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ABSTRACT Clinically diagnosed pulmonary tuberculosis (PTB) patients lack microbi-
ological evidence of Mycobacterium tuberculosis, and misdiagnosis or delayed diag-
nosis often occurs as a consequence. We investigated the potential of long noncod-
ing RNAs (lncRNAs) and corresponding predictive models to diagnose these patients.
We enrolled 1,764 subjects, including clinically diagnosed PTB patients, microbiologi-
cally confirmed PTB cases, non-TB disease controls, and healthy controls, in three co-
horts (screening, selection, and validation). Candidate lncRNAs differentially expressed in
blood samples of the PTB and healthy control groups were identified by microarray and
reverse transcription-quantitative PCR (qRT-PCR) in the screening cohort. Logistic regres-
sion models were developed using lncRNAs and/or electronic health records (EHRs) from
clinically diagnosed PTB patients and non-TB disease controls in the selection cohort.
These models were evaluated by area under the concentration-time curve (AUC) and
decision curve analyses, and the optimal model was presented as a Web-based no-
mogram, which was evaluated in the validation cohort. Three differentially expressed
lncRNAs (ENST00000497872, n333737, and n335265) were identified. The optimal
model (i.e., nomogram) incorporated these three lncRNAs and six EHRs (age, hemo-
globin, weight loss, low-grade fever, calcification detected by computed tomography
[CT calcification], and interferon gamma release assay for tuberculosis [TB-IGRA]). The
nomogram showed an AUC of 0.89, a sensitivity of 0.86, and a specificity of 0.82 in
differentiating clinically diagnosed PTB cases from non-TB disease controls of the
validation cohort, which demonstrated better discrimination and clinical net benefit
than the EHR model. The nomogram also had a discriminative power (AUC, 0.90;
sensitivity, 0.85; specificity, 0.81) in identifying microbiologically confirmed PTB pa-
tients. lncRNAs and the user-friendly nomogram could facilitate the early identifica-
tion of PTB cases among suspected patients with negative M. tuberculosis microbio-
logical evidence.

KEYWORDS clinically diagnosed pulmonary tuberculosis, electronic health record,
lncRNA, nomogram

Tuberculosis (TB) is the leading cause of death from an infectious agent (1), but only
56% of pulmonary tuberculosis (PTB) cases reported to the WHO in 2017 were

bacteriologically confirmed. Thus, approximately one-half of all PTB cases are clinically
diagnosed worldwide, and this proportion can reach 68% in China (1). Clinically
diagnosed PTB cases are symptomatic but lack evidence of Mycobacterium tuberculosis
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infection by smear microscopy, culture, or nucleic acid amplification tests (1–3). The
diagnostic procedure for clinically diagnosed PTB is inadequate and time-consuming
and often results in misdiagnosis or delayed diagnosis (3), leading to an increased risk
of morbidity and mortality (4) or overtreatment (5). There is thus an urgent need to
develop rapid and accurate strategies to diagnose PTB cases without microbiological
evidence of M. tuberculosis (6, 7). The exploration of effective host immune response
signatures represents an attractive approach for this type of assay.

Long noncoding RNAs (lncRNAs) can function as critical regulators of inflammatory
responses to infection, especially for T-cell responses (8, 9). Increasing evidence indi-
cates that blood lncRNA expression profiles are closely associated with TB disease
(10–12), suggesting that lncRNAs could function as potential noninvasive biomarkers
for TB detection. However, previous studies have suffered from small sample sizes
(ranging from 66 to 510) and a lack of independent validation.

Recent effort has focused on establishing clinical prediction rules or predictive
models for TB diagnosis based on patients’ electronic health record (EHR) information
(13–16). Such models can cost-effectively facilitate PTB diagnosis with a limited number
of clinical-radiological predictors. For example, a 6-signature model described previ-
ously by Griesel et al. (a cough lasting �14 days, the inability to walk unaided, a
temperature of �39°C, chest radiograph assessment, hemoglobin level, and white cell
count) attained an area under the concentration-time curve (AUC) of 0.81 (95%
confidence interval [CI], 0.80 to 0.82) in seriously ill HIV-infected PTB patients (13).
However, despite these advances, current EHR models remain insufficient for precise TB
diagnosis. Compelling studies have proposed that models incorporating biomarkers
and EHR information attain better performance for the prediction of sepsis (17) and
abdominal aortic aneurysm (18). We previously reported that combining exosomal
microRNAs and EHRs in the diagnosis of tuberculous meningitis (TBM) achieved AUCs
of up to 0.97, versus an AUC of 0.67 obtained using EHRs alone (19). Based on these
studies, we hypothesized that combining lncRNAs with well-defined EHR predictors
could be used to develop improved predictive models to identify PTB cases that lack
microbiological evidence of M. tuberculosis infection.

This study was therefore performed to investigate the diagnostic potential of
lncRNAs and predictive models incorporating lncRNA and EHR data for the identifica-
tion of PTB cases without microbiological evidence of M. tuberculosis. This study also
explored the diagnostic potential of lncRNA candidates and the optimal model for
microbiologically confirmed PTB.

MATERIALS AND METHODS
Study design. We performed this study through a four-stage approach. lncRNAs that were differ-

entially expressed (DE) between clinically diagnosed PTB patients and healthy subjects were profiled by
microarray in the screening step. The expression levels of the top five lncRNAs were then analyzed in a
large prospective cohort in the selection step of the study, which reduced the number of lncRNAs from
5 to 3 based on expression differences among groups. In the model training step, lncRNAs and EHRs were
used to develop predictive models for clinically diagnosed PTB patients and nontuberculosis disease
control (non-TB DC) patients, and the optimal model was visualized as a nomogram. Finally, we validated
lncRNAs and the nomogram in a prospective cohort, including both clinically diagnosed PTB and
microbiologically confirmed PTB cases. The study strategy is shown in Fig. 1.

Subject enrollment. (i) Screening cohort. We retrospectively collected 7 age- and gender-matched
PTB cases and 5 healthy controls as the screening cohort. They were 6 males and 6 females aged 22 to
59 years. PTB cases were clinically confirmed PTB patients with positive TB symptoms, negative micro-
biological evidence of TB, and a good response to anti-TB therapy. Healthy subjects had a normal
physical examination and no history of TB.

(ii) Selection and validation cohorts. Inpatients with clinical-radiological suspicion of PTB but
lacking microbiological evidence of TB were prospectively enrolled from West China Hospital between
December 2014 and May 2017. The inclusion criteria for highly suspected patients were new patients
with (i) high clinical-radiological suspicion of PTB, (ii) anti-TB therapy for �7 days on admission, (iii)
negative microbiological evidence of TB (i.e., at least two consecutive negative smears, one negative M.
tuberculosis DNA PCR result, and one negative culture result), (iv) an age of �15 years, and (v) no severe
immunosuppressive disease, HIV infection, or cardiac or renal failure. Two experienced pulmonologists
reviewed and diagnosed all presumptive PTB patients. According to the Chinese diagnostic criteria for
PTB, final diagnoses for all cases were based on the combination of clinical assessment, radiological and
laboratory results, and response to treatment (1, 2) (see Appendix S1 in the supplemental material). A
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12-month follow-up through telephone or WeChat was used to confirm the classification of clinically
diagnosed PTB patients and non-TB patients. Detailed descriptions of patients’ symptoms and recruit-
ment, inclusion and exclusion criteria, laboratory examinations, diagnostic criteria and procedures,
treatment, and sample size estimates are provided in Appendices S1 and S2 in the supplemental
material. We also enrolled microbiologically confirmed PTB cases in the validation cohort. Healthy
subjects were simultaneously recruited from a pool of healthy individuals with a normal physical
examination and no history of TB.

The selection cohort was comprised of 878 participants (141 clinically diagnosed PTB cases, 159
non-TB DCs, and 578 healthy subjects), and the validation cohort had 874 participants (97 clinically
diagnosed PTB cases, 392 microbiologically confirmed PTB cases, 140 non-TB DCs, and 245 healthy
subjects). Details of the non-TB DCs are listed in Table S1 in the supplemental material. Ethics approval
was obtained from the Clinical Trials and Biomedical Ethics Committee of West China [approval no.
2014(198)]. Informed consent was obtained from every participant.

lncRNA detection. (i) RNA isolation and cDNA preparation. Peripheral blood mononuclear cell
(PBMC) samples were isolated from 3-ml fresh blood samples from each participant using a human
lymphocyte separation tube kit (Dakewe Biotech Company Limited, China). Total RNA was extracted from
PBMC isolates using TRIzol reagent (Invitrogen, USA). RNA concentration and purity were evaluated
spectrophotometrically, and RNA integrity was determined using agarose gel electrophoresis (Fig. S1A).
The PrimeScript RT reagent kit with gDNA Eraser (TaKaRa, Japan) was used to remove contaminating
genomic DNA and synthesize cDNA. All the kits were used according to the manufacturers’ instructions.

(ii) lncRNA microarray profiling. lncRNA profiles were detected using Affymetrix human transcrip-
tome array 2.0 chips based on a standard protocol (20). Raw data were normalized using the robust
multiarray average expression measure algorithm. DE lncRNAs with P values of �0.05 and fold changes
of �2 were identified using empirical Bayes-moderated t statistics and presented by hierarchical
clustering and a volcano plot (21).

(iii) qRT-PCR for lncRNAs. Three lncRNAs were amplified using the following primers: 5=-TTCCTCA
CCCTCTTCCTGCT-3= (forward) and 5=-AAGGCATGTGAGTAAGGGCG-3= (reverse) for ENST00000497872,
5=-GCAGAAAGCAAGGACCAA-3= (forward) and 5=-GGATGAGCAGCGATGAAG-3= (reverse) for n333737, and
5=-CGCAGAAGTAAGTAGCCGGG-3= (forward) and 5=-ACTGGATGAGCGTGAAGTGG-3= (reverse) for n335265
(Table S2). A final 10-�l-volume reaction mixture for reverse transcription-quantitative PCR (qRT-PCR)

FIG 1 Overview of the strategy for investigating lncRNAs and prediction models for clinically diagnosed PTB patients. Abbreviations: PTB, pulmonary
tuberculosis; PBMC, peripheral blood mononuclear cell; non-TB DC, nontuberculosis disease control; DE, differentially expressed; EHR, electronic health record;
DCA, decision curve analysis.
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included 5 �l of SYBR Premix Ex Taq II (TaKaRa, China), 0.5 �l of 10 �M forward and reverse primers, 3 �l
of double-distilled water (ddH2O) (PCR grade), and 1 �l of template cDNA. The cycling program consisted
of 95°C for 1 min, followed by 35 cycles at 95°C for 10 s, 56 to 62ºC for 30 s, and 72°C for 60 s. The samples
were denatured at 95°C for 30 s and then heated to 65°C for 30 s at a rate of 0.2°C/s. The ddH2O negative
control and blank control in each reaction showed no detectable signals, ensuring the lack of contam-
ination or nonspecific products. lncRNA expression was measured in a blind fashion, normalized to the
endogenous control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, and calculated accord-
ing to the 2���Cq method, where a quantification cycle (Cq) value of �35 was considered acceptable (22).
More details of qRT-PCR detection (PCR amplification curves and standard curve, quality control, product
sequencing verification, and stability test) are listed in Appendix S3 and Fig. S1B and C in the
supplemental material.

Modeling. (i) Data used for modeling. A total of 41 EHRs, including demographic, clinical,
laboratory, and radiological findings, were collected (Appendix S4), and a 20% missing value threshold
was applied to remove incomplete features. Features with P values of �0.05 in the univariate analysis or
with definite clinical significance were included for modeling. A total of 14 of the 44 original variables (41
EHRs and 3 lncRNAs) remained after filtering, including 11 EHRs and 3 lncRNAs (Appendix S4).

(ii) Diagnostic modeling. Multivariable logistic regression was used to develop predictive models to
distinguish clinically diagnosed PTB cases from patients with suspected PTB in the selection cohort.
Feature subsets were selected and compared using the best-subset selection procedure (23) and 10-fold
cross-validation. The “EHR-plus-lncRNA” (EHR�lncRNA), “lncRNA-only,” and “EHR-only” models were
developed according to their respective best-feature subset in the selection cohort. A cutoff for each
model was determined by combining Youden’s index and a sensitivity for the samples in the training
data set of �0.85. The models, including their cutoffs, were used for evaluation of the validation cohort.

(iii) Nomogram presentation and evaluation. We further adopted the nomogram to visualize the
optimal model with the best AUC (24, 25). Nomogram calibration was assessed with the calibration curve
and the Hosmer-Lemeshow test (a P value of �0.05 suggested no departure from perfect fit). The
variance inflation factors (VIFs) quantified the severity of multicollinearity (a VIF of �10 indicated
multicollinearity among the features in the model). Feature importance was calculated with the “varImp”
function in the R package. The performance of the nomogram was tested in the validation cohort, with
total points for each patient calculated. Decision curve analysis (DCA) (25) was performed by evaluating
the clinical net benefit of the nomogram and EHR-only model across the overall data sets. Assessing
clinical value involves comparing the nomogram and EHR-only model using the 500-bootstrap method.
The nomogram was implemented as a Web-based app using R Shiny.

Statistical analysis. Categorical variables were analyzed by univariate analysis with a chi-square test,
and continuous variables were analyzed using Mann-Whitney U tests or Student’s t tests. All tests were
2 sided, and P values of �0.05 were considered statistically significant. Modeling was constructed and
validated by individuals who were blind to diagnostic categorizations.

Data availability. lncRNA microarray data have been deposited in the Gene Expression Omnibus
under accession no. GSE119143. Sequencing data for the quantitative PCR (qPCR) products of three
lncRNAs, the R code, and data for modeling are available at https://github.com/xuejiaohu123/
TBdiagnosisModel.

RESULTS
Characteristics of prospectively enrolled participants. The demographic and

clinical characteristics of suspected clinically diagnosed PTB participants in the selection
and validation cohorts are provided in Table 1. Clinically diagnosed PTB patients were
younger and had higher interferon gamma release assay (IGRA) positivity rates did than
their non-TB DCs (P value of �0.0001 for both the selection and validation cohorts), but
these groups did not differ by gender, body mass index (BMI), or smoking status.
Healthy subjects were age, gender, and BMI matched with PTB patients, who had
significantly different blood test results than those of the PTB patients (Table 1).

Clinically diagnosed PTB patients were responsible for 29.82% (238/798) of all PTB
patients (238 clinically diagnosed PTB cases and 560 microbiologically confirmed PTB
cases [see Appendix S1 in the supplemental material]). This rate is markedly lower than
a nationwide estimate of 68% based on primary public health institutions (1) but
represents the clinically diagnosed PTB rate in a referral hospital with experienced
specialists.

lncRNA microarray profiles and candidate selection. In the screening step,
microarray profiling identified a total of 325 lncRNAs that were differentially expressed
(287 upregulated and 38 downregulated) in the clinically diagnosed PTB patients versus
healthy subjects. Hierarchical clustering and a volcano plot revealed clearly distin-
guishable lncRNA expression profiles (Fig. S2). The top five lncRNA candidates were
chosen based on a set of combined criteria, including a fold change of �2 between
groups, a P value of �0.05, a signal intensity of �25 (26), and unreported lncRNAs
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in the TB literature (27). Three of these five lncRNAs were upregulated (n335265,
ENST00000518552, and TCONS_00013664) and two were downregulated (n333737
and ENST00000497872) in PTB versus control subjects (Table S3).

Differentially expressed lncRNAs in clinically diagnosed PTB cases. The expres-
sion levels of these five candidate lncRNAs were measured by qRT-PCR in the selection
cohort, which consisted of 141 clinically diagnosed PTB cases, 159 non-TB DCs, and 578
healthy subjects. Two lncRNAs (ENST00000518552 and TCONS_00013664) were excluded
from further analysis due to their low expression levels (Cq of �35) in this cohort. Of the
three remaining lncRNAs, ENST00000497872 and n333737 were downregulated and
n335265 was upregulated in PTB patients versus healthy subjects (Fig. S3). Comparison
of clinically diagnosed PTB cases and non-TB DC patients revealed decreased expres-
sion levels of ENST00000497872 and n333737 in PTB patients (Fig. S3) (age-adjusted P
values of �0.0001 for both).

Short-term stability, an essential prerequisite of a potential lncRNA biomarker, was
assessed in PBMC samples. This study found that incubation for up to 24 h had a
minimal effect on the expression of ENST00000497872, n333737, and n335265 (Table S4),
in accordance with a previous report of lncRNA stability in blood (28).

Diagnostic modeling and nomogram visualization. Fourteen features for eligible
suspected patients were used for modeling, including 11 EHR features and 3 lncRNAs.
Three logistic regression models, EHR�lncRNA, EHR only, and lncRNA only, were
evaluated as part of the training step in the selection cohort (Appendix S4). The VIF
between the features ranged from 1.02 to 1.29, indicating no collinearity within models.
The EHR�lncRNA model included six EHR features and three lncRNAs. The
EHR�lncRNA model yielded the highest AUC (0.92) for distinguishing clinically diag-
nosed PTB from suspected PTB patients, compared to AUCs of 0.87 and 0.82 for the
EHR-only and lncRNA-only models, respectively (Fig. 2A). The EHR�lncRNA model also

FIG 2 Receiver operating characteristic (ROC) curves of different models in predicting clinically diagnosed PTB from suspected patients. (A) ROC curves of the
selection cohort between clinically diagnosed PTB cases and non-TB disease controls. The 10-fold cross-validation ROC curve of the EHR�lncRNA model is
provided in Fig. S4 in the supplemental material. P values for model AUC comparisons in the selection cohort were 0.00012 (EHR�lncRNA versus EHR only),
1.402 � 10�7 (EHR�lncRNA versus lncRNA only), and 0.103 (EHR only versus lncRNA only). P values of �0.016 (0.05/3, i.e., alpha divided by the comparison
number) were considered statistically significant. (B) ROC curves of the validation cohort between clinically diagnosed PTB cases and non-TB disease controls.
P values for model AUC comparisons in the validation cohort were 0.004 (EHR�lncRNA versus EHR only), 0.0003 (EHR�lncRNA versus lncRNA only), and 0.361
(EHR only versus lncRNA only).
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had the best performance in sensitivity, specificity, accuracy, positive predictive value,
and negative predictive value (Table 2).

The optimal EHR�lncRNA model with nine features was displayed as a nomogram
(Fig. 3A), and the top five features of the nomogram were ENST00000497872, age,
n333737, calcification detected by computed tomography (CT calcification), and TB-
IGRA results (Table S5). The sensitivity and specificity of the nomogram for the
prediction of clinically diagnosed PTB were 0.89 (95% CI, 0.82 to 0.93) and 0.80 (95% CI,
0.73 to 0.85), respectively, at a cutoff of 0.37 (Table 2). A calibration curve in the
selection cohort (Fig. 3B) indicated good agreement between the nomogram predic-

TABLE 2 Performances of the comparative diagnostic models in the selection and validation cohortsa

Model

Value (95% CI)

Sensitivity Specificity Accuracy
Positive predictive
value

Negative predictive
value

Selection cohort
Clinically diagnosed PTB cases vs non-TB DCs

EHR�lncRNA (nomogram) 0.89 (0.82–0.93) 0.80 (0.73–0.85) 0.84 (0.80–0.88) 0.80 (0.73–0.85) 0.89 (0.83–0.93)
EHR only 0.89 (0.83–0.93) 0.62 (0.54–0.68) 0.75 (0.69–0.79) 0.67 (0.60–0.74) 0.87 (0.79–0.91)
lncRNA only 0.85 (0.76–0.88) 0.55 (0.46–0.61) 0.69 (0.63–0.74) 0.62 (0.55–0.69) 0.80 (0.72–0.86)

Validation cohort
Clinically diagnosed PTB cases vs non-TB DCs

EHR�lncRNA (nomogram) 0.86 (0.77–0.90) 0.82 (0.75–0.87) 0.84 (0.78–0.88) 0.77 (0.68–0.83) 0.89 (083–0.93)
EHR only 0.89 (0.82–0.94) 0.65 (0.56–0.72) 0.75 (0.69–0.81) 0.64 (0.56–0.72) 0.90 (0.83–0.94)
lncRNA only 0.85 (0.76–0.90) 0.54 (0.47–0.62) 0.67 (0.60–0.73) 0.56 (0.48–0.63) 0.83 (0.75–0.89)

Microbiologically confirmed PTB cases vs non-TB DCs
EHR�lncRNA (nomogram) 0.85 (0.81–0.88) 0.81 (0.76–0.85) 0.83 (0.80–0.86) 0.85 (0.81–0.89) 0.80 (0.75–0.84)
EHR only 0.86 (0.82–0.89) 0.63 (0.58–0.68) 0.76 (0.73–0.79) 0.75 (0.71–0.79) 0.77 (0.72–0.82)
lncRNA only 0.86 (0.82–0.89) 0.55 (0.50–0.61) 0.73 (0.69–0.76) 0.71 (0.67–0.75) 0.75 (0.69–0.81)

aNote that the cutoff probabilities in the selection cohort were 0.37 for the EHR�lncRNA model, 0.26 for the EHR-only model, and 0.32 for the lncRNA-only model.
Features in each model are provided in Appendix S4 in the supplemental material. The EHR�lncRNA formula that was developed to classify patients as PTB cases or
non-TB disease controls was �3.32 � 0.053 � (age) � 0.94 � log(ENST00000497872) � 0.39 � log(n333737) � 1.51 � (CT calcification) � 1.16 � (TB-IGRA) � 1.09 �
(low-grade fever) � 0.014 � (hemoglobin) � 0.23 � log(n335265) � 0.43 � (weight loss).

FIG 3 Nomogram for the prediction of clinically diagnosed PTB patients. (A) Nomogram to predict the risk of clinically diagnosed PTB patients, in which points
were assigned based on the feature rank order of the effect estimates. A vertical line is drawn between the “Points” axis and the corresponding point for each
feature to generate a total point score and PTB probability. (B) Calibration plot in the selection cohort (left) and validation cohort (right), with lines indicating
the ideal, apparent, and bias-corrected predictions of the nomogram. (C) Decision curve analysis for the nomogram and EHR-only model, with lines indicating
the nomogram, the EHR-only model, and assumptions that no patients or all patients have PTB.
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tion and actual PTB cases, which was confirmed by a nonsignificant Hosmer-Lemeshow
test (P value of 0.957). This nine-feature nomogram was generated as a free online app
(available at https://xuejiao.shinyapps.io/shiny/) to facilitate its access for other studies.
This app allows the user to insert the values of specific predictors and provides the risk
prediction as a whole-number percentage.

Validation for lncRNAs and the nomogram. In the validation step, the three
candidate lncRNAs were analyzed in 97 clinically diagnosed PTB cases, 140 non-TB DCs,
and 245 healthy subjects. This analysis showed an lncRNA expression pattern similar to
that observed in the selection cohort (Fig. S3). All three models were applied to
clinically diagnosed PTB patients and non-TB DCs of the validation cohort, and as
reported in Table 2 and Fig. 2, it was found that the nomogram achieved superior
discrimination (AUC, 0.89 [range, 0.84 to 0.93]) and good calibration (Fig. 3B) (P value
of 0.668 by the Hosmer-Lemeshow test) for clinically diagnosed PTB prediction. The
sensitivity and specificity of the nomogram at a cutoff of 0.37 in the validation cohort
were 0.86 (range, 0.77 to 0.90) and 0.82 (range, 0.75 to 0.87), respectively. DCA indicated
that the nomogram outperformed the conventional EHR-only model, with a higher
clinical net benefit within a threshold probability range from 0.2 to 1 (Fig. 3C).

We also validated the nomogram in microbiologically confirmed PTB and smear-
negative PTB patients. A total of 392 microbiologically confirmed PTB patients were
enrolled in the validation cohort, and 48.47% of these confirmed PTB patients were
smear-negative PTB cases (n �190). The nomogram had good discriminative power for
both microbiologically confirmed PTB (AUC of 0.90) and smear-negative PTB (AUC of
0.91) patients, similar to that observed for the prediction of clinically diagnosed PTB
patients (Table 2, Fig. S5 and S6, and Table S6).

lncRNA response to anti-TB treatment. lncRNAs were next analyzed for the ability
to predict anti-TB treatment response. Paired samples were collected from 22 clinically
diagnosed PTB patients before and after 2 months of intensive therapy (29), and the
expression levels of ENST00000497872, n333737, and n335265 were measured by qRT-
PCR. All these patients had a good response to therapy based on the clinical and
radiological findings, and ENST00000497872 and n333737 levels were significantly
increased posttreatment (P values of 0.005 and 0.0005, respectively) (Fig. 4), suggesting
that lncRNA expression increased in response to therapy.

FIG 4 Alteration of lncRNAs before and after 2 months of intensive therapy. Shown are lncRNA expression levels
before (blue) and after (red) a 2-month intensive anti-TB treatment regimen. Altered lncRNA expression levels were
calculated using log2 lncRNA (posttreatment expression/pretreatment expression) values, and the Wilcoxon
matched-paired rank test was used for comparisons among 22 paired samples. The median (interquartile range)
log2 lncRNA values are as follows: �1.91 (�2.74, �1.11) before and �1.55 (�2.61, �0.79) after treatment for
ENST00000497872, �3.88 (�4.81, �3.33) before and �2.30 (�2.99, �0.50) after treatment for n333737, and 2.12
(1.05, 2.34) before and 1.29 (0.85, 1.69) after treatment for n335265.

Hu et al. Journal of Clinical Microbiology

July 2020 Volume 58 Issue 7 e01973-19 jcm.asm.org 8

https://xuejiao.shinyapps.io/shiny/
https://jcm.asm.org


DISCUSSION

The present work focused on the challenge of accurately diagnosing PTB patients
without microbiological evidence of M. tuberculosis infection. To our knowledge, little
literature has interrogated the exact epidemiology and diagnostic models for this
subtype of PTB. We first developed and validated a novel nomogram incorporating
lncRNA signatures and conventional EHR features, which can effectively discriminate
clinically diagnosed PTB patients from patients with suspected diseases.

We found that three lncRNAs (ENST00000497872, n333737, and n335265) were
potential biomarkers for clinically diagnosed PTB patients. The addition of three
lncRNAs (ENST00000497872, n333737, and n335265) to a conventional EHR model
improved its ability to identify PTB cases from suspected TB cases, with the AUCs
increasing from 0.83 to 0.89. Two lncRNAs were close to immune-related genes:
ENST00000497872 (chromosome 14 [chr14], positions 105703964 to 105704602) is
located close to IGHA1 (chr14, positions 105703995 to 105708665), and n333737 (chr14,
positions 21712368 to 21712835) overlaps the TRAV12-2 gene (chr14, positions
21712321 to 21712843). Consistent with previously reported lncRNA data (8–12, 30),
these data provide new clues that lncRNAs may participate in TB immunoregulation
and serve as promising biomarkers for TB diagnosis.

In addition to the three lncRNAs, we identified six EHR predictors (age, CT calcifi-
cation, positive TB-IGRA, low-grade fever, elevated hemoglobin, and weight loss) that
were essential in TB case finding, as proposed by previous studies (15, 16). Age was an
important negative predictor for clinically diagnosed PTB, which appears to conflict
with the consensus that advanced age correlates with higher TB susceptibility (31). This
may be explained by differences in the enrollment of the PTB patients and control
subjects. Previous studies included healthy and/or vulnerable subjects as controls,
while we enrolled inpatients with a wide range of pulmonary diseases and of older ages
as disease controls.

This study serves as a first proof-of-concept study to show that integrating lncRNA
signatures and EHR data could be a more promising diagnostic approach for PTB
patients with negative microbiological evidence of TB. The EHR�lncRNA model had
good discrimination (through AUC and diagnostic parameters), reliable calibration (via
a calibration curve and a Hosmer-Lemeshow test), and potential clinical utility for
decision-making (using DCA). Compared with the EHR-only model, the EHR�lncRNA
model shows a similar sensitivity and a significantly higher specificity in both clinically
diagnosed PTB and microbiologically confirmed PTB patients, which may perform
better as a “rule-in” test (32) and offer clinician confidence in a TB diagnosis and anti-TB
treatment plan. In addition, the EHR�lncRNA model avoided some common problems
associated with sputum-based features, such as poor sputum quality or problematic
sampling (33), to improve its reliability and clinical utility.

Nomograms have been shown to remarkably promote the early diagnosis of intes-
tinal tuberculosis (24) and prognosis prediction in PTB (34) and TBM (35). The
EHR�lncRNA model here was visualized as a nomogram and further implemented in an
app. The online nomogram uses readily obtainable predictors and automatically out-
puts a personalized quantitative risk estimate for PTB. The utilization of this user-
friendly tool may speed up confirmation of a TB diagnosis, especially in resource-
constrained areas with a high TB prevalence.

Our study has several limitations. Modeling in this study was conducted based on
data from a single large hospital, and multicenter validation studies are needed.
Furthermore, this nomogram relies on tests, including lncRNA detection and TB-IGRA,
that may not be available in most community hospitals; however, the TB-IGRA and the
lncRNA assay are both blood tests and can therefore be sent to a centralized facility for
testing, reducing the need for specialized laboratory testing in community hospitals.

In summary, a novel nomogram that we developed and validated in this study that
incorporates three lncRNAs and six EHR fields may be a useful predictive tool in
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identifying PTB patients with negative microbiological evidence of TB and merits
further investigation.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.8 MB.
SUPPLEMENTAL FILE 2, PDF file, 4.2 MB.
SUPPLEMENTAL FILE 3, PDF file, 0.5 MB.

ACKNOWLEDGMENTS
We thank Yi Zhang from Gminix (Shanghai, China) for assistance with bioinformatic

analyses.
Xuejiao Hu, Zhaolei Zhang, and Binwu Ying developed the concept and experimen-

tal design; Xuejiao Hu, Hao Bai, Yi Zhou, Juan Zhou, Lin Jiao, Lijuan Wu, and Minjin
Wang enrolled patients and performed the experiments; Xuejiao Hu, Shun Liao, and
Shubham Gupta developed and validated the diagnostic models; Xuerong Chen,
Yanhong Zhou, Xiaojun Lu, and Tony Y. Hu provided expert advice and support; and all
authors contributed to writing or revising the manuscript, provided intellectual input,
and gave final approval.

We declare no competing interests. This work was supported by the National
Natural Science Foundation of China (81672095) and the Natural Science and Engi-
neering Council of Canada (RGPIN-2017-06743).

REFERENCES
1. World Health Organization. 2018. Global tuberculosis report 2018, 23rd

ed. World Health Organization, Geneva, Switzerland.
2. National Health and Family Planning Commission. 2017. Pulmonary

tuberculosis diagnostic criteria WS288-2017. National Health and Family
Planning Commission, Beijing, People’s Republic of China. (In Chinese.)

3. Gao M. 2018. Interpretation of clinical diagnosed pulmonary tuberculo-
sis case in new national diagnostic standard on pulmonary tuberculosis.
Chin J Antituberc 40:243–246.

4. Getahun H, Harrington M, O’Brien R, Nunn P. 2007. Diagnosis of smear-
negative pulmonary tuberculosis in people with HIV infection or AIDS in
resource-constrained settings: informing urgent policy changes. Lancet
369:2042–2049. https://doi.org/10.1016/S0140-6736(07)60284-0.

5. Tostmann A, Kik SV, Kalisvaart NA, Sebek MM, Verver S, Boeree MJ, van
Soolingen D. 2008. Tuberculosis transmission by patients with smear-
negative pulmonary tuberculosis in a large cohort in the Netherlands.
Clin Infect Dis 47:1135–1142. https://doi.org/10.1086/591974.

6. Haas CT, Roe JK, Pollara G, Mehta M, Noursadeghi M. 2016. Diagnostic
‘omics’ for active tuberculosis. BMC Med 14:37. https://doi.org/10.1186/
s12916-016-0583-9.

7. Walzl G, McNerney R, du Plessis N, Bates M, McHugh TD, Chegou NN,
Zumla A. 2018. Tuberculosis: advances and challenges in development
of new diagnostics and biomarkers. Lancet Infect Dis 18:e190 – e210.
https://doi.org/10.1016/S1473-3099(18)30111-7.

8. Wang Y, Zhong H, Xie X, Chen CY, Huang D, Shen L, Zhang H, Chen ZW,
Zeng G. 2015. Long noncoding RNA derived from CD244 signaling
epigenetically controls CD8� T-cell immune responses in tuberculosis
infection. Proc Natl Acad Sci U S A 112:E3883–E3892. https://doi.org/10
.1073/pnas.1501662112.

9. Zhang Q, Chao TC, Patil VS, Qin Y, Tiwari SK, Chiou J, Dobin A, Tsai
CM, Li Z, Dang J, Gupta S, Urdahl K, Nizet V, Gingeras TR, Gaulton KJ,
Rana TM. 2019. The long noncoding RNA ROCKI regulates inflamma-
tory gene expression. EMBO J 38:e100041. https://doi.org/10.15252/
embj.2018100041.

10. Yi Z, Li J, Gao K, Fu Y. 2014. Identifcation [sic] of differentially expressed
long non-coding RNAs in CD4� T cells response to latent tuberculosis
infection. J Infect 69:558 –568. https://doi.org/10.1016/j.jinf.2014.06.016.

11. He J, Ou Q, Liu C, Shi L, Zhao C, Xu Y, Kong SK, Loo JFC, Li B, Gu D. 2017.
Differential expression of long non-coding RNAs in patients with tuber-
culosis infection. Tuberculosis (Edinb) 107:73–79. https://doi.org/10.1016/j
.tube.2017.08.007.

12. Yan H, Xu R, Zhang X, Wang Q, Pang J, Zhang X, Chang X, Zhang Y. 2018.

Identifying differentially expressed long non-coding RNAs in PBMCs in
response to the infection of multidrug-resistant tuberculosis. Infect Drug
Resist 11:945–959. https://doi.org/10.2147/IDR.S154255.

13. Griesel R, Stewart A, van der Plas H, Sikhondze W, Rangaka MX, Nicol MP,
Kengne AP, Mendelson M, Maartens G. 2018. Optimizing tuberculosis
diagnosis in human immunodeficiency virus-infected inpatients meeting
the criteria of seriously ill in the World Health Organization algorithm.
Clin Infect Dis 66:1419 –1426. https://doi.org/10.1093/cid/cix988.

14. Martinez L, Handel A, Shen Y, Chakraburty S, Quinn FD, Stein CM, Malone
LL, Zalwango S, Whalen CC. 2018. A prospective validation of a clinical
algorithm to detect tuberculosis in child contacts. Am J Respir Crit Care
Med 197:1214 –1216. https://doi.org/10.1164/rccm.201706-1210LE.

15. Siddiqi K, Lambert M-L, Walley J. 2003. Clinical diagnosis of smear-
negative pulmonary tuberculosis in low-income countries: the current
evidence. Lancet Infect Dis 3:288 –296. https://doi.org/10.1016/S1473
-3099(03)00609-1.

16. Pinto LM, Pai M, Dheda K, Schwartzman K, Menzies D, Steingart KR. 2013.
Scoring systems using chest radiographic features for the diagnosis of
pulmonary tuberculosis in adults: a systematic review. Eur Respir J
42:480 – 494. https://doi.org/10.1183/09031936.00107412.

17. Taneja I, Reddy B, Damhorst G, Zhao SD, Hassan U, Price Z, Jensen T,
Ghonge T, Patel M, Wachspress S, Winter J, Rappleye M, Smith G, Healey
R, Ajmal M, Khan M, Patel J, Rawal H, Sarwar R, Soni S, Anwaruddin S,
Davis B, Kumar J, White K, Bashir R, Zhu R. 2017. Combining biomarkers
with EMR data to identify patients in different phases of sepsis. Sci Rep
7:10800. https://doi.org/10.1038/s41598-017-09766-1.

18. Li J, Pan C, Zhang S, Spin JM, Deng A, Leung LLK, Dalman RL, Tsao PS,
Snyder M. 2018. Decoding the genomics of abdominal aortic aneurysm.
Cell 174:1361–1372.e10. https://doi.org/10.1016/j.cell.2018.07.021.

19. Hu X, Liao S, Bai H, Wu L, Wang M, Wu Q, Zhou J, Jiao L, Chen X, Zhou Y,
Lu X, Ying B, Zhang Z, Li W. 2019. Integrating exosomal microRNAs and
electronic health data improved tuberculosis diagnosis. EBioMedicine 40:
564–573. https://doi.org/10.1016/j.ebiom.2019.01.023.

20. Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, Jiang Z, Xu J, Liu Q, Cao X. 2014.
The STAT3-binding long noncoding RNA lnc-DC controls human den-
dritic cell differentiation. Science 344:310 –313. https://doi.org/10.1126/
science.1251456.

21. Tang XR, Li YQ, Liang SB, Jiang W, Liu F, Ge WX, Tang LL, Mao YP, He QM,
Yang XJ, Zhang Y, Wen X, Zhang J, Wang YQ, Zhang PP, Sun Y, Yun JP,
Zeng J, Li L, Liu LZ, Liu N, Ma J. 2018. Development and validation of a
gene expression-based signature to predict distant metastasis in locore-

Hu et al. Journal of Clinical Microbiology

July 2020 Volume 58 Issue 7 e01973-19 jcm.asm.org 10

https://doi.org/10.1016/S0140-6736(07)60284-0
https://doi.org/10.1086/591974
https://doi.org/10.1186/s12916-016-0583-9
https://doi.org/10.1186/s12916-016-0583-9
https://doi.org/10.1016/S1473-3099(18)30111-7
https://doi.org/10.1073/pnas.1501662112
https://doi.org/10.1073/pnas.1501662112
https://doi.org/10.15252/embj.2018100041
https://doi.org/10.15252/embj.2018100041
https://doi.org/10.1016/j.jinf.2014.06.016
https://doi.org/10.1016/j.tube.2017.08.007
https://doi.org/10.1016/j.tube.2017.08.007
https://doi.org/10.2147/IDR.S154255
https://doi.org/10.1093/cid/cix988
https://doi.org/10.1164/rccm.201706-1210LE
https://doi.org/10.1016/S1473-3099(03)00609-1
https://doi.org/10.1016/S1473-3099(03)00609-1
https://doi.org/10.1183/09031936.00107412
https://doi.org/10.1038/s41598-017-09766-1
https://doi.org/10.1016/j.cell.2018.07.021
https://doi.org/10.1016/j.ebiom.2019.01.023
https://doi.org/10.1126/science.1251456
https://doi.org/10.1126/science.1251456
https://jcm.asm.org


gionally advanced nasopharyngeal carcinoma: a retrospective, multicen-
tre, cohort study. Lancet Oncol 19:382–393. https://doi.org/10.1016/
S1470-2045(18)30080-9.

22. Mavridis K, Stravodimos K, Scorilas A. 2013. Downregulation and prog-
nostic performance of microRNA 224 expression in prostate cancer. Clin
Chem 59:261–269. https://doi.org/10.1373/clinchem.2012.191502.

23. Hosmer DW, Jovanovic B, Lemeshow S. 1989. Best subsets logistic regres-
sion. Biometrics 45:1265–1270. https://doi.org/10.2307/2531779.

24. He Y, Zhu Z, Chen Y, Chen F, Wang Y, Ouyang C, Yang H, Huang M,
Zhuang X, Mao R, Ben-Horin S, Wu X, Ouyang Q, Qian J, Lu N, Hu P, Chen
M. 2019. Development and validation of a novel diagnostic nomogram
to differentiate between intestinal tuberculosis and Crohn’s disease: a
6-year prospective multicenter study. Am J Gastroenterol 114:490 – 499.
https://doi.org/10.14309/ajg.0000000000000064.

25. Allotey J, Fernandez-Felix BM, Zamora J, Moss N, Bagary M, Kelso A, Khan
R, van der Post JAM, Mol BW, Pirie AM, McCorry D, Khan KS, Thangara-
tinam S. 2019. Predicting seizures in pregnant women with epilepsy:
development and external validation of a prognostic model. PLoS Med
16:e1002802. https://doi.org/10.1371/journal.pmed.1002802.

26. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-
Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW,
Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella
RL, Nelson PS, Martin DB, Tewari M. 2008. Circulating microRNAs as
stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A
105:10513–10518. https://doi.org/10.1073/pnas.0804549105.

27. MacLean E, Broger T, Yerlikaya S, Fernandez-Carballo BL, Pai M, Den-
kinger CM. 2019. A systematic review of biomarkers to detect active
tuberculosis. Nat Microbiol 4:748 –758. https://doi.org/10.1038/s41564
-019-0380-2.

28. Zhang K, Shi H, Xi H, Wu X, Cui J, Gao Y, Liang W, Hu C, Liu Y, Li J, Wang
N, Wei B, Chen L. 2017. Genome-wide lncRNA microarray profiling
identifies novel circulating lncRNAs for detection of gastric cancer.
Theranostics 7:213–227. https://doi.org/10.7150/thno.16044.

29. Jacobson KR. 2017. Tuberculosis. Ann Intern Med 166:ITC17–ITC32.
https://doi.org/10.7326/AITC201702070.

30. Chen YG, Satpathy AT, Chang HY. 2017. Gene regulation in the immune
system by long noncoding RNAs. Nat Immunol 18:962–972. https://doi
.org/10.1038/ni.3771.

31. Thomas TY, Rajagopalan S. 2001. Tuberculosis and aging: a global
health problem. Clin Infect Dis 33:1034 –1039. https://doi.org/10
.1086/322671.

32. Florkowski CM. 2008. Sensitivity, specificity, receiver-operating charac-
teristic (ROC) curves and likelihood ratios: communicating the perfor-
mance of diagnostic tests. Clin Biochem Rev 29(Suppl 1):S83–S87.

33. Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J,
Urbanczik R, Perkins MD, Aziz MA, Pai M. 2006. Sputum processing methods
to improve the sensitivity of smear microscopy for tuberculosis: a sys-
tematic review. Lancet Infect Dis 6:664 – 674. https://doi.org/10.1016/
S1473-3099(06)70602-8.

34. Costa-Veiga A, Briz T, Nunes C. 2018. Unsuccessful treatment in pulmo-
nary tuberculosis: factors and a consequent predictive model. Eur J
Public Health 28:352–358. https://doi.org/10.1093/eurpub/ckx136.

35. Thao LTP, Heemskerk AD, Geskus RB, Mai NTH, Ha DTM, Chau TTH, Phu
NH, Chau NVV, Caws M, Lan NH, Thu DDA, Thuong NTT, Day J, Farrar JJ,
Torok ME, Bang ND, Thwaites GE, Wolbers M. 2018. Prognostic models
for 9-month mortality in tuberculous meningitis. Clin Infect Dis 66:
523–532. https://doi.org/10.1093/cid/cix849.

lncRNA-Based Nomogram To Assist Tuberculosis Diagnosis Journal of Clinical Microbiology

July 2020 Volume 58 Issue 7 e01973-19 jcm.asm.org 11

https://doi.org/10.1016/S1470-2045(18)30080-9
https://doi.org/10.1016/S1470-2045(18)30080-9
https://doi.org/10.1373/clinchem.2012.191502
https://doi.org/10.2307/2531779
https://doi.org/10.14309/ajg.0000000000000064
https://doi.org/10.1371/journal.pmed.1002802
https://doi.org/10.1073/pnas.0804549105
https://doi.org/10.1038/s41564-019-0380-2
https://doi.org/10.1038/s41564-019-0380-2
https://doi.org/10.7150/thno.16044
https://doi.org/10.7326/AITC201702070
https://doi.org/10.1038/ni.3771
https://doi.org/10.1038/ni.3771
https://doi.org/10.1086/322671
https://doi.org/10.1086/322671
https://doi.org/10.1016/S1473-3099(06)70602-8
https://doi.org/10.1016/S1473-3099(06)70602-8
https://doi.org/10.1093/eurpub/ckx136
https://doi.org/10.1093/cid/cix849
https://jcm.asm.org

	MATERIALS AND METHODS
	Study design. 
	Subject enrollment. 
	lncRNA detection. 
	Modeling. 
	Statistical analysis. 
	Data availability. 

	RESULTS
	Characteristics of prospectively enrolled participants. 
	lncRNA microarray profiles and candidate selection. 
	Differentially expressed lncRNAs in clinically diagnosed PTB cases. 
	Diagnostic modeling and nomogram visualization. 
	Validation for lncRNAs and the nomogram. 
	lncRNA response to anti-TB treatment. 

	DISCUSSION
	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

