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Functional interactions between different brain regions require connecting fiber tracts, the
structural basis of the human connectome.To assemble a comprehensive structural under-
standing of neural network elements from the microscopic to the macroscopic dimensions,
a multimodal and multiscale approach has to be envisaged. However, the integration of
results from complementary neuroimaging techniques poses a particular challenge. In
this paper, we describe a steadily evolving neuroimaging technique referred to as three-
dimensional polarized light imaging (3D-PLI). It is based on the birefringence of the myelin
sheaths surrounding axons, and enables the high-resolution analysis of myelinated axons
constituting the fiber tracts. 3D-PLI provides the mapping of spatial fiber architecture in the
postmortem human brain at a sub-millimeter resolution, i.e., at the mesoscale. The funda-
mental data structure gained by 3D-PLI is a comprehensive 3D vector field description of
fibers and fiber tract orientations – the basis for subsequent tractography. To demonstrate
how 3D-PLI can contribute to unravel and assemble the human connectome, a multiscale
approach with the same technology was pursued. Two complementary state-of-the-art
polarimeters providing different sampling grids (pixel sizes of 100 and 1.6 μm) were used.
To exemplarily highlight the potential of this approach, fiber orientation maps and 3D fiber
models were reconstructed in selected regions of the brain (e.g., Corpus callosum, Inter-
nal capsule, Pons). The results demonstrate that 3D-PLI is an ideal tool to serve as an
interface between the microscopic and macroscopic levels of organization of the human
connectome.
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INTRODUCTION
Structure and function of the human brain are intricately linked
across multiple levels of brain connectivity. It is the brain’s intrinsic
multiscale architecture that allows different morphological entities
to be defined at different scales, essentially depending on the spatial
resolution provided by the available neuroimaging techniques and
the scientific objectives. A natural description of neuronal con-
nections might therefore be organized in three levels that cover
the macro-, meso-, and microscale (Sporns et al., 2005; Kötter,
2007). Various approaches for mapping the human connectome
at the level of macroscopic anatomical connectivity, i.e., at mil-
limeter scales, such as MR-based diffusion imaging (Basser et al.,
1994; Pierpaoli and Basser, 1996; Conturo et al., 1999; Beaulieu,
2002; Tuch et al., 2002, 2003; Hagmann et al., 2003; Tuch, 2004;
Mori and Zhang, 2006; Schmahmann et al., 2007; Naidich et al.,
2008; Johansen-Berg and Rushworth, 2009) or dissection tech-
niques (Klingler, 1935; Türe et al., 2000) were established over the
past years and enriched our knowledge about fiber pathways in the
human brain. To obtain and interpret experimental connectivity

data at the meso- and microscale, however, is still a challenging
task in terms of methodology, data handling and analysis, as well
as exchange of information.

THREE-DIMENSIONAL POLARIZED LIGHT IMAGING
Axer et al. (2011) represents a novel neuroimaging technique to
map nerve fibers, i.e., myelinated axons, and their pathways in
human postmortem brains with are solution at the sub-millimeter
scale, i.e., at the mesoscale. Polarized light imaging (Scheuner and
Hutschenreiter, 1972; Brosseau, 1998; Larsen et al., 2007) utilizes
an optical property of the myelin sheaths of nerve fibers known
as birefringence (Göthlin, 1913; Schmidt, 1923; Schmitt and Bear,
1937). Biological samples exhibit essentially two types of birefrin-
gence referred to as intrinsic and form birefringence. The latter
type reflects the textural feature of the material and the mutual
birefringence of all its components (e.g., tissue and embedding),
while the intrinsic birefringence is caused by individual proper-
ties of the constituting molecules (Wiener, 1912). In case of nerve
fibers,birefringence is induced by the regular arrangement of lipids
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and proteins in the myelin sheath (Norton and Cammer, 1984;
Martenson, 1992), thus resulting in distinct optical anisotropy.
The net birefringence of the neurofilaments inside the axon and the
radially oriented lipid chains of the myelin sheath can be described
by a single axis of optical anisotropy giving rise to uniaxial nega-
tive birefringence and, therefore, reflecting the spatial orientation
of the fiber (Vidal et al., 1979).

The birefringence of brain tissue is measured by passing linearly
polarized light through histological brain sections and by detect-
ing local changes in the polarization state of light by a camera.
Such principle of measurement is referred to as polarimetry and
has been used in anatomical studies of the central nervous system
already a century ago (Brodmann, 1903). However, in the recent
past, significant advances in the 3D reconstruction of microtome
sections (Dauguet et al., 2007; Singh et al., 2008; Capek et al., 2009;
Palm et al., 2010), image analysis, computational techniques, and
progress in understanding the interaction of polarized light with
birefringent tissue (Schnabel, 1966; Fraher and MacConnaill, 1970;
Oldenbourg and Mei, 1995;Oldenbourg, 1996; Oldenbourg et al.,
1998; Massoumian et al., 2003; Farrell et al., 2005; Larsen et al.,
2007; Axer et al., 2011) have opened up new avenues to study
brain regions with complex fiber architecture at the highest level
of detail. We took advantage of this progress to gain a vector field
description of fiber tract orientations in histological brain sections
and to reconstruct 3D fiber tract models in selected brain regions
across a series of aligned sections.

This paper focuses on basic data structures gained with the
latest advances in Three-dimensional polarized light imaging
(3D-PLI; based on a novel tilting object stage and a polarizing
microscope) and their utilization in terms of mapping the human
connectome at the mesoscale. The idea is to apply basic princi-
ples of polarized light imaging in different optical setups, thus
providing complementary scales of resolution to bridge the gap
between structural descriptions at single fiber dimensions and at
macroscopic fiber pathway levels.

MATERIALS AND METHODS
PREPARATION OF HUMAN BRAIN TISSUE
The study is based on adult postmortem human brains obtained
from body donor programs at the medical departments of the
Heinrich-Heine-University in Düsseldorf (Germany) and the
Rheinisch-Westfälische Technische Hochschule in Aachen (Ger-
many) in accordance with legal requirements. The clinical records
were free of signs of neurological or psychiatric diseases. The brains
were removed from the skull, fixed in 4% buffered formalin for at
least 6 months, embedded in luxol fast blue-stained gelatine, and
sectioned completely with a thickness of 100 μm thickness using a
cryostat microtome (Polycut CM 3500,Leica,Germany). The max-
imum deviation of the section thickness from 100 μm amounts to
±5 μm. The integrity of the myelin sheaths in the brain tissue was
not affected. In addition, one optic tract was prepared bilateral
and sectioned parallel to the main fiber direction with thicknesses
of 20, 25, 50, 70, and 100 μm.

The blockface of the frozen, gelatine-embedded brain was
imaged during sectioning in order to obtain an undistorted ref-
erence image, i.e., the blockface image (Zilles et al., 2002; Amunts
and Zilles, 2006; Toga et al., 2006). Hence, a CCD camera (Oscar

F510, Allied Vision Technologies, Germany) with an endocentric
lens (APO Rodagon N 2.8/50 mm, Linos, Germany) was mounted
vertically above the blockface at a distance of 1.2 m. It provided
an image dimension of 2588 × 1958 pixels. In addition, the precise
distance of each blockface to the camera system was determined
with an opto-electronic distance sensor (LDM 42A, Astech, Ger-
many). The distance measurement is required to correct for per-
spective distortions in the images, since an endocentric lens was
used and the distance between the block surface and the camera
increased while the sectioning proceeded. This is due to the fact,
that the microtome owns an automatized height adjustable knife.
Taking the distance information into account, the set of blockface
images was subjected to a single-modality 2D affine registration
for the 3D (blockface) brain reconstruction (Eiben et al., 2010;
Palm et al., 2010).

LARGE-AREA ROTATING POLARIMETER WITH TILTING STAGE
A fully automatized rotating polarimeter has been constructed and
optimized for high-resolution PLI (Axer et al., 2011). The setup
is sensitive to small local changes of the polarization state of light
induced by the interaction with the anisotropic brain tissue, i.e.,
the myelin. Since it provides single-shot imaging of whole human
brain sections (with a sensitive area of 24 cm in diameter), it is
referred to as large-area polarimeter.

The polarimeter is equipped with a pair of crossed polariz-
ers (XP38, ITOS, Germany), a specimen stage and a quarter-wave
retarder (WP140, ITOS, Germany) positioned between the two
polarizers. A customized LED light source (FZJ-SSQ300-ALK-G,
iiM, Germany) illuminates the brain section with a narrow-band
green wavelength spectrum (525 ± 25 nm; Figure 1A). By rotat-
ing all optical devices simultaneously around the stationary tissue
sample, the principal axes of birefringent structures, i.e., the fiber
axes, are systematically imaged by a CCD camera (AxioCam HRc,
Zeiss, Germany) at discrete rotation angles ρ. The birefringence
causes the measured light intensity I to vary in a sinusoidal man-
ner with respect to the rotation angles ρ, depending on the local
3D fiber orientation (ϕ, α; cf. Figure 1C). The sinusoidal variation
of light intensity as a function of the rotation angle is referred to a
slight intensity profile.

I = I0

2
· [1 + sin(2ρ − 2ϕ) · sin δ], (1)

Where

δ ≈ 2π · d · Δn

λ
· cos2α. (2)

Each image pixel is therefore characterized by an individual
light intensity profile that can be described with the Jones calcu-
lus (Jones, 1941) and the basic principles of optics (Snell’s law,
Huygens–Fresnel principle; cf. Saleh and Teich, 1991; Figure 1D).
In Eq 1 the phase of the profile encodes the angle ϕ, which rep-
resents the individual fiber direction, i.e., the projection of the
fiber axis into the section plane with respect to the null position
of the polarimeter (ρ = 0˚). The amplitude of the profile quan-
tifies the phase retardation δ induced to the light wave by the
myelin (Figure 1C). This phase retardation is a function of the
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FIGURE 1 |Three-dimensional-polarimetry at a glance. (A) Scheme of
the large-area rotating polarimeter with tilting stage (N-North, W-West,
E-East, S-South). (B) Optical scheme of the polarizing microscope LMP1-1.
(C) Scheme of the optical fiber model. The refractive index of a negative
uniaxially birefringent medium, such as a myelinated axon, is described by
an elliptically shaped oblate surface, the refractive index ellipsoid or
indicatrix (gray mesh). A beam of linearly polarized light (blue trace) interacts
locally with the myelin sheath of a single axon (black line), which induces a
phase shift to the light beam. The light becomes elliptically polarized and
serves as a direct measure of the orientation of the indicatrix or the
prevailing local fiber orientation, respectively. In the frame coordinate

system this orientation is determined by the in-plane direction angle ϕ and
the out-of-section inclination angle α. (D) A typical PLI raw image data set
consists of 18 images corresponding to equidistant rotation angles between
0˚ and 170˚. Here, a selection of four images of a coronal section is shown,
while the sketched arrow indicates one representative pixel. To obtain the
fiber orientation, the measured light intensities are studied pixel-wise as a
function of discrete rotation angles. The derived physical model provides a
precise mathematical description of the measurement (continuous black
line) and relates the sine phase to the direction angle ϕ and the amplitude to
the inclination angle α. The highlighted data points correspond to the
selected images.

light wavelength λ, the section thickness d, the birefringence Δn
of the myelin, and the inclination angleα of the fiber’s princi-
pal axis (cf. Eq 2). The birefringence depends on the wavelength
of light and the temperature of the tissue. In order to keep the
variations of both parameters small, the light source was water-
cooled and all measurements were carried out at controlled envi-
ronment temperatures (22 ± 1˚C). The transmittance I 0 denotes
the intensity of the incident light modified by local extinction
effects.

As a fundamental technical innovation in comparison to the
planar setup as specified in Axer et al. (2011) a novel specimen
stage has been introduced. This stage is tiltable with respect to two
perpendicular axes precisely aligned to the camera image axes. By
slightly tilting the brain section around these two axes, fiber tracts
can be imaged stereoscopically from four different views (within a
tilt angle range of |τ| ≤ 4˚ in east, west, north, and south direction),
in addition to the standard planar view (Figure 1A). This inno-
vation was driven by the known limitation of a standard planar
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polarimeter where the extracted inclination angles α are naturally
restricted to absolute values between 0˚ and 90˚, and are therefore
afflicted with a sign ambiguity. The tilting modifies the inclination
angles of the fiber axes with respect to the planar projection plane
and enables to disambiguate the inclination measurement.

Image acquisition and image processing using the large-area
polarimeter
Each section was imaged at five tilts (planar with τ = 0˚; east, west,
north, and south with τ = 4˚) at 18 equidistant rotation angles of
the polarimeter covering an angular range between 0˚ and 170˚.
I.e., in total, 90 images were acquired for each section. The camera
setup yielded RGB images with image sizes of 1388 × 1040 pixels
and a pixel dimension of 100 μm × 100μm. The sampling inter-
val can be increased up to 33 μm × 33μm using the same setup.
However, for the presented studies we aimed for isotropic voxel
sizes. The light intensities were sampled with a dynamic range of
14 bits per color channel.

Raw image processing, signal analysis and image registration
were performed according to Axer et al. (2011). As a result, the
following parameter maps were obtained:

• The transmittance map (I 0): it represents the pixel-wise (dou-
bled) average map of all PLI raw images (cf. Figure 1D) and is
a measure for the extinction of light after passing through the
polarimeter and the brain tissue.

• The retardation map (|sin δ): it equates to the normalized ampli-
tudes of the light intensity profiles (ΔI/I 0, cf. Figure 1D) and
describes the magnitude of the phase shift (retardation) induced
to the light wave due to the interaction with the birefringent
tissue.

• The fiber direction map (ϕ): it describes the in-section direction
angle, i.e., the x–y orientation of each fiber (cf. Figure 1C).

• The fiber inclination map (α): it describes the out-of-section
angle, i.e., the vertical component of each fiber (cf. Figure 1C).

Image calibration, independent component analysis (ICA), dis-
crete harmonic Fourier analysis, and image registration were
fundamental prerequisites in this processing chain aiming for con-
sistent data sets of local fiber orientations. To ensure comparability
among different sections and brains, image calibration is applied to
all raw images aiming for homogeneous and constant background
intensities, i.e., measured light intensities without brain tissue in
the optical path. In addition, the application of ICA to PLI raw
images enables the effective separation of birefringence signals
from interfering signal sources, such as electronics noise, light
scatter, dust particles, or filter inhomogeneity. The reproducibility
of the results gained with the combination of image calibration
and ICA has been demonstrated in Dammers et al. (2010, 2011).
Pixel-wise fitting of the ICA-enhanced light intensity profiles by
means of discrete harmonic Fourier analysis (Glazer et al., 1996)
provides fast and automatized extraction of the parameter maps
listed above.

To utilize the additional information gained with the tilting
stage, a precise rectification of the raw images had to be done
prior to any analysis. This is due to the fact, that the tilts geo-
metrically distort the raw images with respect to each other. To

overcome this distortion, projective transformations (2D homog-
raphy, cf. Fischler and Bolles, 1981; Hartley and Zisserman, 2004)
between mutually tilted image pairs is recovered based on a robust
matching of SIFT keypoints (scale-invariant feature transform; cf.
Lowe, 2004). Since the tilting takes effect on the amplitudes of the
intensity profiles, i.e., on the retardation |sin δ|, the change of the
retardation with the tilting condition was evaluated pixel-wise to
determine the sign of the fiber inclination. The sign describes the
slope of the fiber course (uphill or downhill). By this means an
inclination sign map(s) was created for each section.

Fiber tractography
To reconstruct fiber models in a volume of fiber orientation maps
(FOM), the data were subjected to a standard streamline algorithm
based on the Euler method (Mori, 2007) as implemented in the
basic toolbox of the Matlab© framework (Mathworks Inc.). A tract
is propagated from a seed point by following the local vector ori-
entation using interpolation methods. Seed points were densely
placed on the surfaces of a box confining the volume of interest
(VOI). The VOIs shown here were placed primarily in areas of
white matter with a heterogeneous fiber direction (e.g., the Pons).
The line propagator step size was chosen to be 30% of the vector
grid unit throughout the propagation process in order to minimize
aberration due to coarse quantization. The resulting streamlines
are defined by a sequence of vertices in 3D space.

POLARIZING MICROSCOPE
Basic principles of polarized imaging enable also to utilize micro-
scopic devices in order to study neuroanatomical structures at the
highest level of detail in 3D on small sample and tissue sizes. There-
fore, a polarizing microscope (LMP-1, Taorad, Germany) with a
pixel size of 1.6 μm × 1.6 μm in-plane has been employed (Glazer
et al., 1996). In contrast to the large-area polarimeter, only one
linear polarizer in the optical path is rotatable (Figure 1B) and a
brain section has to be scanned tile-wise with overlapping fields of
view using a motorized microscope stage (Märzhäuser, Germany).
Pursuant to theoretical optics (Jones, 1941), Eqs 1 and 2 also apply
to this type of polarimeter.

Image acquisition and image processing using the polarizing
microscope
Each brain region was imaged at 18 equidistant rotation angles
of the polarizer covering an angular range between 0˚ and 170˚.A
single microscope (grayscale) image comprises an area of about
3.3 mm × 3.3 mm (2048 × 2048 pixels), i.e., a whole brain section
is built up of about 2500 single tiles, for example. The images were
sampled with a dynamic range of 12 bits.

To produce ultra high-resolution images of large brain areas,
multiple images were combined (stitched) with a Matlab© appli-
cation developed in our lab. Raw image processing and signal
analyses were performed as already described for the large-area
polarimeter (cf. Axer et al., 2011).

RESULTS
REFERENCE DATA SET
The aligned series of blockface images represents a three-
dimensional data set that serves as an undistorted high-resolution
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reference. It was used to retrieve the spatial coherence within adja-
cent sections and to correct for tissue distortions inevitably intro-
duced by sectioning and further steps of histological processing.
In particular, the luxol fast blue-stained gelatine (cf. Figure 2A)
turned out to be beneficial for automatized discrimination of the
brain tissue from the background, i.e., the surrounding gelatine.
The hue representation of the hue-saturation-value (HSV) color
space provided a clear separation of the predominantly red and yel-
low colored fixed brain tissue from the blue color of the gelatine
(Figure 2). The perspective error correction integrated into the
rigid registration process finally led to an accurately aligned and
scaled high-resolution 3D representation of the blockface brain
(Figure 2D).

PARAMETER MAPS AND DATA STRUCTURES
The image processing chain of 3D-PLI results in a set of compre-
hensive parameter maps in 2D (grayscale) and 3D (colorscale),
each of them highlighting distinct tissue properties and anatom-
ical structures. One of the basic 2D parameter maps obtained
by analyzing the light intensity profiles is the transmittance map
(I 0; Figure 3A). This type of map provides a general separation
of gray and white matter, but it also shows intensity gradients
within the cortical and the subcortical gray matter as well as in
the white matter (cf. arrow heads in Figure 3B). Comparison
of transmittance maps of coronal sections with myelin stained
sections based on the Heidenhain–Woelcke technique (Bürgel
et al., 1997) revealed a striking correspondence between both
modalities (Figure 3). However, the transmittance maps yielded
more contrast across the white matter than the myelin stained

FIGURE 2 | Segmentation and 3D reconstruction of the blockface

image data set. (A) Blockface image of a horizontally cut postmortem
human brain represented in RGB (red-green-blue) color space. The brain is
embedded in stained (luxol fast blue) gelatine. The checkerboard in the
background was used for subsequent alignment of the blockface images
obtained during sectioning. (B) Transformation of the RGB image into the
HSV-color space enables an accurate segmentation of the image into tissue
and background. The hue-channel of the blockface is shown here. (C)

Segmented brain section. (D) 3D representations of the reconstructed
blockface brain.

sections, in particular in U-fiber regions (cf. white arrow heads in
Figures 3A,B).

The fundamental entity of 3D-PLI to characterize the locally
prevailing fiber tract orientation in a single voxel is a unit vec-
tor. The integration of all vectors for an entire brain section
leads to a comprehensive 3D vector field description, i.e., a FOM.
This is another, fundamental difference from the myelin stained
sections, which do not enable to extract the third dimension, i.e.,
the inclination.

Due to the tilting stage, we were able to assign a definite
preference to the out-of-section inclination angle (i.e., the sign
relative to the section plane) in the FOM for the first time. Analy-
sis of the tilted raw images approved that the tilting of 4˚ takes
effect on the amplitudes of the intensity profiles, i.e., the retar-
dation |sin δ| (cf. Figure 4A as an example). As intended, the
data revealed correlations between the tilting condition (east,
west, north, and south), the retardation, and the fiber direction.
The largest changes of retardation values caused by the tilting
were observed in brain regions with prevailing intermediate fiber
inclinations (i.e., α ≈ 45˚), while fibers running within or perpen-
dicular to the section plane showed much smaller changes. The
benefit of tilting becomes obvious in Figures 4B,C. In general, we
observed that inclination sign maps were characterized by distinct
clusters dominated by the same inclination sign distributed all over
the brain section (cf. Figure 5A). However, the tilting method also

FIGURE 3 | Comparison of (A) a transmittance map of a coronal whole

human brain section (100 μm thickness, gelatine embedding) and (B) a

coronal section from another human brain stained with the

Heidenhain–Woelcke technique for myelin (20 μm thickness, paraffin

embedding). The images were scaled to the same gray value range and
show global similarities in their gray level distributions. However, the
enlarged regions of interest from the frontal lobe (right images) document
that the transmittance map yields more contrast across the white matter
regions (e.g., in U-fiber regions as indicated by the white arrow heads) than
the classical histological myelin staining. For cortical regions the measured
intensity gradients are similar (cf. red arrow heads). Legend: Cc, corpus
callosum; Cr, corona radiata; Th, thalamus; Pu, putamen; Gp, globus
pallidus; Po, pons.
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FIGURE 4 | Determination of the ambiguous inclination sign by tilting.

(A) In addition to images acquired in the standard planar position, further
information can be derived from images that are tilted in north and south
direction, for example. After optical rectification, the light intensity in a
single pixel is plotted for the series of polar filter rotation angles. The north,
south and planar tilting positions have different amplitudes. The change in
the amplitude of the signal demonstrates the change in the absolute
inclination angle as a result of tilting. In this case, the south tilt yields a
larger amplitude and hence a higher absolute inclination angle than the north
tilt. This indicates a negative inclination sign. (B) The overview of the
transversal section through the Pons on the left shows the cutting plane
(dotted yellow line) of the coronal view on the right. The HSV-color coding

shows both possible inclination signs in the same color (Hue: transversal
direction, Saturation: coronal inclination, Value: constantly 0.5). The
magnified regions show the two possible fiber orientations mirrored to each
other, if the inclination sign is still ambiguous. (C) After determination of the
inclination sign, a decision is made for every pixel, which is color-coded by
different brightness values (>0.5: positive sign, <0.5: negative sign). The
magnified regions show the resulting fiber orientations. The inclination sign
was determined as negative in the left region, while a positive inclination
sign was derived in the right region. The orientations agree with the course
of the pontocerebellar fiber bundles running toward each other from lateral
to medial. Legend: cst, cortico-spinal tract; pcf, pontocerebellar fibers; mcp,
middle cerebellar peduncle.

proved to be sensitive to heterogeneous structures within regions
of intense fiber intermingling such as the Corona radiata.

Two representations of a FOM turned out to be beneficial in
terms of visualization and fiber tractography: (i) utilizing the HSV-
color space provided an informative way to encode the determined
fiber orientations based on the direction angle (ϕ), the inclination
angle (α), and the inclination sign (s) for each image pixel. Brain
regions with a rich variety of fiber orientations (e.g., the Corona
radiata), but also regions with homogenous fiber courses (e.g.,

the Corpus callosum) become evident in an HSV-colored FOM
(cf. Figure 5A). (ii) Transforming the angle-based description of
fiber orientations into unit vectors (Figure 5B) resulted in a data
structure that is best suited for fiber tractography using stream-
line algorithms. The visualization of vector data utilizes the RGB
color space, where the vector components are encoded in the basic
colors red, green, and blue. Though this color code is an estab-
lished approach in MR diffusion imaging, it actually reduces the
full spatial information of symmetrical fiber courses (compare
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FIGURE 5 |Two ways to render a fiber orientation map (FOM): (A)

Transformation of a direction map, inclination sign map, and inclination

map into a FOM using the HSV-color space (encoding: H = 2ϕ,

S = 1 − α/90˚,V = 1 for S > 0; H = 2ϕ, S = 1,V = 1 − α/90˚) for S ≤ 0). (B)

Transformation of the extracted fiber orientations into unit vectors
(x = cos(sα)·cos(ϕ), y = cos(sα)·sin(ϕ), z = sin(sα)) and visualization in the
RGB color space (encoding: R = | x |, G = | y |, B = | z |). Legend: Cc, corpus
callosum; Cr, corona radiata; Ci, internal capsule; Th, thalamus; Po, pons.

the transversally symmetric courses of the Internal capsule in the
FOMs shown in Figure 5). However, the RGB representation is
preferred for direct comparison between 3D-PLI and results from
diffusion weighted MRI (cf. Oishi et al., 2011).

3D FIBER TRACT MODELS
The 3D data set for high-resolution structural fiber mapping is
composed of adjusted and stacked sectional FOMs. This 3D-FOM
already provides novel insights into complex local fiber architec-
tures, even without further computational processing such as fiber
tractography.

Fiber tract models finally demonstrate the feasibility of the
applied imaging technique. Therefore, fiber tractography was per-
formed in small subsamples of a stack of 10 coronal whole brain

FOMs to build continuous fiber tract models. Five regions of
interest with dimensions of 2 mm × 2 mm × 1 mm distributed
over the entire volume of sections were subjected to the stream-
line algorithm. Five selected regions are shown in Figure 6, where
fiber models were reconstructed from 3D-FOMs in the Corpus
callosum, the Capsula interna, and the Pons. Intense fiber cross-
ings also affect 3D-PLI due to partial volume effects, however, on
a much smaller scale than it is the case in diffusion weighted MRI.
Some transversal fiber tracts (red) crossing the internal capsule
between Putamen and Thalamus (C) are confused (blue) by the
cortico-spinal mainstream (green) and do not survive the crossing.

In addition to fiber tract models in white matter regions recon-
structed from 3D-FOMs obtained with the large-area polarimeter,
3D-PLI applied to the polarizing microscope images provides fur-
ther, even more detailed insights into regions close to or within
the cortex. To give an example, association fibers at the circular
sulcus of the insula were 3D reconstructed and studied (Figure 7).
The fiber tract models in a volume of 0.5 mm × 0.5 mm × 0.1 mm
(obtained with the large-area polarimeter) follow a clear sub-
cortical U-shape with indications of changeover into the cortex
(Figure 7B). Two microscopic 2D-FOMs (Figures 7C,D) covering
2D sub-regions at the white/gray matter border of a section from
the center of the stack prove the fiber crossover into the cortex.
Single fibers can clearly be observed at the provided pixel size of
1.6 μm. There seems to be a gap (blue) between the white and the
gray matter. This is due to the fact that the contributions of per-
pendicularly crossing fibers in the same voxel tend to average out
thus lowering the amplitude of the measured intensity profile, i.e.,
partial volume effects due to the section thickness can be observed.

To demonstrate the influence of section thickness d on the
retardation as well as the impacts on the polarimeter setup in
terms of sensitivity, a study of an optic tract was carried out. Since
the optic tract was sectioned along its main fiber direction (i.e.,
α = 0˚), the determined retardation maps of the different section
thicknesses reveal the largest signals to be expected in 3D-PLI.
According to Axer et al. (2011), the histogram of a retardation
map with resident in-plane fibers can be used to determine the
correlation between the measured retardation value |sin δ| and
the inclination angle α (Figure 8). The mean values |sin δ|α=0◦ of
the histogram tails were extracted by fitting and used as reference
measures for in-plane fibers of the different section thicknesses
(Figures 8A,B). A significant increase of |sin δ|α=0◦ from 0.201
at d = 20 μm to 0.728 at d = 100 μm was observed, while scatter-
ing and absorption effects become more influential at thicknesses
above 100 μm thus leading to a decrease of the maximum sig-
nal (Figure 8B). This behavior was described by a fit function
based on Eqs 1 and 2 multiplied by an exponential term. Hundred
micrometer represents the maximum suitable section thickness
and the highest dynamic range to separate fiber inclination angles
(Figure 8C).

DISCUSSION
In order to create a comprehensive structural description of
the neural network and its intricate fiber connections, i.e.,
to assemble an important part of the human connectome, a
multimodal approach is certainly indispensable. Depending on
data provided by complementary neuroimaging techniques, an

Frontiers in Neuroinformatics www.frontiersin.org December 2011 | Volume 5 | Article 34 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Axer et al. 3D-polarized light imaging

FIGURE 6 | Reconstructed fiber tract models in five regions of interest

(volumes of 2 mm × 2 mm × 1 mm) sampled with an isotropic resolution

of 100 μm. The individual color spheres (legend: A, anterior; P, posterior; I,
inferior; S, superior; R, right; L, left) indicate the orientations of the fiber tract
models. Fiber models were generated in (A) the Corpus callosum, (B) the
Corona radiata, (C,D) the internal capsule (green), perforated by small
fascicles (red and magenta) connecting the cerebral cortex with the Thalamus

(C), Red nucleus and Substantia nigra (D), and (E) the Pons
(green = cortico-spinal tract, red = transversal branches). Superimposed
retardation maps (gray values) serve as anatomical references. (F) The RGB
fiber orientation map is a representative of the stacked whole brain sections
used for the study. The black rectangles highlight the magnified regions of
interest (A–E) and the arrows indicate the individual observer’s perspective.
Legend: Cc, corpus callosum; Ci, internal capsule; Po, pons; R, right; L, left.

anatomical connectivity map could target three levels of organiza-
tion (microscale, mesoscale, and macroscale) requiring reasonable
cross-level integration.

MR-based diffusion imaging is the most frequently used
method to visualize fiber pathways in both the living (Basser et al.,
1994; Pierpaoli and Basser, 1996; Conturo et al., 1999; Beaulieu,
2002; Tuch et al., 2002, 2003; Hagmann et al., 2003; Tuch, 2004;
Mori and Zhang, 2006; Schmahmann et al., 2007; Naidich et al.,
2008; Johansen-Berg and Rushworth, 2009) and the postmortem
(Englund et al., 2004; Larsson et al., 2004) human brain. With a
spatial resolution at the millimeter scale, diffusion imaging con-
tributes nearly exclusively to the construction of data sets at the
level of macroscopic structural connectivity. However, restricted
by the resolution, complex fiber networks and small fiber tracts
cannot be discovered reliably at present. Furthermore, the ter-
minal parts of fiber tracts within the cerebral cortex cannot be
demonstrated.

Conversely, microscopic techniques generate data sets of
impressing neuroanatomical detail, but they are limited to small
sample sizes (i.e., small areas of interest in a small number of
subjects). This substantially restricts their predictive power. In the
recent years, anatomical connections in the human postmortem
brains were studied with dissection techniques (Klingler, 1935;
Türe et al., 2000), in myelin stained sections of adult human brains
(Bürgel et al., 1997, 2006), or of immature brains taking advan-
tage of heterochronic myelination of different fiber tracts during
pre- and early postnatal development (Flechsig, 1901), in lesioned
brains using various techniques for staining degenerating fibers
(Funk and Heimer, 1967; Clarke and Miklossy, 1990), and using
tract-tracing methods for discovering local connections (Burkhal-
ter et al., 1993; Lanciego and Wouterlood, 2000). These studies
have contributed to our knowledge about human brain fiber tracts,
but all of these approaches suffer from severe restrictions, if fiber
tracts are to be mapped in the adult human brain including their
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FIGURE 7 | Association fibers. (A) FOM of a coronal section with the
indicated region of interest in the upper part of the circular sulcus of the
insula. (B) Reconstructed U-fiber models (volume of 5 mm × 5 mm × 1 mm,
pixel size of 100 μm) based on a stack of aligned FOMs obtained with the
large-area polarimeter, covering the insular cortex and the underlying
extreme capsule turning into the stem of the parietal operculum. Superficial
layers of U-fibers turn into the insular cortex and into the cortex of the

post-central gyrus. (C,D) Show the gray/white matter borders in the two
regions of interest shown in (B), analyzed with the polarizing microscope.
Note, the two 2D-FOMs reflect the fiber orientations in a single section
from the center of the stack. White matter (WM) and gray matter (GM)
regions are characterized by significantly different fiber tract densities and
fiber orientations. Color code of the fiber orientations: red = transversal,
green = axial, blue = sagittal.

FIGURE 8 | Influence of the section thickness on the fiber inclination

estimation. An optic tract was sectioned parallel to the main fiber
direction with thicknesses of 20, 25, 50, 70, and 100 μm, and measured
with the large-area polarimeter. (A) Histogram of the retardation map
(| sin δ| > 0.55) of a 100 μm section and the resulting fit function (with fit
parameter [p2] = |sin δ|α=0◦ used as a reference measure). (B)

|sin δ|α=0◦ as a function of the section thickness. The error bars indicate

the maximum deviation of the section thickness (±5 μm) and the
maximum variance across the fitted histogram tail. (C) The relationship
between the fiber inclination angle α and a measured retardation value is
given by | sin δ| = | sin(arcsin(|sin δ|α=0◦ ) · cos2α)|.(cf. Axer et al., 2011).
Since |sin δ|α=0◦ depends on the section thickness, the usable dynamic
range to separate different fiber inclinations decreases for decreasing
thicknesses.

3D courses. In contrast to studies in animals, the tight packing of
different fiber tracts in the white substance, and the lack of specific
tracers for in vitro tracking of long-distance fibers made compre-
hensive fiber tract mapping impossible in the adult human brain
(Schmahmann and Pandya, 2009).

Obviously, there is still need for an operational link between
both, the high-resolution micro-connectome and the averaged

macro-connectome. In this paper, we propose to utilize 3D-PLI
based on two polarimeter setups providing complementary scales
of resolution, in order to close the gap between macroscopic fiber
pathways revealed by diffusion weighted MRI and their real ter-
minals located in the cortex: the polarizing microscope and the
large-area polarimeter with tilting stage. The latter device has been
optimized to one-shot whole brain imaging, while the polarizing
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microscope is an ideal tool to disentangle complex fiber constel-
lations in small brain areas and to follow fiber tracts to their
terminals into gray matter regions. With an in-plane sampling
between 33 and 100 μm, the large-area polarimeter enables the
3D modeling of long and short distance white matter tracts as
shown in this paper (cf. Figures 6 and 7). The polarizing micro-
scope features an in-plane pixel size down to axonal diameters
(1.6 μm) together with a high sensitivity to small birefringent sig-
nals (cf. Figure 7). This multiscale approach utilizing the same
technology provides data sets of importance to several branches
of neuroscience, however, limited to a small number of subjects.

To successfully apply 3D-PLI to thin brain sections, a valid
bio-physical model is required to describe the light transmittance
through the polarimeter and the birefringent brain tissue. It has
been shown in previous studies (Axer et al., 2000, 2011; Larsen
et al., 2007) that basic principles of theoretical optics provide a
sound base to estimate the light transmission, which is a mea-
sure of the locally prevailing spatial fiber orientation. Data fitting
by means of discrete Fourier analysis based on the mathematical
expression of this bio-physical model (cf. Eqs 1 and 2) enabled the
analysis of light intensity profiles obtained for each tissue (image)
pixel. This holds true for the large-area polarimeter as well as the
polarizing microscope.

The used fiber model yields the local in-plane fiber direction ϕ

with very high accuracy (±2˚), while the most challenging para-
meter to be extracted is the inclination angle α. The interpretation
of a light intensity profile is quite challenging in terms of fiber
inclination, due to its complex dependencies on section thickness,
birefringence, and light wavelength. In addition, the inclination
angle cannot be extracted unambiguously from the theoretical
model solely. The introduction of a tilting object stage into the
large-area polarimeter represents a milestone for 3D-PLI, since
the out-of-section fiber inclination (α) could be determined with-
out ambiguity, for the first time. This enhances the reliability of the
extracted fiber orientation significantly. Note, with a standard pla-
nar polarimeter the fiber orientation was intrinsically afflicted with
an inclination sign ambiguity, which was formerly tackled with a
simulated annealing approach as proposed by Larsen and Griffin
(2004). However, it was demonstrated that the purely computer-
aided application of the continuity heuristic could not entirely
eliminate the ambiguity (Axer et al., 2011). Uncertainties evoked
by this ambiguity were maximal (±90˚), for fibers with interme-
diate inclinations (i.e., α ≈ ±45˚), while fibers running within or
perpendicular to the section plane were not affected. We found
that the tilting method is most sensitive where a sign flip of the
inclination has the greatest impact on the spatial fiber orientation,
which are fibers with intermediate inclinations. This observation
matches the expectation based on the theoretical model (cf. Eq 2)
used to determine the fiber orientations.

The results presented here were mainly derived from brain
sections with a thickness of 100 μm as this thickness was found to
be well suited for the large-area polarimeter (Axer et al., 2001). Our
study of an optic tract confirmed this result (cf. Figure 8). How-
ever, PLI inherently permits the reduction of section thicknesses
to values considerably below 100 μm, even down to single fiber
dimensions, but at the expense of the sampled dynamic range.
We demonstrated this by investigating sections of the optic tract

of different thicknesses (between 20 and 150 μm; cf. Figure 8).
It is clear that the discrimination of different fiber orientations
becomes more challenging and the demands on the imaging
system are tightened when the section thickness decreases. In
addition, the handling of whole brain cryo-sections also becomes
difficult. However, investigating thin brain sections still represents
an attractive approach to enhance the sampling resolution of 3D-
PLI in the third dimension and to further reduce partial volume
effects impairing the signal interpretation, e.g., in transition zones
between fiber tracts with different orientations (Figure 7 and Axer
et al., 2011) or in regions with myelination gradients. The polar-
izing microscope with its high sensitivity is certainly a promising
tool in terms of fiber inclination determination in thin sections
(below 50 μm).

Although the tissue properties (myelination, section thickness,
fiber orientation) are well integrated into the bio-physical model,
to date, the 3D-PLI-based analysis does not take local variations in
the axon myelination into account. As a consequence, regions char-
acterized by significant myelination gradients (e.g., the transition
domains between gray and white matter) are likely to be misin-
terpreted as changing fiber inclinations, if the local myelination is
not considered. The misinterpretation becomes obvious in RGB
FOMs (Figure 5), where cortical areas appear to be dominated by
steep fiber orientations (blue color). Brain areas where the den-
sity of fibers diminishes significantly (e.g., subcortical nuclei) are
quite challenging, since the detected amplitudes of the light inten-
sity profiles are small, thus faking steep fibers. Therefore, fiber
models were primarily reconstructed in white matter domains
so far. However, in the current study we demonstrated that the
extracted transmittance value I 0 is sensitive to local myelination
and is, therefore, an ideal candidate to quantify the myelination in
the same term as used for the determination of fiber inclinations.
Cortical and subcortical gray matter could be distinguished from
regions of strong myelination in the white matter, in accordance
with results gained from myelin stained histological sections (cf.
Figure 3). As a matter of fact, the transmittance basically reflects
the attenuation of light when passing through the brain tissue. The
observed discriminative absorption and scattering effects in the
white matter are mainly due to the local shape and orientation of
the refractive index ellipsoid determined by the myelination. This
means that the transmittance is an indirect measure of the myeli-
nation slightly modified by the fiber orientation (which explains
the intensity gradients in the white matter, Hebeda et al., 1994).
Ongoing studies are currently dealing with the extension of the
3D-PLI analyses using the transmittance information.

The 3D reconstruction of gross histological brain sections poses
particular challenges to the alignment techniques. Clearly, nerve
fiber models of the human brain also depend on an accurate 3D
volume data set of vectors derived from a registered stack of 2D-
FOMs, which are individually taken from distorted histological
brain sections. In order to preserve the reliability of the vector data
on a sub-millimeter scale, the registration procedure needs to meet
high-resolution requirements. A successful strategy to retrieve the
3D coherence among serial sections and correction for histological
distortion was realized by using state-of-the-art image (affine and
non-linear) registration techniques applied to blockface images
(Figure 2) and to corresponding parameter maps (Palm et al.,
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2010). By means of these instruments large global and local section
deformations, unavoidably introduced during histological pro-
cessing, were corrected with high quality, i.e., with a maximum
displacement of 300 μm. The registration preserves the initial in-
plane image resolution by using high-resolution blockface images
as spatial references. In addition, the registration yields transfor-
mations related to rotation, shearing or non-uniform scaling. This
information is used to re-orientate the fiber courses accordingly,
finally providing an aligned stack of corrected FOMs – the 3D-
FOM. High-quality image registration of large microscopic PLI
data sets remains a task for future studies.

Promising approaches to reconstruct fiber tracts from 3D-
FOMs are based on deterministic streamline region-to-region
tractography (cf. Figures 6 and 7). Due to the complexity of the
3D-PLI data sets, the reconstruction is currently limited to small
regions of interest (about 300 mm3). To deal with crossing and
kissing fiber constellations, partial volume effects in transitional
domains between adjacent major fiber tracts, or gray/white matter
borders, investigations beyond the standard streamline tractog-
raphy are certainly needed. Therefore, dedicated utilization of
high-performance computing and state-of-the-art tools for fiber
tractography will be of importance to exploit the great potential
of 3D-PLI in the near future.

CONCLUSION
Three-dimensional polarized light imaging enables the uniform
high-resolution scanning of whole human brain sections, which
allows for the investigation of both short-range axonal projections
and long-distance links at the sub-millimeter scale. Depending on
the employed optical system (large-area polarimeter or polariz-
ing microscope), PLI is able to establish an interface between the
microscopic and the macroscopic characterization of the anatom-
ical connectivity by employing different polarimeter setups. Since
the method is capable of detecting even small fiber tracts with
myelination within the cerebral cortex, it is an ideal candidate
to demonstrate the anatomical connections by means of direct
measurements at complementary scales in the same object. Such
multiscale data sets are valuable as they provide in 2D and 3D

(i) where and to what extent fibers change orientation, (ii) to study
specific tracts through regions of crossing and kissing fibers, and
(iii) to tackle partial volume effects. Accurately following fibers
through the complexity of white matter bundles has always been
a crucial issue in MRI-based fiber tractography. 3D-PLI FOMs
comprise vector fields that are comparable to the principal Eigen-
vectors extracted from a field of MR diffusion tensors, and are
therefore best suited to be integrated in a multimodal approach
to map connectional anatomy. This is extremely useful for the
independent calibration and validation of next generation track-
ing software and the interpretation of the results derived from
diffusion weighted MRI. Cross-validation of diffusion imaging
and 3D-PLI in the same species is particularly desirable and will
therefore be addressed in future studies.

Cross-linking of multiscale data sets from complementary neu-
roimaging techniques is a real challenge and requires precise
definition of data structures, robust alignment tools, and interfac-
ing modalities. In case of 3D-PLI, the blockface-based reference
brain represents an operational link between the macroscopic MRI
world and the high-resolution 3D-PLI modality. By means of
3D–3D registration, the reference brain can be transformed into
the MR space, while the correspondence of the single blockface
sections to the PLI parameter maps are still maintained. Once
the interface is established, our multiscale approach for the same
object is a most versatile tool to derive anatomical information
(e.g., fiber orientations, myelination) at different measured scales
of resolution (as exemplified in the reconstructed U-fiber region).
In this way 3D-PLI provides the key technology and fundamen-
tal data structures to bridge the gap between the macro- and the
micro-connectome.
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