterministic
model, dI

dt
< 0; hence, the number of infectives declines from the individual value and no epi-

demic will occur. The value of r0 varies greatly depending on the disease; r0 is approximately
1.7 for influenza [5] and approximately 17 for measles and whooping cough [9].

Stochasticity and the Master Equation
Epidemics are not continuous processes, since S, I, and R levels can only change by discrete
integer values. Deterministic models are typically continuous mean-field theories that, unlike
stochastic models, do not account for variability in epidemic sizes. When populations are
weakly coupled, stochasticity can result in epidemics spreading from host cities to uninfected
cities over a longer time frame than in purely deterministic models [9]. Furthermore, stochastic
models include the nonzero probability that the epidemic does not progress. The probability
distribution of the cumulative number infected at asymptotically infinite time is typically
bimodal, with one peak representing a large-scale epidemic, and one peak representing the fail-
ure of the infection to significantly spread. Moreover, in a discrete stochastic model, positive
integer numbers of individuals must make contact in order to transmit disease, while a contin-
uous deterministic model does not include this requirement.

In this paper, we model epidemics as semi-Markovian processes and investigate the role of
stochasticity in epidemics in coupled cities. The time evolution of the probability distribution
is described by a master equation. Defining P(S, I) = P(S, I)(t) as the probability of being in state
(S, I) at time t, the SIR master equation takes the form [9]:

dPðS;IÞ
dt

¼ bðSþ 1ÞðI � 1ÞPðSþ1;I�1Þ

þgðI þ 1ÞPðS;Iþ1Þ � ðbSI þ gIÞPðS;IÞ:

ð8Þ

The first term on the RHS represents a transition into state (S, I) by a susceptible individual
becoming infected; the second term represents a transition into state (S, I) by an infected indi-
vidual recovering; and the third term represents leaving the state (S, I) by infection or recovery.
Only one reaction can occur in each infinitesimal time interval [t, t + dt].

The master equation is linear and can be written in matrix form with a column vector~P
containing probabilities of all possible states and a transition rate (or generator) matrix A con-
taining the coefficients of Eq 8:

d~P
dt

¼ A~P: ð9Þ

Rather than calculating~P by counting S and I levels, we follow the “degree of advancement”
(DA) process [10] and count the occurrences of the Z1 and Z2 reactions described in Eq 1. The

vector~PðtÞ is composed of probabilities of each possible state (Z1, Z2), which represent the
number of times each reaction has occurred in the time interval [0, t). If a population contains
S0 and I0 initial susceptibles and infectives, then Z1 can occur a total of S0 possible times, and
Z2 can occur up to S0 + I0 times. The DA process is preferred over the so-called “population
process” of counting population levels since the population levels at a given time can always be
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determined from the number of reactions that have occurred, but not vice versa. Specifically,

XðtÞ ¼ Xð0Þ þ SZðtÞ; ð10Þ
where X is a column vector with population levels of all population classes, Z is a column vec-
tor counting occurrences of all reactions, and S is a matrix composed of the stoichiometric

coefficients from Eq 1. The components of~P are ordered lexicographically, resulting in a lower
triangular generator matrix A, since the reactions of infection and recovery cannot be reversed.
Furthermore, due to the abundance of inaccessible states, A is a sparse matrix.

To numerically integrate the master equation, we use an algorithm recently devised by Jen-
kinson and Goutsias [10] known as the implicit-Euler, or IE, method. The IE method takes
advantage of the sparsity of A to achieve computational efficiency. We first discretize time into

integer multiples of a time step τ. Given specified initial conditions~Pð0Þ, we can recursively
solve the system of linear equations

ð1� tAÞ~PðtiÞ ¼ ~Pðti�1Þ: ð11Þ

This is implemented in MATLAB.
In addition to the IE method, the stochastic SIR model is also frequently applied in direct

Monte Carlo simulations [11][12], of which many repeated runs must be performed to obtain
a probability distribution. In contrast, solving the master equation generates a full probability
distribution at once for a chosen set of initial parameters. Moreover, it is also possible to arrive
at the steady-state probability distribution without the need for iterative integration of the mas-
ter equation [13][14]. However, because we simulate real-time vaccination, we need to obtain
the probability vector at intermediate points during the epidemic, before the final steady state
is reached.

While the IE method can generate the full probability distribution at every time step with
high temporal resolution, it requires much more computation time than solving a set of deter-
ministic equations, realizing a direct Monte Carlo simulation, or acquiring the final steady-
state probability distribution. Hence, we consider relatively small system sizes in this paper,
especially in the case of two coupled populations, where the number of reactions doubles com-
pared to a system of one individual population.

In individual populations, the number of possible states, and thus the dimension of the gen-
erator matrix, is (S(0) + I(0) + 1)(S(0) + 1). Thus, for I(0)<< S(0), the matrix dimension
approximately scales as N2. For multiple interacting populations, the number of possible states
becomes

YM
i

ðSið0Þ þ Iið0Þ þ 1ÞðSið0Þ þ 1Þ;

whereM is the total number of populations. Therefore, for two coupled populations, the matrix
dimension scales as N4.

While the two coupled populations in our simulations may be small, they can represent real-
istic communities such as classrooms, groups of households or families, or small neighbor-
hoods. Furthermore, the critical effects of temporal variability and non-transmission present in
stochastic but not deterministic models also occur for much larger populations, which can rep-
resent entire cities or nations. While this paper mainly discusses results from simulations of
two populations each containing 40 individuals, we also investigate larger systems to demon-
strate the robustness of our results to population size.

We initialize our simulations with specified numbers of susceptibles S0 and infectives I0, the
reproductive number r0, and the recovery rate γ. The infection rate β is calculated from r0 and
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γ. At t = 0, the system is in state (0, 0) with probability 1; that is, the first element of~Pð0Þ is 1
with all others zero.

The severity of the epidemic is quantified by the mean final epidemic size hEi [8], defined as
the total population minus the mean number of susceptibles remaining at the end of the epi-
demic. This represents the number of people who have been infected and then recovered, as
measured at in the limit of infinite time:

hEi ¼ lim
t!1

N � hSðtÞi: ð12Þ

For our parameters, a simulation end time of 200 days was a sufficient approximation. In the
deterministic model, the final epidemic size is exact, as is the number of remaining susceptibles.

The probability distribution P(E) of final epidemic sizes E (Fig 1) is observed to be bimodal
for large N and reproductive number r0 > 1, as is characteristic of stochastic epidemic models
[15]: either a few individuals or a majority of the population become infected in the most likely
scenarios. Fig 1 illustrates the probability distribution for a simulation of one population con-
taining 100 initial susceptibles, 1 initial infective, where the recovery rate γ = 0.15 and the
reproductive number r0 is varied between 0.5 and 10. The leftmost peaks are located at 1, the
number of initial seed infectives, and represent the case in which very few individuals beyond
the seed infective are infected, while the majority of the population remains susceptible. We
denote this the terminal infection case [8]. The rightmost peaks represent the large-scale epi-
demic case, in which the infection spreads throughout a large portion of the population. The
deterministic outcomes are plotted as dashed lines and fall slightly to the left of the centers of
the epidemic peaks. At large values of r0, the large-scale epidemic peaks become taller and
sharper; as r0 decreases, the tails broaden, and the peaks are smaller. The terminal infection
peaks are taller for lower values of r0, since the probability of terminal infection for a fully
susceptible population seeded with one infective is equal to 1/r0[9]. For large N, when r0
approaches unity, the distinction between the terminal infection and large-scale epidemic
peaks disappear.

Coupled Populations
Due to the widespread network of transportation between cities, it is difficult for an outbreak
of infectious disease to remain contained within one geographic location. Studying epidemics
in isolated communities can still provide important insights; for example, abundant historical
data on epidemics in the relatively isolated Faroe Islands have contributed to a rich under-
standing of the spatial spread of measles, whooping cough, and mumps [16]. However, in this
paper, we focus on the dependence of the severity of infection and the optimal vaccination pro-
tocol on the degree of interaction between cities.

We model the epidemic as occurring in two cities connected via transportation routes that
allow individuals from one city to interact with those in the other, but where the total number
of residents in each city does not change. This can be thought of as a system of commuters,
where the degree of interaction, or coupling, between the cities is proportional to the time a
commuter spends outside their home city. We consider the specific case in which an epidemic
breaks out in one city and spreads to another. We seed one city, denoted city A, with one seed
infective, while the other city, city B, contains only susceptibles.
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For two coupled cities, there are now a total of four possible reactions, denoted Z1,Z2,Z3,
and Z4:

Z1 : ðSA; IA; SB; IBÞ ! ðSA � 1; IA þ 1; SB; IBÞ;
Z2 : ðSA; IA; SB; IBÞ ! ðSA; IA; SB � 1; IB þ 1Þ;
Z3 : ðSA; IA; SB; IBÞ ! ðSA; IA � 1; SB; IBÞ;
Z4 : ðSA; IA; SB; IBÞ ! ðSA; IA; SB; IB � 1Þ:

ð13Þ

A susceptible in one city can be infected by someone in either city; once infected, the suscepti-
ble becomes an infective of its own city. For example, in the reaction Z1, a susceptible in city A,

S0 2 SA, can become infected by any infective I 2 IA [ IB, but once infected, becomes an infec-

tive I0 2 IA.

In the stochastic model, the probability vector~P consequently comprises probabilities of
cumulative occurrences of the reactions in Eq 13, (Z1,Z2,Z3,Z4), ordered lexicographically. Our
model also assumes homogeneous mixing within each city; that is, an individual in one city has
the same probability of interacting with another individual in the same city, and the same prob-
ability of interacting with all individuals in the other city. While we abstract geographic details
in our model, a distance-dependent kernel can be introduced to construct a more realistic

Fig 1. Probability distribution of final epidemic size. The distribution P(E) is plotted for a population of 100 initial susceptibles and 1 infective in the
stochastic model. The recovery rate γ is set to 0.15 and the reproductive number r0 is varied between 0.5 and 10. The corresponding deterministic outcomes
are represented by dashed lines.

doi:10.1371/journal.pone.0152950.g001
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model. That is, a function that decays with distance can be multiplied with the infection rate β,
so that two individuals with greater spatial separation will be less likely to interact.

The coupling between the cities is characterized by a symmetric 2 × 2 matrix f, where fij is
the fraction of contacts an individual in city imakes that are residents of city j[17]. Each row
and column of f sums to 1. Thus, we denote the coupling between city A and city B as fAB = fBA.
The rate of infection β then becomes a 2 × 2 matrix with elements

bij ¼
cpfij
Nj

: ð14Þ

The corresponding deterministic equations that describe this model are

dSA
dt

¼ � bAASAIA � bABSAIB; ð15Þ

dSB
dt

¼ � bBASBIA � bBBSBIB; ð16Þ

dIA
dt

¼ bAASAIA þ bABSAIB � gIA; ð17Þ

dIB
dt

¼ bBASBIA þ bBBSBIB � gIB: ð18Þ

If coupling between the two cities is low, it is possible that the infection does not spread at
all from city A to city B in the stochastic model. The probability of an epidemic in city B is
given by [9]:

Pðinfection spreading from A to BÞ ¼

1� exp �bBA 1� g
ðbBA þ bBBÞ

� � Z 1

0

IAðsÞds
� �

< 1� exp ð�bBA=gÞ: ð19Þ

In both models, there exists a lag between the peaks of the infections (i.e. where the number
of infectives as a function of time I(t) reaches a maximum) in the two cities. In the stochastic
model, the lag time has a high variability, but on average is larger than the deterministic value
due to the decreased probability of transmission. In the deterministic model, if the two cities
have nonzero coupling, then the infection is present in city B at the start, and the lag time is
generally shorter. Unlike in the stochastic model, discrete integer values of infectives are not
required to make contact in order for infection to spread. In the early stages of infection, when
the number of susceptibles in city B is large and nearly constant, the number of infectives in
city B grows exponentially at a rate βBB − γ[9].

Vaccination
One major objective of vaccination is to approach “herd immunity”, which occurs when a criti-
cal fraction of the population is vaccinated such that the effective reproductive number reff
drops below 1, thus preventing the epidemic from growing. If V individuals are vaccinated, the
effective reproductive number is reff = r0(1 − V/S0). Hence, the minimum number of individu-
als that must be vaccinated to induce herd immunity is S0(1 − 1/r0).

Previous studies have utilized stochastic models to optimize vaccine allocation, but have
largely focused on prophylaxis [8][18], rather than real-time vaccination, to which primarily
deterministic models have been applied [5][19][20][21]. In this paper, we determine the
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optimal allocation of vaccine, delivered in real time, for varying delay periods, coupling, and
amounts of available vaccine.

The optimal protocol is determined by minimizing the expected final epidemic size with
respect to the fraction of vaccine allocated to each city. Only susceptibles are vaccinated in our
simulations. The vaccines have 100% efficacy and are delivered in discrete amounts. Further-
more, vaccines are released all at once on a specified time step. At this vaccination time step,
the generator matrix is modified so that the transition rates reflect the new reduced number of
susceptibles. First, a sparse generator matrix for a system containing the new population levels
is computed and mapped to the dimensions of the original matrix. However, this does not
account for the probability that the system is in certain states that, while previously accessible,
are rendered newly inaccessible upon vaccination. For instance, consider a population initially
containing two susceptibles and one infective. If allowed to evolve without intervention, it is
possible for the two susceptibles to become infected, such that there are now three infectives.

That is, the probability vector~P is non-zero for the Z1 = 2,Z2 = 0 state. If we vaccinate both sus-
ceptibles at some time step, the system cannot transition to a state of higher infection, but
should be allowed to transition out of this (2, 0) state through recovery, i.e. to states (2, 0),
(2, 1), (2, 2), and (2, 3). Therefore, terms are added to the new generator matrix to reflect this.

Results
Time delays in reactive vaccination are inevitable. Factors such as logistics, spatial separation,
and limited availability of vaccine prevent the populace from receiving vaccination immedi-
ately upon the outbreak of infection. Vaccine stockpiles can mitigate but not fully eliminate
this time delay. Furthermore, delayed efficacy of vaccines can also contribute to a delay
between outbreak and immunity of vaccinated susceptibles. Within an individual population,
when time delay is low, the amount of vaccine required to keep the average epidemic size
below a bounded value increases roughly exponentially with time delay. However, for large
enough time delay, any increase in vaccine will not affect the final epidemic size, since the
infection will have already spread to the entire population.

When individuals from two populations interact, coupling also contributes to tradeoffs,
along with the amount of available vaccine and the time delay. In general, when coupling is
very low, the optimal strategy tends to disparately favor one city over another, an effect that is
less prominent as time delay increases. If coupling is high, the cities are more well-mixed, and
the optimal protocol usually allocates vaccine to each city in proportional amounts.

We first investigate the spread of an arbitrary disease with r0 = 2 and γ = 0.15 through an
individual, non-interacting population of 100 initial susceptibles and one initial infective. With
spatial, logistical, and technical details abstracted, we identify tradeoffs between the amount of
available vaccine and the time delay until vaccine is administered. We then examine the spread
of this disease from the host city, city A, to an initially infection-free city, city B. Due to the
computational intensity of the IE method, we focus on a system of two cities of 40 individuals
each, all susceptible except for one seed infective in city A. We then investigate how coupling,
as well as vaccine and time delay, contributes to tradeoffs, and we identify the optimal vaccine
allocation protocols which minimize the final epidemic size. We also examine the “worst-case
scenarios” which result when the final epidemic size is maximized, since common epidemic
control strategies, such as prophylaxis, can result in a mathematically non-optimal scenario.
We compare the optimal strategies with the worst-case protocols to determine where interven-
tion has the most significant payoffs.
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Tradeoffs between Time Delay and Available Vaccine
The tradeoff between time delay, denoted τ, and available vaccine in a single population is illus-
trated in Fig 2, which shows contours of final epidemic size plotted as a function of vaccination
and time delay for both the stochastic model (Fig 2A) and the deterministic model (Fig 2B).
The amount of vaccine is expressed as the fraction of the total population which is vaccinated.
The simulation is run on a population of 100 initial susceptibles and 1 seed infective, with
reproductive number r0 = 2.0 and recovery rate γ = 0.15. The deterministic results approach a
final epidemic size of approximately 70 individuals at day 50, compared to a mean final size of
approximately 35 individuals in the stochastic model. The epidemic is more severe in the deter-
ministic model than in the stochastic model since the deterministic model does not require dis-
crete integer values of individuals to make contact, thereby facilitating the infectious spread.

However, the contours in the two plots are similarly shaped. For both models, early in the
epidemic, a smaller amount of vaccine is sufficient to contain the outbreak, but as time delay
increases, more and more vaccine is required to prevent the epidemic from growing beyond a
certain size. For τ below about 20 days, the contours are approximately linear in semi-logarith-
mic space; that is, the vaccination rate must increase roughly exponentially with time delay to
keep the final epidemic size bounded below a certain value. Eventually, if time delay is great
enough, any increase in the amount of vaccination will be ineffective in reducing epidemic size,
as evidenced by the rapidly increasing, nearly vertical contours. This transition between
regimes is more abrupt in the stochastic model, for which the contours sharply become essen-
tially vertical at late time delay.

To further illustrate the increase in epidemic size that results from increased time delay, Fig
3 plots the probability distributions of combined final epidemic size E = EA + EB for two cou-
pled populations of 40 people each. City A has 39 initial susceptibles and one initial infective,
while city B is entirely susceptible. Five simulations are run with 15 susceptibles in each city
vaccinated at time delay τ = 1, 5, 10, 20, and 30 days, respectively. The cities have the same cou-
pling, fAB = 0.25, across all simulations. If vaccination were completely successful, the final epi-
demic size should be at most 50. The probability of E> 50 is approximately zero if the cities
are vaccinated by 10 days, indicating successful vaccination. However, at a time delay of 20
days or later, the large-scale epidemic peaks broaden, and P(E> 50) is nonzero. At τ = 20 days,
the tail of the large-scale epidemic peak in the probability distribution terminates at E� 70.
This indicates that the disease may have spread to more than 50 individuals by the vaccination
date, leaving fewer than 30 susceptibles remaining and thereby resulting in potentially wasted
vaccine.

Tradeoffs Involving Time Delay, Available Vaccine, and Coupling
The level of interaction between individuals living in two different cities can affect the severity
of the combined epidemic size and the speed at which the infection spreads from the host city
to the other. The coupling fAB between city A and city B might be determined by spatial separa-
tion and/or frequency of mass transportation. We now examine the affect of coupling fAB and
the ratio of vaccine allocated to each city, in addition to time delay τ and amount of vaccine, on
the final epidemic size.

The mean final epidemic sizes at two different values of time delay, τ = 1 day and τ = 10
days, are compared in Fig 4A and 4B, which plot the mean final size hEi as a function of the
fractional vaccine allocation to city B and the coupling fAB. The color scale is kept the same
across all panels. The amount of available resources does not correspond to the actual fraction
of the population that is vaccinated, since for certain allocation protocols, some vaccines might
be wasted. For example, if there are 60 vaccines, enough to vaccinate 75% of the combined
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population, allocating all available vaccine to city B, which has a population of 40, would result
in 20 wasted vaccines.

Vertical contours arise in the limiting case when, for a certain coupling, the final epidemic
size does not depend on the allocation of vaccine. On the other hand, horizontal contours arise
in the limit where the final epidemic size depends strongly on the vaccine allocation, but not
on the coupling.

For τ = 1, in the first panel of Fig 4A, there are 10 available vaccines, or enough resources to
vaccinate at most 12.5% of the population. In this case, the mean final epidemic size is smallest
when a majority of resources is allocated to city A, and when coupling is low. The largest possi-
ble mean final size of hEi = 22 occurs when all vaccine is allocated to city B for moderate cou-
pling. This indicates that prophylaxis (i.e., preemptively vaccinating an uninfected population)
is not the best course of action; rather, very shortly after an outbreak, it is optimal to deliver all
available resources to the city where the outbreak has occurred, especially if the cities are
weakly coupled, in order to increase the chances of preventing the epidemic from spreading to
city B.

In the second panel, when 30 vaccines are available (enough for 37.5% of the population),
the contours are asymmetrical about the horizontal. For low fAB, the epidemic size is mini-
mized when most vaccine is given to city A, but as fAB increases, the minima occur for an
increasingly equal allocation. For larger amounts of vaccine, the preferred course of action is to
allocate equal amounts of vaccine to each city, except when fAB is extremely low, in which case
an equal allocation has roughly the same effect as one which allocates all vaccine to city A.

Contours of mean final epidemic size as a function of vaccine allocation and coupling for
τ = 10 days are plotted in Fig 4B. In general, the final epidemic sizes are greater with the
increased time delay. When at most 12.5% of the total population can be vaccinated, the con-
tours are roughly vertical. Again, the smallest epidemic size for these parameters will occur
when all vaccine is given to city A for very low fAB, but for most values of fAB, the final size does
not depend strongly on the allocation. In the remaining panels, the contours for larger amounts

Fig 2. Tradeoffs between time delay and available vaccine represented by contours of final epidemic size. The mean final epidemic size in the
stochastic model hEi (panel A) and the exact final epidemic size in the deterministic model Edet (panel B) are plotted as a function of time delay τ (in days) and
fraction of total population vaccinated. Both models contain 100 initial susceptibles, 1 initial infective, γ = 0.15, and r0 = 2.

doi:10.1371/journal.pone.0152950.g002
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of vaccine are more symmetrical about the horizontal than the corresponding plots for τ = 1
day, and more often favor an equal allocation, rather than a protocol which disparately allo-
cates most vaccine to one city or another.

Optimal Vaccination Strategies
Optimal protocols were determined by minimizing the mean final epidemic size hEi in the sto-
chastic model, and the final epidemic size Edet in the deterministic model. For the stochastic
model, Fig 5 plots all optimal allocations (expressed as the fraction allocated to city B) as a
function of available vaccine and coupling fAB. Each subplot is a snapshot taken at increasing
values of fixed time delay τ. Again, the simulations are of two cities, each containing 40 total
individuals, with one infected and the remaining susceptible in city A, and all susceptible in
city B.

The first panel describes the optimal protocol very early after the outbreak, when there is
a 1-day time delay. In this case, the optimal protocol allocates all resources to city A if the

Fig 3. Probability distribution of combined final epidemic size in two coupled populations. The probability distribution of E = EA + EB is plotted for two
coupled populations of 40 people each, with one initial infective in city A. The cities have coupling fAB = 0.25 and are given 15 vaccines each (37.5% of the
population) at varying values of time delay τ. The chosen parameter values are r0 = 2 and γ = 0.15.

doi:10.1371/journal.pone.0152950.g003
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available vaccine is low, unless coupling fAB is very high. In that event, a small fraction of the
vaccine should also be given to city B, since the cities are more well-mixed. As time delay
increases, completely favoring city A is optimal only for increasingly narrower ranges of weak
coupling and low vaccine. The contours decrease with vaccine roughly linearly as a function of
coupling.

However, as τ increases to 20 days (the third panel), for moderately weak coupling
0.05 ≲ fAB ≲ 0.25, the optimal protocol slightly favors city B, allocating 60% of available vac-
cine, while equal allocation is preferred for most remaining scenarios. Since each city has
approximately equal numbers of initial susceptibles, an equal allocation is the same as a pro-
portional allocation. At τ> 40 days, for weak coupling (fAB < 0.1), the optimal protocol
favors city B, especially when vaccine is low, indicating that the epidemic has begun to die
out in city A while it is growing in city B.

Fig 6 contains the same information, except plotted as a function of time delay and cou-
pling, with snapshots taken at different amounts of available vaccine. In the first panel, for
12.5% vaccination, there is high variability in the optimal protocols. For weak coupling, the
optimal protocol allocates almost all vaccine to city B at large time delay, indicating situations
when the epidemic has weakened considerably in city A and has spread to city B. However, for
small τ≲ 20, the optimal protocol allocates all vaccine to city A, regardless of coupling. At
large coupling, the optimal protocol is an equal allocation for τ> 20.

For greater amounts of vaccine, the contours remain a similar shape. As the available
amount of vaccine increases, the optimal protocols increasingly approach an equal allocation.
In the last panel, for 75% vaccination, the optimal protocol allocates vaccine equally for almost
all τ and fAB. The exceptions are a 30–40% allocation of vaccine to city B for small τ, and 60%
allocation of vaccine to city B for large τ and fAB < 0.1. These allocations correspond to one

Fig 4. Tradeoffs involving coupling, time delay and available vaccine represented by contours of combined final epidemic size. The mean final
epidemic size for two coupled cities hEi is plotted as a function of fractional vaccine allocation to city B and coupling fAB for varying amounts of available
vaccine at τ = 1 day (panel A) and τ = 10 days (panel B). City A has 39 initial susceptibles and 1 infective; city B has 40 initial susceptibles. The recovery rate
γ = 0.15 and the reproductive number r0 = 2.

doi:10.1371/journal.pone.0152950.g004
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Fig 5. Optimal vaccination strategies at different time delays. The optimal fraction of total vaccine allocated to city B is plotted as a function of available
vaccine (expressed as a fraction of the total combined population) and coupling fAB for different fixed values of time delay τ ranging from 1 to 60 days. City A
has 39 initial susceptibles and 1 infective; city B has 40 initial susceptibles. The recovery rate γ = 0.15 and the reproductive number r0 = 2.

doi:10.1371/journal.pone.0152950.g005
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Fig 6. Optimal vaccination strategies for different amounts of available vaccine. The optimal fraction of total vaccine allocated to city B is plotted as a
function of time delay τ and coupling fAB for fixed vaccination amounts ranging from 10 to 60 vaccines. The remaining parameters are the same as in Fig 5.

doi:10.1371/journal.pone.0152950.g006
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city receiving 42 vaccines and the other receiving 28. Since there are only 40 individuals in each
city, at least 2 vaccines are wasted.

The deterministic model, in comparison, exhibits strikingly different results, as illustrated in
S1 and S2 Figs. S1 Fig should be compared with Fig 5, and S2 Fig with Fig 6. While for low τ,
the stochastic model tends to favor city A, the deterministic optimum is closer to an equal allo-
cation for most values of coupling and vaccine.

To directly compare the stochastic and deterministic models, we plot the difference between
the optimal fractions allocated to city B prescribed by the two models in Fig 7. A positive differ-
ence indicates that the deterministic model favors city B more heavily than the stochastic
model, and a negative difference indicates vice versa. We specifically highlight the case of
12.5% vaccination, since lower vaccine leads to protocol differences further from zero.

In Fig 7, the difference is always greater than −0.2 and for the most part positive. The deter-
ministic model generally allocates more vaccine to city B than the stochastic model, particularly
for weak coupling and low vaccine. When τ and fAB are small, the deterministic model
completely favors city B, and the stochastic model completely favors city A, leading to a proto-
col difference of 1. When fAB is large, the deterministic and stochastic models both favor an
equal allocation, so that the difference is 0. However, at large τ> 30 and small fAB, the differ-
ence is negative. In this case, the stochastic model slightly favors city B compared to the deter-
ministic model, due to the asynchronous spread of infection and the longer temporal
separation between epidemic peaks at low coupling.

In general, the deterministic model requires a larger amount of vaccination to eradicate the
epidemic than in the stochastic model. In the deterministic model, the infection will always
spread from city A to city B if coupling is nonzero, whereas in the stochastic model, the infec-
tion has a nonzero probability of terminating in city A. In the early stages of an epidemic, the
stochastic optimal protocol tends to favor city A, in order to decrease the likelihood of inter-
city transmission, rather than preemptively vaccinating city B. In contrast, the deterministic
optimal protocol tends to favor city B, in order to ultimately minimize final epidemic size. Fur-
thermore, in the stochastic model, as vaccination increases, the epidemic is more likely to be
eradicated by stochastic extinction before the amount of vaccine required for herd immunity in
a deterministic model is reached [9].

Worst-Optimal Differences
The worst-case vaccination protocol is defined as the vaccine allocation which results in the
maximum possible mean final epidemic size. In some cases, the mathematically worst-case sce-
nario results from common epidemic control strategies such as prophylaxis, particularly in a
region where the outbreak has not occurred, rather than sending vaccine to the active region in
order to mitigate the outbreak. The worst-case vaccination protocols are plotted for the sto-
chastic model in S3 Fig. The worst-case scenario will either result from allocating all vaccine to
city A or to city B, depending primarily on the time delay. When time delay is low (τ ≲ 20
days), the worst-case protocol allocates all available vaccine to city B. When time delay is high,
the worst-case protocol allocates all vaccine to city A.

The difference in mean final epidemic size hEi between the optimal and worst-case scenar-
ios, or the worst-optimal difference, is plotted as a function of time delay and coupling for fixed
values of available vaccine in Fig 8. In Fig 9, the worst-optimal difference is expressed relative
to the mean final size hEi achieved by following the optimal vaccination protocol, specifically
for the case of 75% vaccination and low time delay, τ� 20, since the worst-optimal difference
is most significant in the earlier stages of the epidemic and for large amounts of vaccine.
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The worst-optimal difference is greatest for weak coupling, small time delay, and large
amounts of vaccine. The largest difference overall is about hEi = 14, or 17.5% of the total com-
bined population, occurring at very low fAB and low τ with 75% vaccination; this amounts to
approximately 10 times the optimal mean final size, as in the bottom right corner of Fig 9. This
implies that optimal vaccination is most effective when administered early in an epidemic, since
the infection will not have significantly propagated. This case corresponds to an optimal alloca-
tion that tends to be relatively disparate in favoring one population over another. In contrast,
for 12.5% vaccination, the largest worst-optimal difference also occurs for low vaccine and low
coupling, but only amounts to about hEi = 7, approximately 70% of the optimal mean final size.

The worst-optimal difference decreases as time delay and coupling increases, both of which
correspond to an enhanced spread of disease in city B. The worst-optimal difference is almost
non-existent for small time delay in well-mixed populations, or for large time delay regardless of

Fig 7. Difference between stochastic and deterministic optimal strategies. The stochastic and deterministic models are compared by plotting the
difference between optimal fractions of vaccine allocated to city B for the case of 12.5% vaccination. City A has 39 initial susceptibles and 1 infective; city B
has 40 initial susceptibles. The recovery rate γ = 0.15 and the reproductive number r0 = 2.

doi:10.1371/journal.pone.0152950.g007
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Fig 8. Worst-optimal difference. The difference in stochastic mean final epidemic size hEi between worst-case and optimal protocols, or worst-optimal
difference, is plotted as a function of time delay τ and coupling fAB for increasing amounts of available vaccine. The remaining parameters are the same as in
Fig 7.

doi:10.1371/journal.pone.0152950.g008
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coupling. At large time delay, the epidemic has progressed to the point that the worst-optimal
difference is almost zero; strategic vaccination, or even vaccination at all, will be mostly futile.

In contrast, the deterministic worst-case scenarios all result when vaccine is allocated
entirely to city A. The contours of the deterministic worst-optimal plot take on similar shapes
as in the stochastic plot, and the largest differences also occur for low time delay, low coupling,
and high vaccine. However, the maximum difference is about twice that of the stochastic result,
at about Edet = 30, or 37.5% of the population, compared to 17.5% in the stochastic model.
This suggests that the timing of the vaccination is more important in the stochastic model than
its allocation. The stochastic model is less sensitive to precise optimization of resource alloca-
tion, but the stochastic optimal protocols (Fig 6) depend more strongly on time than the deter-
ministic protocols (S2 Fig). The deterministic worst-optimal differences are plotted in S5 Fig,
while the worst-case resource allocation protocols are shown in S4 Fig.

Fig 9. Worst-optimal difference for 75% vaccination and low time delay, expressed relative to the optimal mean final size. The difference in
stochastic mean final epidemic size hEi between worst-case and optimal protocols, expressed as the fraction of the optimal hEi, is plotted as a function of
time delay τ� 20 days and coupling fAB for the case of 75% vaccination, since the most significant worst-optimal differences occur for large amounts of
vaccination. The remaining parameters are the same as in Fig 7.

doi:10.1371/journal.pone.0152950.g009
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To more closely examine the stochastic results, the mean final epidemic sizes hEi are plotted
in Fig 10A as a function of the fraction of vaccine allocated to city B in the specific case of τ = 5
and fAB = 0.05. Here, the difference in mean epidemic size between the worst-case and optimal
scenarios is relatively large, since time delay and coupling are both low. It is evident that larger
amounts of vaccine generally result in smaller mean epidemic sizes. When there is enough vac-
cine for 12.5% of the population, the minimum of the line occurs when no vaccines are given
to city B. The minimum shifts rightward as the amount of vaccine increases; when there is
enough vaccine for 87.5% of the population, the minimum occurs for a 0.5 fractional alloca-
tion. Note that the maxima always occur for all vaccine allocated to city B.

It is possible for a smaller amount of vaccine to more efficiently reduce final epidemic size
when allocated strategically than a larger amount of vaccine that is improperly used. If the
worst-case protocol is followed when there are 40 or greater vaccines (50% or more), all vac-
cines would be allocated to city B, and at most 40 individuals, or the entire population of city B,
can be vaccinated. Any remaining vaccine would be wasted. This would result in a mean final
epidemic size hEi � 15. However, when the optimal protocol is followed for 20 vaccines (25%),
all 20 vaccines are given to city A, and hEi � 11, less than the previously described case. Even
though fewer individuals are vaccinated, fewer individuals become infected. Targeting the
source of the outbreak in order to minimize the chance of infection spreading elsewhere is a
better strategy than preemptively vaccinating those who do not live nearby.

The specific cases of 25% and 50% vaccination are highlighted in Fig 10B, where the individ-
ual mean final epidemic sizes hEAi and hEBi are plotted alongside the combined mean final
epidemic size. The epidemics are predictably smaller in city B. For both cases, hEAimonotoni-
cally increases as a function of the vaccine allocated to city B, while hEBimonotonically
decreases as a function of vaccine allocation. hEi is also monotonic for 25% vaccination;

Fig 10. Mean final epidemic size as a function of the fraction of vaccine allocated to city B. The stochastic combined mean final epidemic size hEi as a
function of the fractional allocation to city B is plotted in (panel A) for different fixed amounts of available vaccine. The specific cases of 25% and 50%
vaccination are highlighted in (panel B), where mean final epidemic sizes for individual populations hEAi and hEBi are also plotted, in addition to the combined
final size hEi = hEAi + hEBi. The time delay is set to τ = 5 days and the coupling fAB = 0.05. City A has 39 initial susceptibles and 1 infective; city B has 40 initial
susceptibles. The recovery rate γ = 0.15 and the reproductive number r0 = 2.

doi:10.1371/journal.pone.0152950.g010
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however, hEi for 50% vaccination is non-monotonic, with a minimum that lies at around 0.3
fractional allocation.

For the parameter space explored so far in this paper, hEAi is minimized for vaccine alloca-
tions that give all or most vaccine to city A, and hEBi is minimized for vaccine allocations that
give all or most vaccine to city B. That is, it is never beneficial for an individual population to
donate the majority of its vaccines to another population, even if the outbreak is occurring else-
where. This is also true for the deterministic model. However, for both populations viewed as a
whole, vaccine donating or vaccine sharing is often desirable.

For unequal population sizes, it is possible for both city A and city B to individually benefit
when all vaccine is given to city A, provided that city A is relatively small compared to city B
and time delay and coupling are very low. In this case, the probability of infection spreading
from A to B is low, such that a relatively small amount of vaccine will be effective at mitigating
the infection in city A. Thus, it is reasonably safe for B to remain vulnerable and instead focus
efforts on eradicating the epidemic in city A. This case is illustrated in Fig 11, where there are

Fig 11. A case in which both cities benefit the most when all vaccine is allocated to city A. The combined mean final epidemic size hEi and the
individual mean final sizes hEAi and hEBi are minimized when all vaccines are allocated to city A in order to eradicate the infection at its source, due to the low
coupling (fAB = 0.01) and low time delay (τ = 5). 10 vaccines are given to city A, which has a population of 20 individuals, while city B, which has a population
of 100, remains completely susceptible.

doi:10.1371/journal.pone.0152950.g011
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now 20 individuals (one of which is infected) in city A and 100 susceptibles in city B. The indi-
vidual mean final epidemic sizes hEAi and hEBi are both minimized when all 10 available vac-
cines are allocated to city A.

Similar effects overall are observed for larger system sizes. As the population size increases,
the optimal allocation increasingly favors A, albeit slightly. The mean final epidemic sizes are
plotted as a function of city B allocation in Fig 12. For instance, for the case of 50% vaccina-
tion at τ = 20 days and 0.01 coupling, the optimal fraction of vaccine allocated to city B is 0.6
for populations of 10 individuals each, 0.5 for 40 individuals each, and 0.4 for 80 individuals
each. In contrast, the deterministic optimal allocation does not change as a function of popu-
lation size.

Fig 12. Mean final epidemic size as a function of the fraction of vaccine allocated to city B for varying population sizes, and worst-optimal
difference as a function of population size. The stochastic combined mean final epidemic size hEi as a function of the fractional allocation to city B is
plotted for different combined population sizesN = NA + NB. The minima of the plots shift slightly to the left for larger N, indicating that the optimal vaccine
allocation increasingly favors city A as N increases. The lines become increasingly convex for larger N; the worst-optimal difference increases withN. The
worst-optimal difference is plotted in the inset as a function of the combined population sizeN. 50% of the population is vaccinated at time delay τ = 10 days,
and the coupling is set to fAB = 0.01. City A and city B each contain the same total population; city A contains one infective with the remaining susceptible, and
city B is entirely susceptible. The recovery rate γ = 0.15 and the reproductive number r0 = 2.

doi:10.1371/journal.pone.0152950.g012
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Note that the reproductive number r0, which is characteristic of each disease, is kept fixed at
2.0 in our simulations. Since the reproductive number represents the average number of people
infected by an infective during the epidemic, the disease can spread throughout an entire popu-
lation more quickly when the population is small. Hence, the mean final size achieved by fol-
lowing the optimal vaccination protocol, relative to the total population size, decreases as 1/N.

The difference in mean final epidemic size between the optimal and worst-case scenarios is
much more drastic for larger population sizes; the worst-optimal difference increases with pop-
ulation size, as shown in the inset of Fig 12. The worst-optimal difference also increases with
population size in the deterministic model. Hence, for larger cities, allocating vaccine strategi-
cally, in addition to reducing time delay, becomes more crucial for mitigating the epidemic.

Discussion
Using an SIR model to simulate epidemics in interacting populations, we analyzed the tradeoffs
involving vaccination, time delay, and coupling in order to determine optimal resource alloca-
tion strategies. The earlier a population undergoes mass vaccination, the more effective the
intervention, and less vaccine will be required to eradicate the epidemic. For interacting cities,
the optimal solution might favor one city over another, depending on the time delay until vac-
cine is deployed. In general, weaker coupling leads to protocols which allocate vaccine in more
disparate proportions to the two cities, while stronger coupling favors protocols which allocate
vaccine in equal (and proportional) amounts to each city.

Synchrony
A useful quantity to examine is synchrony, a measure of the correlation between the infection
dynamics of interacting populations, which increases as a function of coupling. This relation-
ship between correlation and coupling is demonstrated for the specific case of τ = 5 and 25%
vaccination in Fig 13A. Here, correlation is defined as the Pearson correlation coefficient
between the number of infectives in each city, IA(t) and IB(t), as measured over a full simula-
tion. Synchrony also affects the optimal vaccine allocation; higher synchrony tends to result in
a more equal division of vaccine between the two cities, while lower synchrony tends to result
in a less equal allocation.

The effects of vaccination on synchrony can depend on the specific parameters of the dis-
ease. In general, vaccination increases the probability of disease extinction while also reducing
the effective coupling, since transmission is decreased. Reduced coupling leads to reduced syn-
chrony, which in turn reduces the probability of permanent widespread extinction: asynchrony
across spatial scales increases the probability that infection will return to a population where
the disease was previously eradicated, in what is termed a “rescue event” [9]. It has been
observed (for example, during the measles outbreak in England andWales in the 1970s and
19780s) that the effects of reduced infection due to vaccination approximately cancel those of
asynchrony [9].

However, Rohani et al. [22] comprehensively compared measles and pertussis outbreaks in
England and Wales between 1940 and 1990, finding that while vaccination decreased syn-
chrony of measles outbreaks, it actually increased synchrony of pertussis outbreaks. This was
attributed to the relatively longer pertussis infection period, as well as the increased age at vac-
cination for pertussis, which implies increased individual movement and therefore increased
coupling.

Pulsed vaccination, in which the population is vaccinated periodically over a specified time-
frame, in conjunction with steady mass vaccination, has been suggested as a method to syn-
chronize epidemics, thereby more effectively controlling the disease [23]. Pulsed vaccination is
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particularly useful for vaccinating children with an immunization course administered over a
certain age range.

Large time delay and low coupling contribute to asynchrony, as illustrated in the first panel
of Fig 6. When fAB ≲ 0.25 and τ≳ 30, the optimal allocation highly favors city B. At this late
point in the epidemic, the infection has begun to die out in city A but has started to grow in
city B, due to a lag time between the epidemics in each city. We define the mean lag time as the
mean difference in time between when the number of infectives IA(t) in city A reaches a maxi-
mum and when IB(t) in city B reaches a maximum. The mean lag time decreases as a function
of coupling, as illustrated in Fig 13B, since higher coupling results in more synchronous epi-
demics. If there is a localized outbreak in city A, the increased lag time at low coupling could be
relatively advantageous to city B by effectively buying time for vaccine to be transported and
administered to city A.

Broader Implications
While the communities simulated in this paper are relatively small, we have qualitatively illus-
trated tradeoffs that we expect to be important at larger scales, including at the level of entire
nations. For example, if resources have been stockpiled, it can be undesirable to keep all vac-
cines within a nation, especially if frequent international travel encourages the spread of infec-
tion. On the other hand, if coupling is extremely low, vaccinating an uninfected population
while an outbreak occurs elsewhere can be disadvantageous. Rather, exporting vaccine to the
location of the outbreak in order to localize the spread of the infection could more effectively
reduce its severity.

Even for large populations, there can be a significant probability that the disease does not
propagate between cities or countries. Should the amount of available vaccine be limited, it can
be disadvantageous, from a holistic perspective, for an uninfected population to vaccinate itself

Fig 13. Synchrony of epidemics represented by correlation and lag time as function of coupling. Panel A: The correlation between the number of
infectives I(t) in each city is plotted as a function of coupling fAB. Higher correlation corresponds to higher synchrony. Panel B: The lag time between
epidemics is plotted as a function of fAB. A lower lag time corresponds to higher synchrony. For both plots, 25% of the total combined population is vaccinated
after 5 days in an equal allocation, such that each city receives 10 vaccines. City A has 39 initial susceptibles and 1 infective; city B has 40 initial susceptibles.
The recovery rate γ = 0.15 and the reproductive number r0 = 2.

doi:10.1371/journal.pone.0152950.g013
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when an epidemic is occurring in another population. As described in Fig 10, vaccinating the
uninfected population preemptively can lead to more severe epidemics. Vaccine is typically
allocated in proportion to regional population sizes, as with the H1N1 vaccine within the
United States during the 2009 epidemic [24]. When the disease is widespread, this is likely the
optimal solution, but if the infection is relatively localized, it might be favorable to focus on
eradicating the disease near its source.

The model described in this paper is based on the basic SIR framework, but it can readily be
made more complex by adding compartments, such as an E class representing exposed individ-
uals who are symptomatic but not infectious. Other variants on the SIR model include, for
example, the SIRS model, in which a recovered individual stays immune for some finite
amount of time before reverting to susceptibility, or the SIS model, which skips the recovery
stage altogether. The choice of model will be dictated by the characteristics of the specific dis-
ease being studied.

The methods detailed in this paper can also be applied to a more realistic model incorporat-
ing, for instance, different rates of infection based on age. Spatial separation and heterogeneity
could be explicitly included, as well as specific logistic considerations such as delays due to
transport of vaccine from storage facilities to clinics. Other forms of epidemic control can be
included, such as transportation restrictions or quarantining. Restricting transportation
between cities will reduce the effective coupling f and reduce the overall movement of individu-
als. Quarantining serves to reduce the effective infection period 1/γ by isolating infectives from
the rest of the population [9]. Quarantine effectively dampens the infectious spread and is an
attractive method of epidemic control, since it does not involve the high costs of producing and
distributing vaccine. However, unlike vaccination, quarantine does not directly immunize sus-
ceptibles, but indirectly protects them by lowering the probability of transmission.

Moreover, while we do not consider them in this paper, SIR models on networks are also
commonly used to model epidemics and are especially useful for understanding spatial dynam-
ics. An example SIR network model could have cities defined on nodes with edge weights
derived from transportation frequency, such as in the model devised by Matrajt et al [19]. In
this model, the spread of infection within cities is described with the deterministic SIR equa-
tions, while interactions between cities is described by a stochastic process. While this hybrid
model includes the probability of non-spreading, the deterministic intra-city interactions do
not account for the variability of the disease dynamics and the probability of early disease
extinction within a community.

The problem of optimizing dynamic resource allocation can be also be applied to natural
disasters, oil spills, and other circumstances which are of interest to policy officials. SIR-type
models similar to those formulated in this paper can in particular be applied to wildfires, with
compartments of unburned, burning, and burned corresponding to susceptible, infected, and
recovered, respectively [25]. While the concept of coupled populations in epidemiology does
not have a direct analogy in the realm of natural disasters, wildfires may break out in rapid suc-
cession in different areas, requiring quick and optimized allocation of resources.

The difference between the outcomes of optimal and worst-case scenarios can be compared
to identify where intervention is most effective. Furthermore, it may not be preferred to follow
the optimal protocol in certain cases. For example, if the optimal solution prescribes vaccinat-
ing only city A, leaving city B’s populace fully vulnerable to the infection is likely unfavorable
to the residents of city B, especially since the probability of the epidemic spreading to city B is
nonzero. In such a case, policymakers could take the worst-optimal difference into consider-
ation to choose a vaccination protocol such that a middle ground is struck between a mathe-
matically optimal solution and a realistic, but not excessively deleterious, solution.
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