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A B S T R A C T   

Previous research (Aharoni et al., 2013, 2014) found that hemodynamic activity in the dorsal anterior cingulate 
cortex (dACC) during error monitoring predicted non-violent felony rearrest in men released from prison. This 
article reports an extension of the Aharoni et al. (2013, 2014) model in a sample of women released from state 
prison (n = 248). Replicating aspects of prior work, error monitoring activity in the dACC, as well as psychopathy 
scores and age at release, predicted non-violent felony rearrest in women. Sex differences in the directionality of 
dACC activity were observed—high error monitoring activity predicted rearrest in women, whereas prior work 
found low error monitoring activity predicted rearrest in men. As in prior analyses, the ability of the dACC to 
predict rearrest outcomes declines with more generalized outcomes (i.e., general felony). Implications for future 
research and clinical and forensic risk assessment are discussed.   

1. Introduction 

Rates of incarceration have been steadily increasing among women on 
a global scale (Harmon and Boppre, 2018; Reynolds, 2008). Indeed, the 
growth rate of the women’s prison population in the U.S. is nearly double 
that of the male population in recent decades (Harmon and Boppre, 2018; 
Kelly, 2015; Reynolds, 2008). Despite increasing representation, limited 
systematic research has focused on incarcerated women. It is known that 
women who are incarcerated have increased rates of psychopathologies 
compared to incarcerated men and non-incarcerated women (Bronson & 
Berzofsky, 2017; Karlsson & Zielinski, 2020). Psychopathologies are often 
linked to alterations in brain-behavior relationships, many of which are 
relevant when considering antisociality. For instance, depression, Post- 
Traumatic Stress Disorder (PTSD), Borderline Personality Disorder 
(BPD), and Substance Use Disorder (SUD) diagnoses, are all elevated in 
women who are incarcerated, and these psychopathologies are subse-
quently related to heightened impulsivity (Bronson & Berzofsky, 2017; 
Jakubczyk et al., 2012; Karlsson & Zielinski, 2020; Kozak et al., 2019; 
Lawrence et al., 2010; Morris et al., 2020). 

These psychopathologies are associated with abnormalities in the 
dorsal anterior cingulate cortex (dACC), a brain region associated with 
inhibition, error monitoring, and response selection (de Bruijn et al., 
2006; Holroyd & Coles, 2002; Kiehl et al., 2000; Kosson et al., 2006; 
Malejko et al., 2021; Mathalon et al., 2003; van Rooij & Jovanovic, 
2019; van Veen & Carter, 2002; Vega et al., 2015; Yang et al., 2021; 
Zilverstand et al., 2018). Prior studies have also linked individual dif-
ferences in dACC activity with risk for criminal re-offending. Aharoni 
et al. (2013; 2014) reported that low activity in the dACC during error 
monitoring prospectively predicted non-violent felony rearrest in a 
sample of men released from prison.1 This work reinforced previous 
research suggesting the importance of paralimbic dysfunction as a 
mediator between cognitive control and antisocial behavior (Kiehl, 
2006). Though criminal behavior is the result of complex interactions of 
innumerable environmental, psychological, and biological factors, the 
extent to which sex may influence brain-behavior relationships con-
cerning error monitoring and re-offending is an open question, as the 
relationship has only been assessed in males thus far (Aharoni et al., 
2013; 2014). 

* Corresponding author at: Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA. 
E-mail address: kkiehl@mrn.org (K.A. Kiehl).   

1 In the U.S., a felony is commonly defined as a crime of high-seriousness than may be punishable by death or a year or more in prison. Felonies can be further 
broken down into non-violent felonies (e.g., major larceny/theft, fraud, and drug offenses) and violent felonies (e.g., murder, battery, and assault). 
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Sex differences in error monitoring related brain activity have been 
demonstrated in multiple studies (Garavan et al., 2006; Liu et al., 2013; 
Weafer & de Wit, 2014; see Weafer, 2020 for a comprehensive review), 
all of which suggest a greater level of activation during response inhi-
bition and error monitoring in women compared to men. Yet, the rele-
vance of sex differences in the relationship between error monitoring 
activity and trait impulsivity is unclear, heightening the import of in-
vestigations concerning the influence of sex on relationships between 
error monitoring and impulsivity related outcomes. 

While neurobiological measures appear to aid in the prediction of 
impulsive outcomes (Delfin et al., 2019; Kiehl et al., 2018; Pardini et al., 
2014), this study marks the first attempt to conduct an out-of-sample 
extension of the Aharoni et al. (2014) error monitoring model in 
women—assessing potential sex differences in the relation of error 
monitoring and impulsive outcomes. As in previous studies, error 
monitoring activity was captured via a classic Go/NoGo task designed to 
test one’s ability to inhibit prepotent motor responses—and was defined 
as the contrast between commission errors versus correct hits. Our 
predictions were that for felony rearrest and non-violent felony rearrest 
in women,2 (1) the dACC will exert an incremental predictive effect 
above and beyond other established risk factors (e.g., age and psycho-
pathic traits), and (2) a multivariate model that includes the dACC will 
predict better than models without the dACC. 

2. Methods 

2.1. Participants 

Participants were 248 incarcerated women ranging in age from 21 to 
58 y (M = 35.03, SD = 7.70). Approximately 10 % were left-hand–do-
minant. Based on National Institutes of Health racial classification, 82.7 
% of the sample self-identified as white, 7.7 % as black/African Amer-
ican, 6.9 % as American Indian, and 1.6 % as mixed/other. Ethnically, 
58.5 % identified as Hispanic, 38.7 % as Not Hispanic, and 2.8 % chose 
not to respond. 

All 248 participants were determined to have no history of major 
traumatic brain injury (as defined by a loss of consciousness for longer 
than 24 h),3no lifetime history of a psychotic disorder, and had an 
estimated general IQ of greater than 65 (as estimated by the vocabulary 
and matrix reasoning subscales of the Wechsler Adult Intelligence Scale; 
see Ryan & Ward, 1999) (see Table 1 for additional demographic de-
scriptives). Participants reported having normal hearing, and visual 
acuity was normal or corrected to normal with the use of contact lenses 
or magnetic resonance imaging (MRI) compatible glasses. Volunteer 
research participants were paid an hourly rate commensurate with 
standard pay for work assignments at their facility. Participants 
completed several psychological and behavioral assessment measures 
and an fMRI-based inhibition task using the Mind Research Network’s 
Mobile MRI system before release from one of two New Mexico state 
correctional facilities. After being released, the participants in the 
sample were tracked from 2007 to 2019. Participants provided written 
informed consent in protocols approved by the institutional review 
board by the Independent Review (E&I) Services for the Mind Research 
Network. 

2.2. Covariate risk assessment 

Data from additional risk factors (Hare’s Psychopathy Checklist – 
Revised [PCL-R] and the participant’s age at release) were obtained to 
examine the incremental predictive validity provided by the established 
ROI—the exact dACC error monitoring coordinates used in Aharoni 
et al. (2013; 2014)—thus providing an out-of-sample test of the model 
used in Aharoni et al. (2014) (Hare, 2003). These additional variables 
have been previously found to predict antisocial behavior in incarcer-
ated populations (Aharoni et al., 2014; Olver & Wong, 2015). Scores 
from the Hare PCL-R—a semistructured interview and archival analysis 
which assesses psychopathy in incarcerated, forensic, psychiatric, and 
normal populations—were included as primary risk factors. These as-
sessments were conducted by trained raters. 2.4 % of the sample (n =
248; M = 18.60; SD = 6.11) met the pre-established criteria for a 
diagnosis of psychopathy (score of ≥30). The PCL-R further splits into 
two separate clusters of traits: factor 1 includes interpersonal/affective 
traits (such as glibness and lack of empathy) and factor 2 includes 
antisocial behavioral traits (such as impulsivity and early behavioral 
problems). As in Aharoni et al. (2014), these factors and their interaction 
were entered individually into the overall predictive models, not 
including total PCL-R score (due to high collinearity).4 

Additional exploratory correlational analyses were also conducted 
with the following variables (see Table S4): the participant’s estimated 
IQ, their alcohol/drug dependency (as assessed from the Structured 
Clinical Interview for the DSM [SCID] via determinations of lifetime 
abuse or dependence [scoring: 1 = no lifetime abuse/dependence, 2 =
lifetime abuse, and 3 = lifetime dependence]) (5th ed.; DSM–5; Amer-
ican Psychiatric Association, 2013),5 their State-Trait Anxiety Inventory 
total summed score (STAI: Spielberger, 1983), the Barratt Impulsiveness 
Scale with three subscales measuring attentional impulsivity, motor 
impulsivity, and non-planning impulsivity (BIS-11; Patton et al., 1995), 
their self-reported education level, incarceration history (as coded from 
their PCL-R interview and institutional file review), and the presence of 

Table 1 
Participants demographic, PCL-R scores, and Substance Use Disorder Rates.   

Mean SD Min. Max. Overall sample endorsed 
(%) 

Age (years)  35.0  7.7 21 58  
IQ  94.7  10.3 66 123  
PCL-R total scores  18.6  6.1 2.2 34.0  
Factor 1 scores  4.4  2.6 0 11.0  
Factor 2 scores  12.2  3.8 0 20.0  
Handedness (right)      90.0 
Alcohol use disorder      72.1 
Substance use 

disorder      
95.1 

Note: For alcohol and substance use disorder, input values are 1 = absent, 2 =
history of abuse, and 3 = history of dependence. Percentage of sample endorsed 
represent those that have a history of abuse for alcohol, or at minimum one 
substance category (out of: sedatives, cannabis, stimulants, opioids, cocaine, and 
hallucinogens). 

2 Violent felony rearrests within this sample were uncommon (n = 29), thus 
no analyses were conducted on violent outcomes due to low base rate. See 
supplementary materials for exploratory analyses concerning general rearrest 
(i.e., arrests of any severity).  

3 Six participants had a history of moderate TBI (as defined by a loss of 
consciousness longer than 30 min). Primary effects observed in the full sample 
(n = 248) were also observed in a sample excluding those with moderate TBI (n 
= 242). 

4 Consistent with Aharoni et al., 2013, we found no associations between Go/ 
NoGo behavioral data and any types of rearrest in univariate nor multivariate 
models. Also consistent with Aharoni et al., 2014, we found models including 
behavioral task data increased Somer’s D statistics, indicating the occurrence of 
overfitting being driven by the behavioral data specifically. Due to these rea-
sons, and a priori model specification from Aharoni et al., 2014, we focus 
instead on the reduced predictive model.  

5 Scoring for drug abuse/dependence is computed via an averaging across 
abuse/dependence in the following individual drug classes: sedatives, cannabis, 
stimulants, opioids, cocaine, and hallucinogens. 
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traits associated with borderline personality disorder (BPD; as quanti-
fied by each participant’s sum of scores [0–2] across nine BPD trait 
questions in the SCID-II).6 

2.3. Follow-Up procedure 

Rearrest data, including arrest date and offense type, were obtained 
from the New Mexico’s Administrative Office of the Courts, which col-
lects all state and county criminal records. Approximately 39.1 % of the 
sample was rearrested at least once for a felony between their release 
date (ranging from 2007 to 2017) and their follow-up date (August 
2019). In line with previous predictive modeling, minor parole and 
probation violations were excluded from analysis, and the remaining 
offenses were further classified as violent or non-violent when war-
ranted. Within our follow-up window (average time of 6 y and 9 mo), a 
larger portion of the sample was first rearrested for non-violent offenses 
(25.4 %) than for violent offenses (4.8 %). 

2.4. Behavioral task 

Behavioral impulsivity was measured during fMRI using the Go/ 
NoGo task. The task, modeled after the work of Kiehl et al. (2000), 
presents participants with a frequently occurring target (the letter “X”; 
occurrence probability, 0.84) interleaved with a less-frequent distracter 
(the letter “K”; occurrence probability, 0.16) on a computer screen. 
Participants were instructed to depress a button with their right index 
finger as quickly and accurately as possible whenever they saw the 
target (the “go” stimulus) and not when they saw the distractor (the “no- 
go” stimulus). Because targets are more frequent than distracters in this 
task, a prepotent response toward the targets is elicited. When a dis-
tractor is presented, participants are required to inhibit their button 
response, which increases the rate of commission errors. Successful 
performance on this task requires the ability to monitor error-related 
conflicts and to selectively inhibit the prepotent go response on cue. 
Before their scan session, participants completed a brief practice session 
of ~10 trials. 

2.5. Experimental design 

The experimental design used on all participants was adopted from 
Kiehl et al. (2000) and is identical to that of Aharoni et al.’s (2013). Two 
scanning runs, each composed of 246 visual stimuli, were presented to 
participants using Presentation, a computer-controlled visual and 
auditory software (Neurobehavioral Systems). Stimuli were displayed 
on a rear-projection screen mounted at the rear entrance to the magnet 
bore. Each stimulus appeared for 250 ms in white text within a 
continuously displayed rectangular fixation box. 

The stimulus onset asynchrony (SOA) between go stimuli varied 
pseudorandomly among 1,000, 2,000, and 3,000 ms, subject to the 
constraint that three go stimuli were presented within each consecutive 
6-s period. The no-go stimuli were interspersed among the go stimuli in a 
pseudorandom manner subject to three constraints: the minimum SOA 
between a go and a no-go stimulus was 1,000 ms; the SOA between 
successive no-go stimuli was in the range of 10 ± 15 s; and no-go stimuli 
had an equal likelihood of occurring at 0, 500, or 1,000 ms after the 
beginning of a 1.5-s acquisition period. By jittering stimulus presenta-
tion relative to the acquisition time, the hemodynamic response to the 
stimuli of interest was sampled effectively at 500-ms intervals. 

Behavioral responses were recorded by using an MRI-compatible 
fiberoptic response device—created by Lightwave Medical. Correct 
hits were defined as go (i.e., X-stimuli) events that were followed by a 

button press within 1,000 ms of stimulus onset. Correct rejections were 
defined by an absence of a motor response within 1,000 ms of the no-go 
stimulus. Commission errors were defined as the presence of a response 
within 1,000 ms of the onset of a no-go stimulus. 

2.6. Image acquisition 

MRI acquisition parameters were identical to those discussed in 
Aharoni et al. (2013) and will only briefly be described here. Images 
were collected with a mobile Siemens 1.5-T Avanto system with 
advanced SQ gradients (max slew rate, 200 T/m/s; 346 T/m/s vector 
summation, rise time 200 μs) equipped with a 12-element head coil. The 
echoplanar image gradient-echo pulse sequence (repetition/echo times, 
2,000/39 ms; flip angle, 75◦; field of view, 24 × 24 cm; 64 × 64 matrix; 
3.4 × 3.4-mm in-plane resolution; 5-mm slice thickness; 30 slices) 
effectively covers the entire brain (150 mm) in 2,000 ms. Head motion 
was limited by using padding and restraint. 

2.7. Preprocessing 

Functional images were reconstructed offline at 16-bit resolution and 
manually reoriented to approximately the anterior commissure/poste-
rior commissure plane. The functional images were despiked using 
ArtRepair and motion corrected using INRIAlign—a motion correction 
procedure unbiased by local signal change (Freire, Roche, & Mangin, 
2002). Functional images were spatially normalized to the Montreal 
Neurological Institute template via EPInorm (an affine transform fol-
lowed by a nonlinear registration of the EPI image to an EPI template in 
standard space) and spatially smoothed (12 mm full-width half 
maximum) in SPM12 (Calhoun et al., 2017). High frequency noise was 
removed by using a low-pass filter (cutoff, 128 s). 

2.8. Individual and group level analysis 

As in Aharoni et al. (2013), response types (correct hits and com-
mission errors) were modeled as separate events. Event-related re-
sponses were modeled using a synthetic hemodynamic response 
function composed of two gamma functions. The first gamma function 
modeled the hemodynamic response using a peak latency of 6 s. A term 
proportional to the derivative of this gamma function was included to 
allow for small variations in peak latency. The second gamma function 
and associated derivative was used to model the small “overshoot” of the 
hemodynamic response on recovery. A latency variation amplitude- 
correction method was used to provide a more accurate estimate of 
the hemodynamic response for each condition that controlled for dif-
ferences between slices in timing and variation across regions in the 
latency of the hemodynamic response (Calhoun et al., 2004). 

Individual runs were modeled together at first level of analysis, and 
functional images were computed for each participant that represented 
hemodynamic responses associated with commission errors and correct 
hits, relying on a previously established set of coordinates to constrain 
the second level analysis within the present sample (Aharoni et al., 
2013; Steele et al., 2014a). General linear models included regressors to 
model motion (six parameters). 

2.9. Analytic strategy 

The primary hypothesis—that the dACC will exert an incremental 
predictive effect above and beyond other established risk factors—was 
evaluated by using Cox proportional-hazards regression (Cox, 1972). A 
Cox regression is a semiparametric test that investigates the effect of 
variables of interest on the time it takes for an event to happen—in this 
case, rearrest—while also estimating time courses of those that have yet 
to reach that event (censored cases). The dependent variable is the 
proportion of cases surviving the event (the cumulative survival func-
tion). In order to interpret the effect of individual variables on the 

6 Note: Twenty participants were missing BPD data. Thus, supplementary 
correlational and regression analyses utilizing this variable have a sample size 
of n = 228. 
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cumulative survival function, hazard ratios (i.e., exp[B]) are computed. 
These hazard ratios characterize an individual’s relative odds of reach-
ing the event for every-one unit change in the risk factor (e.g., error 
monitoring brain activity), while controlling for other covariates. 
Additionally, supplementary analyses providing convergent support for 
Cox proportional-hazards regression results include binomial logistic 
regressions testing the univariate and multivariate relationship between 
the variables of interest and group membership (i.e., not rearrested vs 
rearrested, not rearrested for felony vs rearrested for felony, and not 
rearrested for non-violent felony vs rearrested for non-violent felony) 
across four different time periods (1, 2, 3, and 4 years) (see Table S3). 

The secondary hypothesis—that a multivariate model that includes 
the dACC will predict better than models without the dACC—was 
evaluated by using receiver operating characteristic (ROC) curves which 
describe the differences between those who were and were not rear-
rested as a function of the predictors in the model (i.e., discrimination). 
While most assessments of ROC curves are time independent, our ana-
lyses of AUC characteristics are evaluated per model at a variety of time 
points (6, 12, 24, & 36 mo) by utilizing Heagerty and Zheng’s time- 
dependent ROC curve function as found in the risksetROC package in 
R, version 3.60 (Heagerty and Zheng, 2005). This analysis yields an AUC 
per time point in order to evaluate each model’s ability to discriminate 
those who were and were not re-arrested across a series of time scales. 

3. Results 

3.1. Group level neuroimaging analysis 

Hemodynamic differences between commission errors and correct 
hits were extracted from an a priori 14 mm radius sphere (Aharoni et al., 
2013; Steele et al., 2014a) centered around the seed coordinate in the 
ACC (x = -3, y = 24, z = 33: See Fig. 1a for seed coordinate and Fig. 1b 
for group level activation map) in the form of a mean β-values for each 
participant via the MarsBaRs plugin for SPM (Brett et al., 2002).7Addi-
tionally, a group level analysis of 32 ROIs was conducted to assess the 
reliability of error monitoring activation compared to previous literature 
(Steele et al., 2014a: see Table S1 for full replication of hemodynamic 
activity). 

3.2. Survival analysis 

A multivariate Cox proportional-hazards regression was used to 
examine the shared and unique influence of the dACC among other 
predefined risk factors (release age, PCL-R factor 1, PCL-R factor 2, and 
PCL-R factor interaction) on days to non-violent and general felony 
rearrest (see Table 2; see Table S2 for general rearrests; see Figure S1 for 
Kaplan-Meier curves for all rearrest outcomes). For multivariate ana-
lyses, predefined risk factors were entered into the regression in the first 
block, to assess whether the dACC exerted significant influence on the 
model after controlling for the other variables of interest. 

3.2.1. Is Neurobiological Error Monitoring Information Associated with 
Non-Violent Rearrest in Women? 

To test our primary hypothesis (that the dACC will exert an incre-
mental effect above and beyond other established risk factors in the 
prediction of non-violent and general felony rearrest—see Table S2 for 
general rearrests), we tested the Aharoni et al. (2014) mod-
el—henceforth referred to as the error monitoring model—including 
previously defined risk factors: 1) the women’s release age, PCL-R factor 

1, PCL-R factor 2, their interaction, and the dACC’s mean β-values for 
commission error versus correct hit trials in the sample of incarcerated 
women, n = 248. 

For non-violent felony rearrest, a significant overall effect was ob-
tained for the multivariate model (p < 0.001). As expected, a lower age 
at release and higher PCL-R factor 2 scores were each significantly 
associated with days to non-violent rearrest (p = 0.001). Also, as pre-
dicted, dACC activity exhibited a significant association with non- 
violent felony rearrest above and beyond these other risk factors, mir-
roring previous findings in male samples (Aharoni et al., 2013, 2014; 
Steele et al., 2015) (see Figure S2 for visualization of effect). For every- 
one unit increase in dACC activity, there was a 0.72 increase in the 
probability of rearrest for a non-violent crime (p = 0.018) (see Table 2 & 
Table S3). 

For general felony rearrest, a significant overall effect (p < 0.001) 
was obtained for the multivariate model (see Table 2).8 As expected, a 
lower age at release and higher PCL-R factor 2 scores were each 
significantly associated with days to felony rearrest (p = 0.003 and p =
0.001, respectively) (Eisenbarth, Osterheider, Nedopil, & Stadtland, 
2012; Huebner, DeJong, & Cobbina, 2010). dACC activity exhibited a 
marginally significant association with felony rearrest above and 
beyond these other risk factors (p = 0.088) (see Table S3 for further 
convergent support and Figure S2 for visualization of effect). 

3.2.2. Does the Inclusion of Neurobiological Error Monitoring Information 
Increase the Accuracy of Statistical Models in Predicting Non-Violent 
Rearrest in Women? 

The receiver operating characteristic (ROC) curve is a direct way to 
test a model’s accuracy—indicating the true positive (sensitivity) and 
false positive (1 - specificity) ratio of a model. An area under the curve 
(AUC) analysis was conducted to discriminate between those women 
rearrested and not rearrested as functions of the error monitoring model. 

In order to test our secondary hypothesis (that a multivariate model 
of non-violent rearrest that includes the dACC will outperform one that 
doesn’t), we fitted the multivariate model with and without dACC ROI 
data at a six-month time point.9 As predicted, the multivariate model 
without dACC activity reports an AUC of 0.683, and an improved AUC of 
0.701 when including the dACC factor. The accuracy of the model was 
found to be relatively stable over a span of six to thirty-six months (with 
values ranging from 0.700 to 0.701). 

Overall, we find that predictions of non-violent felony rearrest are 
incrementally benefited from the inclusion of dACC activity. 

4. Discussion 

This study provides an out-of-sample extension of the Aharoni et al. 
(2014) error monitoring model using a large sample of women. Our 
results demonstrate modest improvement in the prediction of later 
rearrest for non-violent offenses in women, using a predefined index of 
functional brain activation in the dACC—a region previously implicated 
in error monitoring, inhibition, and impulsivity (Bastin et al., 2016; 
Kiehl et al., 2000; Orr & Hester, 2012; Spunt et al., 2012; Steele et al., 
2014a). Likewise, our results uphold previous findings in the literature, 
underscoring the importance of age at release and antisocial/develop-
mental lifestyle score (PCL-R Factor 2) for predicting subsequent rear-
rest in incarcerated women (Eisenbarth et al., 2012; Huebner et al., 
2010). 

Previous attempts to test neurobiologically informed risk models for 
rearrest have been limited by the use of relatively small samples (by 
actuarial standards) leaving them unable to test the out-of-sample utility 

7 Participants averaged 8.45 commission errors during the task. Three par-
ticipants were identified as outliers based on their high rate of commission 
errors (as assessed by a value higher than 3rd quartile + (1.5 x interquartile 
range). Primary effects observed in the full sample (n = 248) were also observed 
in a sample excluding those identified as outliers (n = 245). 

8 Due to our primary interest in the full multivariate model, reported results 
focus on multivariate metrics. 

9 Due to the marginal effect of dACC activity on general felony rearrest re-
ported in Table 2, we focus AUC analyses on non-violent felony rearrest. 
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of the models more generally (Aharoni et al., 2013, 2014; Delfin et al., 
2019; Steele et al., 2015). These same samples have been comprised of 
all (Aharoni et al., 2013 & Aharoni et al., 2014: n = 96; Zijlmans et al., 
2021: n = 127) or mostly (Delfin et al., 2019: n = 44, 39 males) male 

subjects, leaving the generalizability of these models in women an open 
question. 

The present study addressed these limitations by conducting a large 
(n = 248) out-of-sample test of the error monitoring model in an 

Fig. 1. a) A priori seed region (red) for hemodynamic response to commission errors vs correct hits in the dACC from a Go/NoGo task with an independent sample of 
102 healthy adult nonoffenders; peak voxel x = − 3, y = 24, z = 33 (Steele et al., 2014a). b) Map of hemodynamic activity in sample of incarcerated women (n = 248) 
during commission errors vs correct hits from axial view. Peak activation was located at x = 3, y = 26, z = 34, within the dACC (threshold: t > 10). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Effect of individual predictors on non-violent and general felony rearrest.   

Unadjusted Hazards Adjusted Hazards 

Model/Predictor B (SE) P value exp[B] (CI) B (SE) P value exp[B] (CI) 

Non-Violent Felony Rearrest (n ¼ 248, 79 rearrests)       
- Age at release − 0.057 (0.016)  <0.001*** 0.945 (0.915–0.975) − 0.052 (0.017)  0.002** 0.949 (0.918–0.981) 
- PCL-R factor 1 score 0.025 (0.045)  0.570 0.975 (0.893–1.064) 0.077 (0.217)  0.721 1.081 (0.707–1.652) 
- PCL-R factor 2 score 0.126 (0.033)  <0.001*** 1.135 (1.064–1.210) 0.244 (0.070)  0.001** 1.251 (1.091–1.434) 
- PCL-R factor interaction 0.002 (0.003)  0.517 1.002 (0.997–1.007) − 0.016 (0.015)  0.275 0.984 (0.955–1.013) 
- dACC 0.310 (0.136)  0.023* 1.364 (1.045–1.781) 0.334 (0.141)  0.018* 1.396 (1.058–1.842) 
Felony Rearrest (n ¼ 248, 97 rearrests)       
- Age at release − 0.050 (0.014)  <0.001*** 0.951 (0.925–0.978) − 0.044 (0.015)  0.003** 0.957 (0.930–0.986) 
- PCL-R factor 1 score − 0.017 (0.040)  0.677 0.983 (0.909–1.064) − 0.012 (0.118)  0.949 0.988 (0.684–1.427) 
- PCL-R factor 2 score 0.126 (0.029)  <0.001*** 1.135 (1.071–1.202) 0.197 (0.060)  0.001** 1.218 (1.084–1.369) 
- PCL-R factor interaction 0.002 (0.002)  0.324 1.002 (0.998–1.007) − 0.009 (0.013)  0.464 0.991 (0.966–1.016) 
- dACC 0.216 (0.124)  0.082† 1.241 (0.973–1.582) 0.220 (0.129)  0.088† 1.246 (0.968–1.604) 

Results of Cox regression analyses examining the predictive effect of the dACC on non-violent and general felony rearrest. Unadjusted hazard values reflect univariate 
analyses, and adjusted hazard values reflect multivariate analyses including all variables of interest. All variables are mean centered, and reported effects are two- 
tailed. Table reports unstandardized B and relative risk ratio (exp[B]). † p <.10, *p < 0.05, **p < 0.01, and ***p < 0.001. 
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independent sample of women, for non-violent and general felony 
rearrest. To our knowledge, the present study is the first in the literature 
to demonstrate the value of impulsivity related neurobiological activity 
for the prediction of rearrest in women. 

Overall, our results corroborate previous literature demonstrating 
that theoretically-relevant measurements of functional brain activity 
may improve accuracy of risk models designed to predict antisocial 
outcomes (Aharoni et al., 2013; Aharoni et al., 2014; Camchong et al., 
2013; Delfin et al., 2019; Janes et al., 2010; Pardini et al., 2014; Paulus 
et al., 2005; Sinha & Li, 2007; Steele et al., 2014b; Steele et al., 2015). 
More specifically, our results directly replicate the previously demon-
strated (Aharoni et al., 2013, 2014; Steele et al., 2015) utility of error 
monitoring activity in predicting non-violent felony rearrest above and 
beyond other variables of interest (i.e., age at release and PCL-R Factor 
2). Additionally, as seen in previous literature (Aharoni et al., 2013, 
2014; Zijlmans et al., 2021), more modest predictive effects of error 
monitoring activity on general felony rearrest were also replicated via 
cox hazard and binomial logistic regression analyses (see Table 2 and 
Table S3). These effects are noteworthy given the broad definition of our 
outcome measure (felony rearrest). On even broader rearrest offenses (i. 
e., general rearrest including arrest of any category) error monitoring 
activity had no predictive utility (see Table S2 and Table S3), suggesting 
a stronger relationship between error monitoring activity and specific 
outcomes (i.e., non-violent felony rearrest) compared to more general 
outcomes (i.e., general rearrest and general felony rearrest). Our results 
also reinforce previous research suggesting the importance of paralimbic 
dysfunction as a mediator between cognitive control and antisocial 
behavior (Kiehl, 2006), as well as sex differences in the relationship 
between these paralimbic substrates and behavioral outcomes (Liu et al., 
2013). 

While prior fMRI research has suggested that increased engagement 
of error monitoring is associated with decreased rates of non-violent 
rearrest in men (Aharoni et al., 2013; Aharoni et al., 2014; Steele 
et al., 2015), other analyses in young males have failed to replicate this 
effect (Zijlmans et al., 2021). One potential explanation for this null 
finding is that juveniles and younger adults exhibit decreased error 
monitoring activity and inhibitory control more generally compared to 
older adults (Jaeger, 2013). Considering the effects shown in adult men, 
our results suggest the inverse for women: lower error monitoring ac-
tivity was associated with non-violent rearrest. Notably, previous 
research utilizing the same Go/NoGo task has demonstrated not only sex 
differences in limbic activations during error monitoring, with women 
largely showing greater activations during failed inhibitions (Garavan 
et al., 2006; Liu et al., 2013; Weafer & de Wit, 2014; Weafer, 2020), but 
also sex differences in the relationship between those activations and 
other impulsivity measures (Liu et al., 2013). 

One potential explanation of the positive association between error 
monitoring activity and rearrest within this incarcerated female sample 
is that the error monitoring contrast of interest—false alarms vs correct 
hits during the Go/NoGo task—may also be capturing anxiety, stress 
related limbic activity, or even alternative inhibitory strategies (e.g., the 
inhibition of a prepotent response versus the suppression of an already- 
initiated response; Gärtner & Strobel, 2021). Compared to men, women 
are more likely to experience anxiety, and in turn, be diagnosed with an 
anxiety disorder within their lifetime (McLean et al., 2011). During 
neuroimaging, more specifically, women are more likely to experience 
anxiety inducing states, such as claustrophobia (Dewey et al., 2007), and 
task-induced stress has been demonstrated to engage limbic region-
s—such as the ACC—in women more than in men (Wang et al., 2007). 
However, a lack of association between dACC error monitoring activity 
and anxiety measurements within our sample (see Table S4) leave this 
explanation wanting. Future research is needed to test these questions, 
perhaps using different measures of anxiety alongside alternative inhi-
bition tasks that are sensitive to differentiation of strategic approach. 

Another potential explanation of the positive relationship between 
error monitoring activity and rearrest may be the increased prevalence 

of BPD traits within incarcerated women compared to samples of men 
(Black et al., 2007; Sansone & Sansone, 2011). While research suggests 
that error monitoring is preserved in individuals with BPD, aberrations 
in the neurophysiological activity giving rise to error monitoring pro-
cesses have also been observed within BPD samples (Vega et al., 2015; 
Yang et al., 2021). Individuals with BPD show increased N2 amplitudes 
during the conflict monitoring state of error commission—an event- 
related response originating from the dACC and often suggested to 
relate to the Go/NoGo contrast used in the present work (Steele et al., 
2015; Yang et al., 2021). Accordingly, there was a significant positive 
relationship between error monitoring activity and BPD traits within 
this sample (see Table S4). But supplemental analyses (see Table S5) 
suggest that BPD’s covariance with error monitoring activity alone 
cannot account for the positive relationship to rearrest within our 
sample yet may still be contributing to the overall predictive utility of 
our error monitoring measure. 

Sex differences in limbic regions are not limited to task-based ac-
tivity nor their relation to task performance—additional research by 
Anderson and colleagues (2019) identifies the ACC as a sexually 
dimorphic region of the brain, with women having significantly larger 
ACC volumes than men. This line of research emphasizes that impulsive 
and antisocial behaviors in women need to be investigated indepen-
dently from theories that have been established in male-dominant lit-
eratures (Anderson et al., 2019). Thus, more work is needed to 
understand sex-specific differences in the anatomical and activity pro-
files of limbic regions, as well as their relationships to impulsivity, BPD, 
and antisocial behavior (Greiner et al., 2015; Olson et al., 2016; Poels, 
2007). 

4.1. Limitations and future directions 

Though our results provide support for the predictive utility of limbic 
activity in rearrest behavior, we caution against overinterpretation. 
Here, different measures of impulse control (PCL-R Factor 2 and dACC 
activity during errors) incrementally predicted re-arrest outcomes. 
However, criminal behavior is the result of a complex interaction of 
factors, including innumerable environmental and psychological vari-
ables (Aharoni et al., 2019; Allen & Aharoni, 2020). The observed in-
cremental predictive utility of the dACC predicting rearrest highlights 
that multiple mechanisms subserve antisocial outcomes and capturing 
their complexity may benefit from a diversity of measurement 
modalities. 

Caution is also warranted from a legal and ethical standpoint. Using 
evidence based-risk assessment techniques for “lower stake” decisions, 
such as treatment and early grant parole, has shown relative success in 
increasing treatment-program success and reducing antisocial behavior 
(Aos et al., 2006; Andrews, 2006; MacKenzie, 2006; Taxman, 2002). 
However, using risk assessment techniques against a criminal offender’s 
interests is controversial (Starr, 2014). Whether the use of neurobio-
logical information presents any unique concerns above and beyond 
traditional behavioral risk factors is the subject of a small but important 
body of literature (see Aharoni et al., 2022; Focquaert, 2019; Jurjako 
et al., 2019; Nadelhoffer et al., 2012). Ultimately, even if brain-based 
risk assessments demonstrably improve upon traditional risk assess-
ment techniques, this does not necessarily mean that they ought to be 
utilized in legal decision making, nor would their implementation be 
straightforward process due to costs, complexity, and intrinsic vari-
ability in measure. Instead, the potential success of brain-based models 
for risk assessment should highlight the importance of continued dis-
cussion about the ethical and legal standards required for their various 
uses and the translational treatment value (Aharoni et al., 2022). 

Outside of the legal domain, research regarding neurobiologically 
informed risk assessment serves a critical basic research function by 
providing a way of testing causal relationships between brain and 
behavior. These causal mechanisms could prove useful in identifying 
potential behavioral interventions that may be beneficial in curbing 
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antisocial behavior. Indeed, previous research has suggested that tech-
nologies such as transcranial direct current stimulation (tDCS) can be 
utilized to reduce self-reported aggression and even aggressive criminal 
intentions (Molero-Chamizo et al., 2019; Choy et al., 2018; Sergiou 
et al., 2022). While these tDCS studies report encouraging results, 
clinical interventions such as these must meet high standards of reli-
ability and validity, and often warrant caution from ethical and legal 
standpoints as well (Large and Nielssen, 2017). 

The present study provides an important out-of-sample extension of 
previous research on the neuroprediction of rearrest in a large sample of 
incarcerated women (Aharoni et al., 2013, 2014; Steele et al., 2015). 
Still, much work remains to be done to determine whether the predictive 
utility of limbic activity for antisocial behavior will ever reach high 
enough standards to warrant the practical use of neurobiologically 
informed risk assessment technology. Though highly targeted null- 
hypothesis testing methodologies—such as those employed in this 
manuscript—are useful in testing specific theories regarding cognitive 
function, such approaches are necessarily limited in scope. Follow up 
research should consider the integration of alternative impulsivity/in-
hibition tasks, additional regions of interest (e.g., the ventromedial 
prefrontal cortex, a region commonly implicated in aggression; Sergiou 
et al., 2022), and technological improvements such as increased scanner 
strength. Furthermore, data-driven approaches, such as machine 
learning techniques (e.g., independent component analysis), should be 
considered in order to uncover other potential neurobiologically based 
metrics—alongside social and psychological measures—that may be 
helpful in the prediction of antisocial behavior, including, but not 
limited to machine learning guided sex-specific and crime-specific 
models in large cross-validated analyses of various impulsivity/inhibi-
tion tasks and non-task based measures (Poldrack, Huckins, & Varo-
quaux, 2020). Until then, hypothesis-based neuropredictive modeling 
remains a helpful tool for testing potential causal mechanisms thought 
to mediate antisocial tendencies (Allen & Aharoni, 2020). 
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