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Abstract

Objective

Accumulated data suggests that cerebral microbleeds (CMBs) play an important role in the

decline of cognitive function, but the results remain inconsistent. In the current study, we

aimed to investigate the association between CMBs and cognitive function, as well as the

various effects of CMBs on different domains of cognition.

Methods

We searched through the databases of PubMed, Embase, Cochrane Library, and Science-

Direct. After a consistency test, the publication bias was evaluated and a sensitivity analysis

was performed with combined odds ratios (OR) and standardized mean difference (SMD) of

CMBs.

Results

A meta-analysis of 25 studies with 9343 participants total was conducted. Patients with

CMBs had higher incidence of cognitive impairment (OR:3.5410; 95% confidence interval

[CI] [2.2979, 5.4567], p<0.05) and lower scores of cognitive functions (SMD: -0.2700

[-0.4267, -0.1133], p<0.05 in Mini-Mental State Examination [MMSE] group and -0.4869

[-0.8902, -0.0818], p<0.05 in Montreal Cognitive Assessment [MoCA] group). Our results

also indicated that patients with CMBs had obvious decline in cognitive functions, for

instance, orientation (SMD: -0.9565 [-1.7260, -0.1869], p<0.05), attention and calculation

(SMD: -1.1518 [-1.9553, -0.3484], p<0.05) and delayed recall (SMD: -0.5527 [-1.1043,

-0.0011], p = 0.05).

Conclusions

Our data suggested that CMBs might be an important risk factor for cognitive dysfunction,

especially in the domains of orientation, attention and calculation and delayed recall
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functions. Prospective cohort studies with further investigations will be needed in larger

samples.

Introduction

According to the World Alzheimer Report (2015), the increasing prevalence of dementia will

be one of the biggest global public health and social care challenges today and in the future. [1]

Cerebral small vessel disease (CSVD) is an important clinical and pathological condition caus-

ing 20% of strokes worldwide, and one of the most common causes of vascular cognitive

impairment (VCI) and mixed dementia. [2] Cerebral microbleeds (CMBs), detected by T2�-

weighted gradient-recalled echo (GRE) or susceptibility-weighted imaging (SWI), have been

recognized as an important manifestation and diagnostic marker of CSVD. Although CMBs

have traditionally been considered as a part of clinical silence, a growing body of evidence has

indicated that CMBs play a crucial role in the pathophysiology of VCI.

A population-based Rotterdam Scan Study shows that the incidence of CMBs was approxi-

mately 10% and CMBs rarely disappeared. [3] Studies from Asia also suggests that the presence

of multiple CMBs, particularly multiple lobar CMBs, was associated with higher global neuro-

psychiatric burden on the Mini-Mental State Examination (MMSE) and Montreal Cognitive

Assessment (MoCA). Such associations were more significant with CMBs located in deep

areas and the increasing number of CMBs. [4–6] The Rotterdam Scan Study also suggested

that presence of numerous microbleeds, especially in a strictly lobar location, was associated

with worse performance on neuropsychological tests of information processing speed and

motor speed. [7] According to a recent longitudinal study, participants with�3 CMBs had a

substantial decline of global cognitive function, memory, and processing speed. [8] Over

CMBs burden has a prognostic significance of cognitive impairment, however, there are also

some controversies need to be clarified. For instance, one study from Netherland showed that

CMBs were not associated with cognitive performances. [9] Another Dutch study also sug-

gested that CMBs may have less featured influence on specific types of dementia such as fron-

totemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration.

[10]

To date, there are two studies that performed meta-analysis to exam the relationship

between CMBs and cognition. In 2013, a systematic review including 7 studies demonstrated

that the presence of CMBs was significantly associated with cognitive impairment. [11] One

year later, another meta-analysis also came to the similar conclusion that a higher number of

CMB lesions and CMBs located in lobar regions, deep areas, basal ganglia, and thalamus

regions were correlated with cognitive impairment, [12] but some limitations underlying in

the above mentioned two meta-analyses need to be considered. For example, sample sizes of

some included studies may be relatively small, and more high-quality studies with follow-ups

needed to be further clarified. Such limitations may be due to the weakness of the included

studies, the population selection bias and the only general cognition tests (MMSE and MoCA)

with different sensitivity and specificity.

We performed an updated meta-analysis to renew the pooled estimates on the effects of

CMBs on the general cognitive function and different domains of cognition. We also used the

more appropriate selection criteria to minimize statistical and sample heterogeneity and more

diversified scales such as composite Z scores based on neuropsychological tests to improve the
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accuracy of cognitive scores. [13, 14] As for the subgroup analysis, we also explored the associ-

ation between CMBs and cognitive impairment according to different age groups.

Material and methods

Search methods

Studies were identified through the databases of PubMed, Embase, Cochrane Library, and

ScienceDirect. The following were combined to yield our search outcome: (Dementia OR

Alzheimer� OR Cognition[MeSH] OR Cognition OR Cognitive) AND (Microbleed� OR

“Small vessel disease�” OR “Small vascular disease�” AND Cerebral OR Brain) AND Humans

[MeSH]. This search was restricted only to articles published in English language. A reference

list of reviewed articles related to the study was examined to substantiate the search, and for

additional studies as well. The data sources were searched from Jan. 2000 to Dec. 2016.

Inclusion and exclusion criteria

Studies were included if they fulfilled the following criteria: 1) case-control studies of CMBs

and cognitive function of any age and sex, with participants divided into CMBs and non-

CMBs groups; 2) CMBs defined as small, rounded, or ovoid, homogeneous, hypointense

lesions with diameters less than 10 mm on T2�-GRE or SWI; disregarding the symmetrical

hypointensities in the globi pallidi (calcification or iron deposition) and flow voids from corti-

cal vessels; [15] 3) evaluating either global cognitive function in the aggregate such as MMSE

and MoCA scales, or at least domains of cognitive function separately, including orientation,

fluency, attention, memory, processing speed, executive function, naming, calculation, lan-

guage, recall and so on.

Exclusion criterion: 1) a case report, review, meta-analysis, letter, editorial, treatment study;

2) participants with acute stroke and brain injury; 3) containing the crowd of multiple sclero-

sis, infection, epilepsy, cancer, serious mental illness, neural degeneration disease, or having

taken drugs which effected on cognitive function within 24 hours; 4) repeated published stud-

ies with the same first author and data acquisition methods and similar patient characteristics,

data analysis, and results; 5) studies with incomplete data.

The selection criteria were formulated to minimize statistical and sample heterogeneity.

Data extraction and quality assessment

Two reviewers (XL and JY) independently examined all retrieved full texts that met the inclu-

sion criteria. We extracted data including the first author, the publication data, MRI protocols,

the number of CMBs and non-CMBs groups, mean age, and the number of male participants.

We also extracted data on the presence and basic characteristics of CMBs, as well as on mean

cognitive function scores and standard deviation (SD) obtained from MMSE, MoCA, and

neuropsychological tests of CMBs and non-CMBs groups. If there were different adjusted

models in the study, we chose the data with the most correction factors. When disagreement

occurred in study classification, further discussion was undertaken to reach concordance. Dis-

agreements were resolved through consultations with a third reviewer (WH).

Study quality was assessed using a modified version of the Newcastle-Ottawa Scale. A score

of up to 9 points was assigned to each study based on the quality of group selection, compara-

bility of groups and assessment of cognitive function.

An updated meta-analysis about effects of cerebral microbleeds on cognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0185145 September 21, 2017 3 / 13

https://doi.org/10.1371/journal.pone.0185145


Statistical analyses

Effect size and calculations

Collected data were analyzed using statistical software provided by the Cochrane Collabora-

tion (RevMan 5.3). The odds ratio (OR) was calculated with corresponding 95% confidence

interval (CI) for dichotomous variables. A 95% CI, excluding 1 or p<0.05, was considered sta-

tistically significant. Standardized mean difference (SMD) was calculated for continuous vari-

ables, in which a 95% CI, excluding 0 or p<0.05, was considered statistically significant.

Assessment of bias

The funnel plot was used for the examination of publication bias (RevMan 5.3). To be more

reliable, Begg’s tests and Egger’s tests were also conducted to quantify publication bias (Stata

12.0).

Heterogeneity

Heterogeneity between study results was assessed using a standard I2 test. In general, accord-

ing to the heterogeneity test selection combination method, a random-effect model (REM)

was used when I2>50%. A fixed-effect model (FEM) was used when I2<50%.

Sensitivity analysis

We used the fixed-effect model or excluded studies with low literature quality (NOS<8) to re-

analyze the data and test the stability of this study.

Results

Description of studies

We identified 787 potential studies from our initial electronic databases and reference lists, of

which 175 studies were excluded after de-duplication. 447 studies were excluded after review-

ing the titles and abstracts. The full texts of the remaining 165 studies were examined. Of those

studies, 32 articles lacked relevant information. And 108 articles were excluded because the

scores of cognition function tests were not reported, the studies lacked suitable control group,

or the articles were reviews or commentaries. Eventually, 25 studies, comprising 1639 partici-

pants in CMBs group and 7704 in non-CMBs group, were all case-control studies and met all

of the inclusion criteria and were included in the meta-analysis (Fig 1). Nineteen studies

received a quality score of 8 out of 9. Five studies received a quality score of 7, and the remain-

ing study received a quality score of 6 (Table 1).

Heterogeneity test and synthesized efficacy

Incidence of cognitive dysfunction. Five studies were eligible for comparing the inci-

dence of cognitive dysfunction in CMBs versus non-CMBs patients. The total number of par-

ticipants was 1963 (CMBs group:202, non-CMBs group:1761). A fixed-effect model was used

for meta-analysis with heterogeneity I2 of 0%. This analysis showed a significantly higher rate

of cognitive impairment in CMBs group with OR: 3.5410[2.2979, 5.4567] (p<0.05) when com-

pared to non-CMBs group (Fig 2).

Comparison of cognitive function assessment. A total of 6154 participants (CMBs

group:1291 and non-CMBs group:4863) from 21 studies were eligible. A random-effect model

was used with I2 of 79%. This finding suggested that CMBs patients had an impaired cognitive

function compared with non-CMBs patients with SMD: –0.3046 [–0.4451, –0.1640] (p<0.05).
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In the subgroup analysis based on cognitive scales, both values suggested a lower cognitive

function of CMBs patients with SMD: –0.2700 [–0.4267, –0.1133] (p<0.05) in MMSE group

and –0.4860 [–0.8902, –0.0818] (p<0.05) in MoCA group. (Fig 3).

A subgroup analysis of MMSE with 16 studies [5,6,16,17,19–22,24,26–28,30,31,33,37] was

carried out and divided into different age groups. A random-effect model was used with I2 of

82%, and SMD: -0.3498 [-0.5624, -0.1372] (p<0.05). And the SMD was -0.5111 [-0.9229,

-0.0993] (p<0.05) in the mean age<70 group and -0.3027 [-0.5282, -0.0773] (p<0.05) in the

mean age<80 group (Table 2, S1 Fig).

Comparison of different cognitive domains. In four studies, data are represented as

mean (SD) of each cognitive domain. A random-effect model was used with I2 of 90%, and

SMD: -0.5591 [-0.7955, -0.3227] (p<0.05). Compared with the control group, patients with

Fig 1. Flow diagram showing the progress of data collection.

https://doi.org/10.1371/journal.pone.0185145.g001
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CMBs had impaired orientation (SMD: -0.9565[-1.7260, -0.1869], p<0.05), attention and cal-

culation (SMD: -1.1518[-1.9553, -0.3484], p<0.05) and delayed recall (SMD: -0.5527[-1.1043,

-0.0011], p = 0.05) functions (Fig 4).

In two studies, the composite score for each cognitive domain was computed by converting

raw scores to standardized Z scores and averaging them across the neuropsychological tests

for each domain. A fixed-effect model was used with I2 of 6%, and SMD: -0.2333 [-0.2981,

-0.1686] (p<0.05). Compared with the control group, patients with CMBs had impaired mem-

ory (SMD: -0.2965[-0.4087, -0.1842], p<0.05), executive (SMD: -0.1718[-0.2839, -0.0597],

p<0.05) and information processing speed (SMD: -0.2319[-0.3440, -0.1197], p<0.05) func-

tions (Fig 5).

Table 1. Characteristics of the studies included in the meta-analysis.

Reference Country Study

Design

MRI Magnet Cognitive

Measurement

NOS CMBs Non-CMBs

Sample

size, n

Male,

n

Mean age,

years

Sample

size, n

Male,

n

Mean age, years

Benedictus 2015

[16]

Netherland Case-control 1.0-T/1.5-T/

3.0-T

MMSE 8 111 71 71.6±1.8 222 122 71.1±7.8

Chai 2016[17] China Case-control 3.0-T MMSE 7 33 22 52.70±12.58 28 15 40.32±12.63

Doi 2015[18] Japan Case-control 1.5-T MMSE 8 36 14 81.3±5.4 86 33 77.7±8.4

Fang 2013[19] China Case-control 3.0-T MoCA/MMSE 8 41 24 70.6±5.2 91 47 71.4±5.9

Goos 2009[20] Netherland Case-control 1.0-T/1.5-T/

3.0-T

MMSE 7 21 14 73±7 42 26 72±7

Goos 2010[21] Netherland Case-control 1.0-T MMSE 8 31 16 69±9 223 117 66±10

Gregg 2015[22] Room Case-control 3.0-T MMSE 8 21 14 87.6±2.8 34 19 86.2±2.5

Gregoire 2012

[23]

UK Case-control — — NPT 7 9 6 65 (44–86) 17 10 62 (35–75)

Gustavsson

2015[24]

Sweden Case-control 3.0-T MMSE 8 25 15 73±5.5 182 69 72±4.6

Heringa 2014[25] Netherland Case-control 3.0-T NPT/MMSE 8 26 12 80.7±6.9 41 16 76.4±7.3

Miwa 2014[26] Japan Case-control — — MMSE 8 113 78 68.1±8.8 401 224 67.3±8.1

Nakata-Kudo

2006[27]

Japan Case-control 1.5-T MMSE 7 8 3 74.4±7.1 42 14 74.6±7.7

Nardone 2011

[28]

Austria Case-control 1.5-T MMSE 6 13 8 69.7(58–78) 20 13 69.2(55–79)

Qiu2010[29] Sweden Case-control 1.5-T NPT 8 324 181 77.3±5.0 2794 1113 75.6 ±5.2

Ueda2016[30] Japan Case-control 3.0-T MMSE 8 68 26 76.4±6.5 41 16 74±7.3

Valenti2016[31] Italy Case-control 1.5-T/3.0-T MoCA/MMSE 8 41 24 75.3±6.4 111 63 75.6±6.8

van Es2011[32] Netherland Case-control 1.5-T MMSE 8 106 — — 77±3 333 — — — —

van Norden 2011

[33]

Netherland Case-control 1.5-T MMSE 8 52 32 69.8±8 448 252 65.1±8.7

van2012[34] Netherland Case-control 1.0-T/1.5-T/

3.0-T

MMSE 8 39 24 71±8 182 88 67±9

Werring2004[35] UK Case-control 1.5-T NPT 7 25 18 67.6±11.9 30 20 67.2±10.4

Xu2017[36] Singapore Case-control 3.0-T MoCA/MMSE 8 280 136 71.9±6.8 522 233 69.4±6.4

Yakushiji 2008[5] Japan Case-control 1.5-T MMSE 8 35 — — 57.6

(52.3–63.6)

483 — — 56.8(50.1–63.8)

Yakushiji 2012[6] Japan Case-control 1.5-T MMSE 8 98 — — 63 (58–67) 1181 — — 58 (50–65)

Yamashiro 2014

[37]

Japan Case-control 1.5-T MMSE 8 48 — — 70.0 ± 8.0 100 — — 73.5 ±8.6

Zhang2013[38] China Case-control 3.0-T MoCA 8 35 — — Number of aged

�65 = 9

50 — — Number of

age�65 = 30

CMBs = cerebral microbleeds; MMSE = Mini-Mental State Examination; MoCA = Montreal cognitive assessment; NPT = neuropsychological tests;

NOS = Newcastle-Ottawa Scale

https://doi.org/10.1371/journal.pone.0185145.t001
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Publication bias and sensitivity analysis

The funnel plot for studies on the incidence of cognitive impairment was symmetrical

(Fig 6A). Both Egger’s (p = 0.806) and Begg’s (p = 0.694) tests showed that there was no signifi-

cant publication bias for these studies. Similar results were obtained for studies on cognition

scores (MMSE and MoCA). The funnel plots indicated an absence of publication bias (Fig 6B),

as illustrated by both Egger’s (p = 0.252) and Begg’s (p = 0.180) tests.

The data were re-analyzed using the Random-effect model for studies on the incidence of

cognitive impairment. And the stability of the results reflected the reliability of the combined

results to a certain extent with OR: 3.5596[2.3234, 5.4535] (p<0.05).

Fig 2. Meta-analysis of incidence of cognitive dysfunction in CMBs versus non-CMBs.

CMBs = cerebral microbleeds; Fixed = the fixed-effect model; 95% CI = 95% confidence interval.

https://doi.org/10.1371/journal.pone.0185145.g002

Fig 3. Meta-analysis of cognitive function assessment in CMBs versus non-CMBs based on MMSE

and MoCA. CMBs = cerebral microbleeds; SD = standard deviation; Random = the random-effect model;

95% CI = 95% confidence interval; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive

Assessment.

https://doi.org/10.1371/journal.pone.0185145.g003
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Similar results were obtained for studies on cognition scores on MMSE and MoCA with

SMD: -0.2721 [-0.3304, -0.2137] (p<0.05) using the fixed-effect model. After excluding the

four studies with low literature quality (NOS<8), the results showed that CMBs patients had

an impaired cognitive function compared with non-CMBs patients (SMD: -0.2484 [-0.3562,

-0.1407], p<0.05), and no significant changes were obtained before and after the elimination.

Table 2. Subgroup analysis of cognitive function assessment in CMBs versus non-CMBs based on age of MMSE.

Group CMBs (+) CMBs (-) SMD, Random, 95%CI P-value

Mean age<70 375 2784 -0.5111 [-0.9229, -0.0993] <0.05

Mean age<80 363 831 -0.3027 [-0.5282, -0.0773] <0.05

Mean age<90 21 34 -0.2510 [-0.7972, 0.2951] 0.37

Total 759 3649 -0.3498 [-0.5624, -0.1372] <0.05

CMBs = cerebral microbleeds; SMD = standardized mean difference; Random = the random-effect model (I2 = 82%); MMSE = Mini-Mental State

Examination

https://doi.org/10.1371/journal.pone.0185145.t002

Fig 4. Meta-analysis of different cognitive domains in CMBs versus non-CMBs based on MMSE.

CMBs = cerebral microbleeds; SD = standard deviation; Random = the random-effect model; 95% CI = 95%

confidence interval; MMSE = Mini-Mental State Examination.

https://doi.org/10.1371/journal.pone.0185145.g004
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Discussion

In our present meta-analysis, we have confirmed that CMBs might be an important risk factor

for cognitive dysfunction, especially in the domains of orientation, attention and calculation

and delayed recall functions. Furthermore, the composite Z scores also showed that patients

with CMBs performed impaired memory, executive and information processing speed func-

tions compared to controls.

CMBs are considered to be important neuroimaging markers of CSVD. CMBs have been

recognized to be disorders of brain damage caused by both vascular factors and amyloid path-

ologic mechanisms. [39] To date, whether their presence of CMBs is associated with cognitive

decline in the general population remains poorly understood. Recently, a meta-analysis from

China found that patients with CMBs had higher incidence of cognitive impairment but with

some limitations, i.e. their data base include scores of MMSE. [12] MMSE scale has a less sensi-

tivity for the diagnosis of mild cognitive impairment (MCI) than MoCA scale and adopting a

cutoff�17 on MoCA could improve the sensitivity for early diagnosis. [40] Another point is

Fig 5. Meta-analysis of different cognitive domains in CMBs versus non-CMBs based on

neuropsychological tests in Z scores. CMBs = cerebral microbleeds; SD = standard deviation; Fixed = the

fixed-effect model; 95% CI = 95% confidence interval.

https://doi.org/10.1371/journal.pone.0185145.g005

Fig 6. Funnel plot of comparison: (A) Incidence of cognitive impairment in CMBs and non-CMBs

patients. (B) Comparison of cognitive function assessment between CMBs versus non-CMBs.

CMBs = cerebral microbleeds; OR = odds ratio; SMD = standardized mean difference; MMSE = Mini-Mental

State Examination; MoCA = Montreal Cognitive Assessment.

https://doi.org/10.1371/journal.pone.0185145.g006
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that MMSE scale does not include executive function items. In order to resolve such problem,

we collected studies using neuropsychological tests with Z scores, which were more diversified

and more comprehensive to measure the function of different cognitive domains. Notably, a

previous longitudinal study also used Z scores in the assessment of cognitive function, and

their results supported our conclusion that numerous CMBs were the risk factor of the steeper

decline of memory and speed. [8] In addition, as an important factor both for CMBs and cog-

nition, age stratification has never been discussed about the effect of CMBs on cognition in the

previous meta-analysis. Our current study made a compilation of previous studies, and differ-

ent age based on the scores of MMSE were considered. Our analysis showed that patients with

CMBs had an obvious cognitive decline in the mean age<70 group and<80 group, while there

was no significant difference in the mean age<90 group. However, more studies based on

larger population will be needed to explore our conclusion in the future.

As an updated meta-analysis, strengths of our study are the much larger sample size of

case-control studies, the use of an extensive neuropsychological test battery, and compound

scores of neuropsychological results of specific cognitive domains. Furthermore, in order to

explore the effects of age on the association between CMBs and cognition, we also performed

subgroup analysis according to the age.

As for the limitations, sample sizes, measure scales and measurement bias of the included

studies mainly limit our meta-analysis. First, as for sample sizes, some studies [6, 16, 26, 29, 32,

36] involving a relatively large number of participants with CMBs were included, while others

were dozens of participants. So, it was likely to cause selection bias due to different sample

sizes. Second, variant population with different age, male rate, educational level and basic dis-

eases may be the causes of heterogeneity in our meta-analysis. Third, different magnet

strengths of MRI may lead to the heterogeneity in the numbers of detected CMB lesions.

Fourth, only four studies [5, 6, 28, 37] included a detailed analysis about the association

between CMBs and cognitive domains based on MMSE, which meant that the impact of

CMBs on different cognitive domains remained controversial. Last, the non-randomised

meta-analysis applied here with non-blinded identification of CMB lesions or assessment of

cognitive function was easily affected by confounding and bias.

Conclusion

In summary, patients with CMBs have higher incidence of cognitive impairment, particularly

in orientation, attention and calculation, delayed recall functions, memory, executive function

and information processing speed. These concepts of CMBs might provide theoretical refer-

ences for establishing an early detection, prevention and treatment of VCI. Future work may

focus on prospective cohort studies with larger population and the specific treatments to

reduce the formation of VCI or to resolve such lesions of CMBs.
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