
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14416  | https://doi.org/10.1038/s41598-021-93878-2

www.nature.com/scientificreports

Benchmarking germline CNV 
calling tools from exome 
sequencing data
Veronika Gordeeva1,2*, Elena Sharova1, Konstantin Babalyan1, Rinat Sultanov1,2,3, 
Vadim M. Govorun1,2 & Georgij Arapidi1,2,3,4

Whole-exome sequencing is an attractive alternative to microarray analysis because of the low 
cost and potential ability to detect copy number variations (CNV) of various sizes (from 1–2 exons 
to several Mb). Previous comparison of the most popular CNV calling tools showed a high portion 
of false-positive calls. Moreover, due to a lack of a gold standard CNV set, the results are limited 
and incomparable. Here, we aimed to perform a comprehensive analysis of tools capable of 
germline CNV calling available at the moment using a single CNV standard and reference sample 
set. Compiling variants from previous studies with Bayesian estimation approach, we constructed 
an internal standard for NA12878 sample (pilot National Institute of Standards and Technology 
Reference Material) including 110,050 CNV or non-CNV exons. The standard was used to evaluate 
the performance of 16 germline CNV calling tools on the NA12878 sample and 10 correlated exomes 
as a reference set with respect to length distribution, concordance, and efficiency. Each algorithm 
had a certain range of detected lengths and showed low concordance with other tools. Most tools 
are focused on detection of a limited number of CNVs one to seven exons long with a false-positive 
rate below 50%. EXCAVATOR2, exomeCopy, and FishingCNV focused on detection of a wide range 
of variations but showed low precision. Upon unified comparison, the tools were not equivalent. The 
analysis performed allows choosing algorithms or ensembles of algorithms most suitable for a specific 
goal, e.g. population studies or medical genetics.

Copy number variations (CNVs) are variations of the number of copies of a DNA fragment in a population. 
According to a high-resolution CNV map composed using publicly available data, CNVs cover 4.8–9.5% genome1 
and can be involved in both evolutionary adaptation and disease progression2,3. Due to the low resolution of 
chromosome microarray analysis (CMA), CNV detection mainly relies on next-generation sequencing (NGS) 
data4,5. Whole exome sequencing (WES) is a cost-effective and wide-spread technique primarily used for detec-
tion of small variants in coding regions of the genome. Due to its high sensitivity, the method is widely used in 
population studies (e.g. the Exome Aggregation Consortium6); also it is included in guides for identification of 
the genetic causes of many diseases7,8. WES data could also be used as an information resource to detect CNVs. 
However, WES has many features that impede accurate CNV detection. These include basic features (like capture 
step) and those originating from the PCR stages (problems with sequencing low complexity regions, dependence 
on GC content), directly affecting the over- and underrepresentation of target regions, which can be mistakenly 
interpreted as CNVs.

Multiple tools have been elaborated to detect CNVs in exome data; they mainly use the read depth-based 
strategy, in which the number of reads (read count, RC) mapped onto a fragment of interest is being evaluated9,10. 
These tools vary greatly at every step of the analysis, including read-depth distribution assumption, RC data 
normalization, and segmentation approach (Table 1). For example, ExomeDepth11 uses a beta-binomial model 
of read distribution and CANOES12 and exomeCopy13 apply negative binomial distribution due to errors in the 
course of sample preparation and hybridization. cn.MOPS14 utilizes a mixture of the Poissons model and Bayes 
approach. The EXCAVATOR215 and CNVkit16 tools predict CNVs taking into account not only normalized 

OPEN

1Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 
Moscow, Russia. 2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 
Russia. 3Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research 
and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 
Russia. 4Shemyakin‑Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 
Russia. *email: gordeeva.veronika@phystech.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-93878-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14416  | https://doi.org/10.1038/s41598-021-93878-2

www.nature.com/scientificreports/

RC of target regions but also that of the off-target ones. To improve the efficiency of CNV calling, CLAMMS17 
and ExomeDepth also include a procedure of reference set optimization. CoNIFER18 performs systematic bias 
correction using singular decomposition and CODEX19 applies log-linear decomposition-based normalization. 
Both XHMM20 and FishingCNV21 use principal component analysis to reduce noise but FishingCNV applies 
circular binary segmentation (CBS) on the test sample and then performs the simple comparison of normalized 
coverage against background, while XHMM uses hidden Markov models on Z-RPKM (reads per kilo-base per 
million total reads) values. Moreover, some algorithms have other features: ExonDel22 and HMZDelFinder23 can 
only detect decrease in the number of copies in the genome, and PatternCNV24 and CONTRA​25 are focused on 
the identification of exon-level CNVs. Among all tools, only DeAnnCNV26 is available online and, in addition 
to CNV calling, includes the variation annotation module. CNVkit, CODEX, EXCAVATOR2, ExomeDepth, 
ExonDel, PatternCNV can be considered as more universal for WES analysis, they are designed for both germline 
and somatic CNV calling.

There are several studies focusing on comparison of sets of 3–6 existing CNV calling algorithms27–29. However, 
there are no works that would compare larger sets of currently available tools. Also, the criteria for estimation of 
their efficiency on validation data could be improved. Existing studies consider only well-known tools (XHMM, 
CONIFER, ExomeDepth, CONTRA, exomeCopy) and use different overlap criteria to confirm predictions. One 
group used CNVnator30 calls from whole-genome sequencing (WGS) data as a CNV set standard; the other used 
calls obtained from CMA, including custom design arrays.

In addition to in-house generated data, public data is also used to evaluate algorithm performance. Since 
CNVs have been acknowledged as a natural part of the human genome, more than 70 studies have been per-
formed to identify CNVs in the human genome. The most widely-used CNV call sets are: (1) the study of Conrad 
et al. (2010), in which31 a set of 20 comparative hybridization arrays with 2.1 million probes to identify CNVs 
over 500 bp long has been used; (2) structural variations obtained during the pilot and/or phase 3 of the 1000 
Genomes Project, predicted from the whole-genome data by 19 different algorithms (read-depth, read-pair, 
split-read, assembly-based)32–34; (3) and high-confidence CNV calls from NA12878 sample supported by mul-
tiple signals using svclassify35. Specific features of CNV set formation, for example, accuracy of prediction from 

Table 1.   CNV calling tools included in the study.

Tool Algorithm detail Features (specifics) Year

CANOES Negative binomial distribution, regression-based normalization (GC-
content), HMM

At least 15 samples, average targets 6, distance between targets 70 kb, aver-
age rate of CNV occurrence in the exome 10–8 2014

CLAMMS GC-content and average depth normalization, custom reference set using 
kNN, mixture model, HMM 0.3 < GC < 0.7, mappability > 0.75 2015

cn.MOPS GC-content and sample normalization, mixture Poissons model and Bayes 
approach

At least 6 samples
Minimum segments 5 2012

CNVkit In-target and off-target regions, bias (GC-content, repeat-masked fraction, 
target density) correction using rolling median, CBS Exclude poor mappable regions 2016

CODEX Log-linear decomposition-based normalization, Poisson likelihood-based 
segmentation

0.2 < GC < 0.8
Target length > 20 bp, median target coverage > 20 × , mappability > 0.9 2015

CoNIFER Singular value decomposition normalization, ± 1.5 SVD-ZRPKM threshold
At least 50 samples
Probes with median RPKM across samples > 1, samples with a standard 
deviation of SVD-ZRPKM < 0.5

2012

CONTRA​ Base-level log-ratios, GC-content, library-size correction, calling region 
significant based on normal distribution, CBS for large variation Include regions at least 10-bp long with coverage > 10 2012

DeAnnCNV Web-server, GC-normalization, HMM of log read counts ratio CNV evidence threshold > 80 2015

EXCAVATOR2 In and off-target regions, 3-step normalization (GC-content, mappability, 
region length) segmentation with shifting level model, FastCall algorithm

Read mapq > 1
Min number of targets in CNV 4 2016

exomeCopy Negative binomial distribution, HMM using background read depth and 
positional covariates (GC-content, length)

mapq > 1, overlap to include read into region—1 bp, median value for 
background, transition probability to CNV 1e-4
Transition probability to normal state 0.05

2011

ExomeDepth Beta-binomial distribution, optimized reference set, HMM
Read mapq > 20, max distance between target border and the middle of 
paired read to include read into region 300 bp
Transition probability to CNV 0.0001
Expected CNV length 50 kb

2012

ExonDel Deletion in exome or genes of interest, GC-content median correction, call-
ing by comparing to median depth within the gene

Read mapq > 20, base quality > 20, min percent of covered bp for each exon 
0.1, max number of exons in CNV 9 2014

FishingCNV PCA of RPKM, CBS test sample, comparing segment coverage against 
control set distribution

Read mapq > 15
Base quality 10, RPKM > 3
FDR adjusted p-value 0.05

2013

HMZDelFinder Only deletion, exon and sample filtering, call region with RPKM < 0.65 as 
deletion, AOH filtering based on VCF, prioritization based on Z-score

Mean RPKM > 7 across samples, deletion frequency < 0.5%
Exclude 2% samples with the highest number of deletion 2017

PatternCNV Log2-transformed RPKM standardization, average and variability pattern 
training from control samples, smooth bin within exon

Bin size 10
mapq > 20 2014

XHMM Gaussian distribution, PCA normalization, HMM
At least 50 samples, 0.1 < GC < 0.9, 10 bp < target < 10 kbp, mean cover-
age > 10 × across all samples,
average targets 6, distance between targets 70 kb, average rate of CNV 
occurrence in the exome 10–8

2012



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14416  | https://doi.org/10.1038/s41598-021-93878-2

www.nature.com/scientificreports/

WGS or low resolution and choice of the reference sample in case of array technology, do not allow to obtain 
a comprehensive spectrum of variations and identify all the advantages and limitations of a CNV calling tool.

To perform a unified comparative analysis: (1) we chose NA12878 as one of the most characterized samples 
of the Genome in a Bottle project; (2) we used exon as a minimal unit for comparison, (3) we constructed the 
set of CNV and non-CNV exons based on available CNV sets for the NA12878 using Bayes model, and (4) we 
evaluated the performances of 16 existing germline CNV tools (Table 1) using the same reference set.

Methods
Study data.  The collection of exome data mapped to GRCh37 decoy reference genome (hs37d5.fa) in the 
BAM format was downloaded from Phase 3 of the 1000 Genomes Project (hg19) (detailed description of samples 
is provided in Supplementary Table S1). All alignment data were processed by the standard data pre-processing 
protocol: sorting, filtering (deleting the reads with MAPQ > 10) with SAMTools v.0.1.19, and removing PCR 
duplicates by Picard MarkDuplicates v. 2.5.0. The average coverage for the data was 104.3X, and the average frac-
tion of target regions covered with at least 10X and 20X were 89.9% and 83.1%, respectively.

To construct validation set structural variations previously detected in the NA12878 sample were received 
from the sixteen peer-reviewed research studies31–47; experiment design and data processing procedures for each 
of them are described in Supplementary Table 2. If calls were not available for hg19 genome build we converted 
their coordinates using UCSC LiftOver. To operate at the exon level, we considered an exon as an exon with 
copy number variation (CNV-exon) if the CNV region spans at least 50% of the exon. The set of known exons 
was obtained from GENCODE comprehensive gene annotation Release 19 (GRCh37.p13); to construct a set of 
non-overlapping exons per gene, the R GenomicFeatures package was used.

Parameters of CNV calling tools used.  The CNV calling from exome data were performed by 16 tools 
(Table 1). As a reference set for the NA12878 sample we used the top 10 most correlated samples according 
to recommendations11 (function select.reference.set implemented in the ExomeDepth 1.1.10 software pack-
age). Most tools were run with default parameters, all changes in standard pipelines for the rest of the tools 
are described above. For GC-content calculation implemented in some algorithms, GRCh37 decoy reference 
genome (hs37d5.fa) was used.

During the CONIFER normalization step, two singular value decomposition components were removed based 
on the inflection point of the scree plot for our data; for calling, threshold value 0.95 was used due to the small 
coverage variability for correlated samples. ExomeDepth and CLAMMS were applied without their reference set 
selection step; also all CNVs with non-Phred quality score < 0 identified by CLAMMS were filtered off. To predict 
CNV in a test sample by cn.MOPS, a pipeline for exome sequencing data (exomecn.mops) was used on the pre-
liminarily calculated read count matrix. Since longer calls are more reliable, we consider ExonDel results found 
by a moving window with a maximum of the available number of exons (9). CNV calling with HMZDelFinder 
was performed without theAOH analysis. FishingCNV and PatternCNV calls with p value > 0.05 were excluded.

Performance evaluation.  Analysis of the existing tools was performed only on autosomal chromosomes 
with respect to the characteristics of predicted CNVs (number of calls, size, total length, target regions), con-
cordance between algorithms, and efficiency of the latters. To assess the prediction accuracy of an algorithm, we 
constructed the validation set of CNV-exons for NA12878 based on the previous research using Bayes model 
(See “Construction of a standard CNV-exon set based on Bayesian estimation” section). For correct estimation, 
we considered only those exons that are included in the target design and our validation set. Since the data is 
inherently unbalanced we used the following metrics for evaluation of a tool:

Results
Moderate concordance among CNV validation sets.  A comprehensive validation set is needed to 
adequately compare existing methods. Due to the wide range of sizes and types of structural variation, the 
development of such is challenging. Although the NA12878 sample is one of the standards for benchmarking 
of multiple callers, a gold-standard CNV set doesn’t exist. The recent set of high-confidence CNVs (svclassify) 
proposed by the GIAB Consortium includes only deletion events and besides it only spans 184 exons. Therefore, 
we collected CNV call sets for the NA12878 sample from previous studies (Supplementary Table S2).

To perform the pairwise comparison of the 16 CNV sets we evaluated the set size and the fraction of exons 
with the same status (CNV or non-CNV) in shared exons of any two validation sets (Fig. 1, Supplementary 
Table S3). Early studies36–41 (Supplementary Table S2; the mccarroll2006, conrad2006, wang2007, pinto2007, and 
coper2008 sets) detected a small number of CNVs but almost all of them were well supported by later research. 

Recall =
True Positive

True Positive + False Negative
,

Precision =
True Positive

True Positive + False Positive
,

F1 =
Recall ∗ Precision

Recall + Precision
.
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The sets obtained by the integration signals from multiple technologies (e.g. svclassify, metasv) also showed a 
high level of concordance with other sets.

Another problem of the available sets is their limitation to identify false positives. The 5 sets (mccarroll2008, 
conrad2010, hapmap, pilot, and phase3) contained information about true non-CNV exons, their pairwise com-
parison at the exon level is shown in Table 2.

Overall, the number of CNV-exons varied greatly among the sets; on average, they overlapped by 40%. These 
results can be explained by differences in the approaches, reference sets, and criteria used to call CNVs in dif-
ferent studies. Such differences in the validated exons cast doubt on the correctness of use of only one of these 
sets for the comparative analysis of CNV tools. Therefore, we made an attempt to generate our own validation 
set using available data.

Construction of a standard CNV‑exon set based on Bayesian estimation.  Since available CNV 
sets describe different genome regions, and for some of them true non-CNV are not defined, it is impossible to 
formulate the majority rule for any exon. Assuming that all sets are independent, we considered that in condi-
tions of conflicting and incomplete information, the Bayes estimator would be the most appropriate approach 
for making a decision. In Bayes estimation, the unknown parameter θ is viewed as random and the model is 
specified in term of the conditional probability density function f (x|θ) and prior distribution π(θ) on θ . By 
Bayes rule, the posterior distribution of given some measurement x:

The quality of the estimate is measured by loss function L(θ , δ) and estimator δ which minimizes the expected 
posterior loss E[L(θ , δ)|x] for each x is called Bayes estimator48.

To construct the validation set we wanted to rank exons based on their estimation of being CNV-exon and 
consider the most highly ranked as CNV. Let ith exon is characterized by n number of CNV sets and x sets 
described ith exon as CNV-exon. Suppose that x ∼ Binomial(n, θ), θ ∼ Beta(α,β) , where θ is the probability 
of being CNV-exon, then posterior distribution

(1)π
(

θ |x
)

∝ f
(

x|θ
)

π(θ).

Figure 1.   Size of validation sets for the NA12878 sample (a) and rate of exons with equal states (both CNV or 
both non-CNV) for each pair of sets (b).

Table 2.   Pairwise comparison of sets with validated non-CNV exons and the GIAB high-confidence CNV 
set (svclassify): elements on the main diagonal indicate the set size, for other elements the denominator of a 
fraction is the number of shared exons in the sets and the numerator is the number of exons with the same 
state.

svclassify hapmap mccarroll2008 conrad2010 pilot phase3

svclassify 184

hapmap 41/41 1970

mccarroll2008 41/43 1211/1282 3875

conrad2010 81/85 975/1228 1192/1514 8230

pilot 164/174 406/925 651/1276 1364/2431 28104

phase3 103/124 1355/1522 2272/2450 3142/3847 3808/6176 54137
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The most common estimation problem is squared error loss due to its simplicity and convenience. It is 
characterized by high sensitivity to outliers and the same magnitude for positive and negative errors. However, 
to focus on confident CNV-exons especially under the limited number of sets including data about true diploid 
genome regions we needed to penalize errors differently. Therefore we considered an asymmetric piecewise 
linear loss function49

Then the expected posterior loss may be written

Minimizing this expression with respect to d we get that Bayes estimator is t2
t1+t2

 fractile of posterior distribu-
tion (Eq. 5):

where I(a, b) is the regularized incomplete beta function.
To evaluate the parameters of a priori distribution, we used the stringent CNV map of the human genome 

constructed by Zarrei and co-authors1. Using the data on the European population, we constructed the prob-
ability distribution of the presence of CNVs in 21,242 exons that are crossed by the CNV regions. Probability 
distribution was fit using the maximum likelihood method (python function scipy.stats.beta.fit with location = 0 
and scale = 1), which yielded α = 0.33 and β = 0.93.

The penalties were chosen out of concern that overestimation of the parameter was worse than underestima-
tion. For simplicity, we defined the coefficients as the maximum number of sets that are available to characterize 
exon as CNV (t1 = 16) and non-CNV (t2 = 5). To solve the Eq. (5), the special.betaincinv function of the Python 
SciPy version 1.0.0 was used.

The distribution of the estimated exon’s probability of being CNV is presented in Fig. 2. As we expected, exons 
are divided into groups depending on their representation in CNV sets. The highest left peak corresponded to 
exons described only as non-CNV. Data about exons with parameter value in the 0.2–0.4 range were the most 
contradictory, with a slight preponderance in favor of two copy number region or CNV; exons described by 
only one set were also ranked low. On other exons, we observed a prevalence of sets confirmed CNV. A cutoff 
of 0.45 for selecting confident CNV-exons based on their estimates was chosen to provide 95% accuracy on a 
set of 225 CNV-exons validated using PCR. Thus, our validation set for NA12878 contained 6853 CNV-exons 
and 103,197 non-CNV exons.

To compare the internal standard and the initial data, we estimated the percentage of CNVs in any CNV set 
included in our standard. The recent set of high-quality CNVs formed in the framework of the GIAB project and 
experimentally validated variants from Conrad and McCarroll studies from 2006 were fully integrated into the 
standard. The constructed validation set contains above 79% of CNV-exons discovered from WGS (The 1000 

(2)π(θ |x) =

(

n
x

)

θx(1− θ)n−xθα−1(1− θ)β−1 Ŵ(α + β)

Ŵ(α)Ŵ(β)
∼ Beta(α + x,β + n− x) .

(3)Lt1t2(θ , d) =

{

t2(θ − d) if θ > d,
t1(d − θ) otherwise.

(4)E[Lt1t2(θ , d)|x] = t1
d
∫
0
(d − θ)π

(

θ |x
)

dθ + t2
1
∫
d
(θ − d)π

(

θ |x
)

dθ

(5)

0 = t1(d − d)π
(

d|x
)

+ t1
d
∫
0
π
(

θ |x
)

dθ − t2(d − d)π
(

d|x
)

− t2
1
∫
d
π
(

θ |x
)

dθ

t1
d
∫
0
π
(

θ |x
)

dθ − t2

(

1−
d
∫
0
π
(

θ |x
)

dθ

)

= 0

Id(α + x,β + n− x) =
t2

t1 + t2
,

Figure 2.   Distribution of the probability estimation. Threshold for exon classification is indicated by a dotted 
line.
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Genome Project, FDR < 5% by orthogonal validation methods), SNP-array data (hapmap, wang2007, pinto2007, 
cooper2008). Variations from mccarroll2008, redon2006 and conrad2010 discovered by genotyping array and 
CGH array respectively were presented only a half in the standard, the remaining CNV-exons were singleton 
(presented only in one CNV set) and insufficiently confirmed. The same situation was observed for predictions 
based on long reads or integration of different signals (paired-read, split-read, read depth). The observed rela-
tionships between sets allow us to consider the standard as reliable for benchmarking analysis.

Evaluation of algorithms.  To take into account the genome variability and reduce the number of false-
positive calls, we chose 10 exomes well-correlated by coverage with NA12878 as a reference sample set and run 
16 germline CNV calling tools on these exome data.

Differences in count and size of predicted CNVs.  The algorithms differed by an order of magnitude in terms 
of both the number of predicted variations and the number of affected target regions (Table 3). The highest 
number of variations were predicted by FishingCNV (1210 CNV) and exomeCopy (845 CNV); the lowest, by 
a web-tool DeAnnCNV (2 CNV). CONTRA, EXCAVATOR2, ExomeDepth, and PatternCNV identified about 
200–300 variations; in the case of CONTRA and PatternCNV these were single-exon CNVs. Other algorithms 
detected an average of 26 variations. Most algorithms preferentially detected deletions over duplications, which 
can be explained by peculiarities of the data and better distinguishes between decreases relative to diploidy than 
increases. The total length of CNVs ranged from 50 kb to 1304 Mb, which exceeds the known fraction of CNVs 
in the human genome. This indicates the need to filter the calls produced by some tools, in particular, by Fish-
ingCNV and exomeCopy.

We noticed that CNV tools can be divided into groups based on the length of identified CNVs. The algorithms 
Most algorithms detect CNVs within 1–50 kb with an average number of targeted regions equal to 7 (Fig. 3).  

Variations of less than 1 kb were found by nine tools (ExomeDepth, CONTRA, CANOES, CLAMMS, CNVkit, 
CODEX, FishingCNV, HMZDelFinder, and PatternCNV); moreover, for CLAMMS, CONTRA, PatternCNV, 
FishingCNV, and HMZelFinder such variations account for a large fraction of identifications. CNVkit, CODEX, 
CANOES, EXCAVATOR2, and FishingCNV are among the few algorithms that detect both small CNVs from 2 
to 3 target regions and long variations (over 1 Mb).

Concordance between CNV calling tools.  Concordance check between tools was performed at the exon level. 
About 70,000 CNV-exons were singleton, i.e. detected by a single tool (Supplementary Table S4), and the main 
portion was called by exomeCopy and FishingCNV. The other predictions of these two algorithms mostly inter-
sected with EXCAVATOR2. For ExonDel, CANOES, EXCAVATOR2, and DeAnnCNV, 25–30% of predicted 
CNV-exons were unique, while for the rest of the tools more than 90% predicted CNV-exons were confirmed 
by the others. The best confirmation was observed for HMZDelFinder and CONIFER calls (Fig. 4, Supplemen-
tary Table S6) with zero unique CNV-exons. Despite the high-level matching of calls with at least one tool, we 
observed a low number of common CNV-exons called by multiple tools (3 and more). The maximum avail-
able overlapping spanned 2 exons and included 11 algorithms (PatternCNV, CODEX, ExomeDepth, XHMM, 
FishingCNV, CONTRA, CANOES, HMZDelFinder, EXCAVATOR2, cn.MOPS, CNVkit). We also performed 
pairwise comparison of calling tools (Supplementary Table  S6). CODEX and ExomeDepth showed the best 

Table 3.   Description of predicted CNVs. *Target, number of target regions covered by all predicted CNVs. 
**Mean of target, average number of target regions covered by a CNV.

Algorithm
Number of 
CNVs Deletion Duplication Target*

Mean of 
targets**

Total length of 
CNVs, kb

Mean CNV 
length, kb

CNV size 
range, kb

CANOES 16 16 0 306 19 3583.4 51.5 0.4–2056.1

CLAMMS 34 13 21 62 2 122.6 3.6 0.1–77.7

cn.MOPS 38 29 9 276 7 2207.9 21.5 1.8–886.8

CNVkit 16 16 0 309 19 4194.4 262.1 0.5–1347.4

CODEX 97 56 41 885 9 8314.7 85.7 4.4–117.3

CoNIFER 12 12 0 124 10 343.5 15.2 2.5–185.1

CONTRA​ 329 244 85 329 1 135.8 0.24 0.1–16.8

DeAnnCNV 2 1 1 7 3 121.7 60.8 4.4–117.3

EXCAVATOR2 236 183 53 5002 21 40359.8 71.6 1.4–2741.6

exomeCopy 845 790 55 91059 108 1,304,244.3 1543.5 1.2–40,705.9

ExomeDepth 199 151 48 1057 5 5018.7 4.1 0.1–693.0

ExonDel 17 17 0 529 31 849.5 50.0 6.0–356.1

FishingCNV 1210 815 395 54434 45 1,115,772.5 922.1 0.1–26,762.8

HMZDelF-
inder 7 7 0 15 2 99.2 14.2 0.1–63.5

PatternCNV 243 233 10 254 1 51.2 0.2 0.0–1.63

XHMM 11 8 3 211 16 1069.6 40.3 5.2–534.4
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concordance with almost 33% of common CNV-exons. exomeCopy and FishingCNV had 24% of concordant 
CNV-exons but unlike previous ones they practically do not intersect with other algorithms. On average, a CNV 
calling tool had some agreement (> 5%) with 3–4 others. The worst similarity was observed for CANOES (no 
more than 1%). cn.MOPS, CONTRA, PatternCNV, CoDEX and ExomeDepth paired with each other showed a 
moderate concordance level (10–21%).

Accuracy of CNV calling tools.  We estimated the efficiency of CNV calling tools using the generated set of CNV 
and non-CNV exons (Supplementary Table S7, Fig. 5). Among all algorithms, CANOES turned out to be the 
worst with 3.9% precision and 0.2% recall. The highest recall was demonstrated by exomeCopy: it identified 65% 

Figure 3.   Distribution of predicted CNVs over length (a) and number of targeted regions (b).

Figure 4.   Fraction of predicted CNV-exons confirmed by 1–2, 3–6, or over 6 tools. The order of the tools is 
determined by the length of predicted CNVs: from small to large.
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of exons of our standard. On the other hand, the algorithm predicted many false-positive events (about 95% 
identifications). Second best in terms of the number of predictions was the FishingCNV algorithm. It showed 
27% recall at 4% precision value. Sensitivity of other algorithms did not exceed 16%, although they differed 
considerably in terms of precision of exon identification: from 40% for XHMM to 100% for DeAnnCNV. High 
precision values were also obtained for CONIFER (82%), HMZDelFinder (80%), and cn.MOPS (78%). EXCA-
VATOR2 is the most balanced one, with F1-score 0.41. ExomeDepth (F1-score 0.24) and CODEX (F1-score 
0.19) identified lower number of variants, but were less prone to false identifications.

Therefore, all algorithms have their own focus. Most algorithms analyzed are fit for a limited search of CNVs 
involving 1–7 exons with the rate of false-positive results not exceeding 50%. At the same time, EXCAVATOR2, 
exomeCopy, and FishingCNV producing 30–60% unique predictions are tailored for the search of a wide range 
of variations but are characterized by low precision.

Discussion
CNV is an important type of structural variation, accurate detection and interpretation of which are essential for 
both population studies, medical genetics, evolution, and cancer research. Chromosomal microarray analysis 
often is limited by array resolution and detects mostly the major rearrangements. WGS and WES, in turn, can 
detect all levels of CNVs and are of interest in clinical practice, especially WES, which is the primary diagnostic 
test for many orphan diseases, spectrum disorders and syndromes. Despite the development of many CNV call-
ing tools, detection of this type of variation remains challenging. The reason for this is not only poor sequencing 
efficiency in regions with low sequence complexity or regions with high GC-content, but also the challenge to 
construct a true set of CNVs for adequate evaluation of applied methods.

Using a sample from the “Genome in the Bottle” project as an example, we considered the contradictions 
between available CNV call sets arising from differences in the resolution of detection methods, choice of the 
reference pool (from one to several dozens of samples), and analysis tools. Since no set covers all CNVs to the 
full, we used a stringent CNV map of the human genome as prior knowledge and with the Bayes approach 
ranged the exons by the probability of being CNV-exons. Thus, we constructed an exon-level CNV set for the 
NA12878 sample which includes about 110 thousand exons and can be used for an independent evaluation of 
tools on exome data.

Comparative analysis of 16 germline CNV calling tools showed that each algorithm has its certain range 
of detected lengths: the minimum possible size is an exon as predicted by CONTRA or PatternCNV, and the 
maximum size is more than 1 Mb, as observed in CNVkit calls. Most algorithms call CNVs up to 100 kb in 
length and span 4–10 exons. Due to the nature of the sequencing data, tools preferentially detected loss of genetic 
material over its gain.

We observed low concordance between the results produced by different tools. In addition to the differences 
in models applied for CNV calling, one of the possible reasons for the situation can be the characteristics of the 
exons. In particular, part of the CNV-exon singletons was obtained for exons with extreme values of GC content 
and mappability, which are filtered off in some of the algorithms (Table 1).

Algorithms are most effective in detection of variation from 1 kb, it could be a feature of calling model fitting: 
choice of train data and evaluation criterion for variant (e.g. number of targets). Also we showed differential 
focus of tool performance on precision or recall. Most algorithms identify a small number of variations yet with 
satisfactory precision (about 70%). This group of algorithms can be of use in population studies. In case of clinical 
diagnostics, there is a need to identify as many variations as possible with exome sequencing even if at the expense 
of precision. Later on the variants will be evaluated based on the clinical presentation, de novo appearance com-
pared to parents and joint effect of revealed variants on the phenotype—thus filtering the false-positive variants. 

Figure 5.   Recall and precision of algorithms for CNV identification using whole-exome sequencing data.The 
order of the algorithms is determined by the length of predicted CNVs: from small to large.
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Also, in case studies, additional validation of individual candidate CNVs using cheaper techniques is possible, 
which decreases the false-positive rate and enhances the importance of minimization of false-negative outputs. 
This condition is met by only three algorithms: EXCAVATOR2, exomeCopy, and FishingCNV with recall over 
26%. Therefore, part of CMA performed in frames of diagnostics of hereditary disorders can be replaced with 
primary CNV calling from exome. The minimum precision threshold should be chosen depending on the aims 
of the analysis and in the case of medical applications, on the group of disorders under investigation.

Limitations in the applicability of existing algorithms described in the article (number of CNV, expected 
length, calling efficiency) should be considered when using CNV calling. In the case of detecting small variations 
(1 exons), PatternCNV and CONTRA are practically equivalent in terms of the number of CNVs and prediction 
accuracy. The CNV calls intersection increases precision to 73%. At the main range (1–100 kb) we recommend 
using cn.MOPS if the goal is low false positive rate (20%) and EXCAVATOR for more sensitive CNV calling.

The findings of this study have to be seen in light of some limitations. The first is the analysis was conducted 
on only one sample. Since the development of a CNV benchmark set is a rather laborious process, the choice of 
samples for evaluating the algorithm’s efficiency is limited. Expanding the set of samples would allow researchers 
to fully evaluate the characteristics of the predicted CNV and investigate performance results under different 
sequencing depths. The second is the formation of the validation set at the exon level. Such a description does 
not allow us to assess the efficiency of identifying CNV of different lengths due to the complexity of assigning 
“true” CNV-exon to one or another group. The third limitation concerns the fact that uniform conditions may 
not be optimal for algorithms. For example, the minimum number of samples required for quality identification 
or using only the default parameters. Comparison of the best performances is of particular interest for under-
standing the capabilities of CNV calling tools. Moreover, we think this may be a good practice in the future to 
set the parameters depending on the available data or alternatively use ensemble models, thereby increasing the 
detection efficiency.

Data availability
The code of the analysis is available at https://​github.​com/​bioin​forma​tics-​IBCH/​Compa​rison-​study-​of-​germl​
ine-​CNV-​calli​ng-​tools.
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