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Collective influencers in protein 
interaction networks
T. A. Boltz1, P. Devkota1 & Stefan Wuchty1,2,3,4

Recent research increasingly shows the relevance of network based approaches for our understanding 
of biological systems. Analyzing human protein interaction networks, we determined collective 
influencers (CI), defined as network nodes that damage the integrity of the underlying networks to 
the utmost degree. We found that CI proteins were enriched with essential, regulatory, signaling 
and disease genes as well as drug targets, indicating their biological significance. Also by focusing on 
different organisms, we found that CI proteins had a penchant to be evolutionarily conserved as CI 
proteins, indicating the fundamental role that collective influencers in protein interaction networks 
plays for our understanding of regulation, diseases and evolution.

Research over the last decades increasingly shows the relevance of network based approaches for our under-
standing of biological systems. Generally, the importance of a protein in an interaction network is frequently 
considered a question of the number of interactions a given protein is involved in. Traditionally, hub genes with 
a large number of interactions are mostly considered important as they are enriched with essential genes1 and 
make a network more vulnerable upon their removal2. Such nodes frequently occupy central positions in a net-
work as they connect different network modules. Labeled as bottlenecks3, such centrally placed proteins are also 
involved in a rising number of protein complexes4, suggesting that their essentiality is a consequence of their 
complex involvement5,6. Viruses and parasites target central proteins to seize control of a host cell7,8 while such 
proteins play a decisive role in different diseases9–14. As a corollary, proteins in a central network position can 
serve as a basis for the determination of disease genes, biomarkers15–17 and indicate points of therapeutic inter-
vention18,19. However, inhibition of bottleneck nodes often compromises network integrity, and hubs frequently 
do not play a role in adult diseases, as such genes turn out to be embryonically lethal11–13. Therefore, the focus of 
network research shifted to the identification of influential nodes, indicating the significance of less connected 
proteins20,21. Recently, Morone and Makse22 introduced an optimization method to determine an optimized set of 
nodes termed collective influencers (CI). Such nodes were obtained via optimal percolation theory through the 
investigation of their propensity to damage the underlying network, strongly emphasizing the role of weakly con-
nected nodes. Wondering if collective influencers in protein-protein interaction network carry biological signif-
icance, we expected that collective protein influencers were enriched with e.g. disease or essential genes. Within 
the human interactome, CI proteins were indeed enriched with essential, regulatory, signaling and disease genes 
as well as drug targets, strongly suggesting that such well-defined protein groups have significance. Furthermore, 
we found that CI proteins were evolutionarily conserved as CI proteins in evolutionarily conserved networks in 
different organisms.

Results
In a protein interaction network, a set of collective influencers (CI) is defined as the minimum set of nodes 
that, upon deletion, destroy the largest connected component of the underlying network22. We determined such 
collective influencers in human protein-protein interaction networks as of the HINT database23 by applying a 
recursive algorithm (see Materials and Methods). Calculating a score for each protein that reflects its propensity 
to damage the underlying largest connected component, proteins with the largest score were removed in each 
step. The procedure stopped when the largest connected component disappeared, providing a list of removed 
nodes as collective influencers (CI). While we considered them in combination, we separately accounted for 
binary and co-complex interactions as well (see Materials and Methods). The table in Fig. 1a indicates that the 
corresponding CI sets of human interaction networks involved less than 30% of all proteins. In Supplementary 
Fig. 1, we observed that CI proteins on average had a higher mean degree than their non-CI counterparts in 
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all networks. On a more fine-grained level, Fig. 1a also indicates that the degree distribution of CI proteins in 
the combined network featured a significantly large number of less connected nodes, a result that holds for the 
remaining networks as well (Supplementary Fig. 2). Furthermore, we defined a set of the 20% of proteins with the 
highest betweenness centrality as bottleneck nodes. Randomizing such sets, we observed that bottleneck nodes 
appeared enriched among CI proteins in all networks (Supplementary Fig. 3). To gain an insight into the place-
ment of CI proteins we counted the number of interactions between pairs of (non-)CI proteins. Randomizing the 
set of CI proteins, we observed that CIs preferably interacted with each other, while we found the opposite when 
we considered non-CI proteins in all networks (Fig. 1b). Such an observation suggests that CI proteins may form 
a large connected component. Randomizing the set of 4,651 CI proteins in the combined network, we found 
that the largest connected component was significantly composed of 4,639 (99.7%) proteins (P < 10−6, Fig. 1c). 
Such results were corroborated when we considered giant components in the binary and co-complex networks 
(Supplementary Fig. 4).

To indicate biological significance of CI proteins in a human interaction network we hypothesized that such 
sets may be significantly enriched with proteins that govern biological functions. In Fig. 1d, we randomized a set 
of 2,708 human essential genes from the online gene essentiality database (OGEE)24 and the Database of Essential 
genes (DEG)25 and observed that CIs were strongly enriched with essential genes in all networks. Previously, 
essential genes were found to form large connected components in protein interaction networks26, prompting us 
to hypothesize that interactions between essential genes may be driven by CI proteins. Indeed, we observed that 
interactions between essential genes were enriched between CI proteins when we randomized sets of essential 
genes in all networks (Fig. 1e).

Assuming that CI proteins may significantly contribute to control processes, we hypothesized that transcrip-
tion factors may appear appreciably in CI sets. Furthermore, we surmised that the same logic applies to kinases. 
Utilizing a set of 501 kinases from the Kinome NetworkX database27, we observed that kinases were strongly 
enriched in CI sets, while we found no corresponding signal when we considered 1,471 manually curated tran-
scription factors28,29 in the combined network (inset, Fig. 1f). Such results were corroborated when we considered 

Figure 1.  Topological and functional characteristics of collective influencers (CI) in human protein interaction 
networks. (a) In the table we present statistics of human protein interaction networks and their corresponding 
CIs. In particular, we accounted for binary and co-complex interactions as well as a combined interaction data 
set. Notably, the frequency distribution of the degrees of (non-)CI proteins in the combined network indicated 
that CI proteins were involved in a higher number of interactions. Furthermore, we observed that CI proteins 
were also frequently low-degree proteins. (b) Randomizing the set of CIs, we determined the enrichment 
of interactions between (non-)CI proteins. We found that interactions between CI proteins were enriched 
and appeared depleted between non-CI proteins in all networks. (c) CI proteins in the combined network 
composed a giant connected component with 4,639 CI proteins (dashed line). Such a result was significant 
when we randomized sets of CI proteins and determined the distribution of the sizes of the giant components 
thus obtained (P < 10−6). In (d), we randomized essential human proteins and observed that CIs were strongly 
enriched with essential genes in all networks. (e) Considering interactions between essential genes, we found 
that such interactions preferably appeared between CI proteins. (f) While CIs were strongly enriched with 
kinases, we found no significant enrichment of CIs with transcription factors in the combined network (inset). 
Randomizing sets of CI proteins in the combined network, we found that links between transcription factors 
and their corresponding targets were enriched when transcription factors were CIs. We obtained a similar result 
using kinase-substrate interactions.
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the enrichment of kinases in the CI sets of binary and co-complex networks. However, transcription factors were 
significantly enriched in the set of CIs in the binary network, while we found the opposite in the co-complex 
network (Supplementary Fig. 5). As a corollary, we hypothesized that interactions between transcription factors 
and their targets, as well as interactions between kinases and their substrates, may be dominated by CI proteins. 
Randomizing CI proteins in the combined network, we indeed found that such links were enriched when tran-
scription factors and kinases and their targets and substrates were CIs (Fig. 1f). Such results were corroborated in 
the binary and co-complex network as well (Supplementary Fig. 6).

Other indications of biological relevance are recipients of post-translational modifications, suggesting 
that such modified proteins may be enriched with collective influencers. Utilizing sets of proteins that were 
methylated, acetylated or phosphorylated, we found that collective influencers were generally enriched with 
proteins with post-translational modifications in the combined (Fig. 2a) as well as binary and co-complex net-
works (Supplementary Fig. 7). Furthermore, we considered proteins involved in signaling functions that have 
no trans-membrane domains, and such proteins appeared enriched as well in the CI set in the combined net-
work (Fig. 2b). In turn, we observed the opposite when we considered receptor proteins with trans-membrane 
domains. Such results were corroborated in the binary and co-complex networks (Supplementary Fig. 8). In 
Fig. 2c we analyzed the role of protein steady state abundance in cell lines as a measure of translational regulation. 
In particular, we observed that CI proteins were strongly enriched with 81030 high copy number proteins in the 
combined network. Notably, the level of enrichments of 2,401 moderately and 1,977 low copy number proteins 
were significant as well but were steadily decreasing. Finally, 2,102 very low copy number proteins were depleted 
with CI proteins, results that held in the binary and co-complex networks as well (Supplementary Fig. 9).

Furthermore, we analyzed the role of CI proteins in diseases and drug development, assuming that CI proteins 
may drive the transition between healthy and disease conditions. Utilizing a set of genes that were annotated by 
the Sanger Center as causally implicated in oncogenesis31, we observed that CI proteins were enriched with such 
cancer genes in the combined network (Fig. 3a). To further substantiate our observations, we considered a differ-
ent set of 1,259 of onco- and tumor suppressor genes32 that were predicted as cancer-related and obtained similar 
results. As for viral infections, we utilized sets of proteins that were targeted by the HIV, Hepatitis C, Herpes and 
Influenza virus from the HPIDB database33. In all cases we found that CI proteins were enriched with viral targets 
(Fig. 3b). Focusing on disease genes more generally, we considered a set of 2,661 genes as of the HPO database34,35 
that carry disease-causing mutations. Specifically, such disease genes were significantly enriched in sets of CIs 
(Fig. 3c). Focusing on 11,002 disease genes that were identified from GWAS studies36 we surprisingly observed no 
relevant enrichments (Fig. 3c). As a corollary, we hypothesized that drug targets may preferably enriched with CI 
proteins as well. Investigating a set of 2,289 drug targets that were approved by the Food and Drug Administration 
(FDA)37, we observed that drug targets predominantly appeared in groups of CI proteins (Fig. 3d). Furthermore, 
we considered a set of 2,436 proteins deemed druggable given that they carry protein folds, which favor inter-
actions with chemical compounds. While we did not find any enrichment signals, we observed that CI proteins 
appeared diluted in a subset of 1,848 druggable genes that were not approved drug targets.

The observed biological relevance of CI proteins prompted us to hypothesize that the role of such proteins are 
conserved in evolution. In particular, we utilized orthologous groups of proteins as found in the OMA database38. 
In Fig. 4a, we determined the propensity of (non-)CI proteins in the human combined network to be evolu-
tionarily conserved in different organisms, including mouse, gorilla, zebrafish, fruit fly and yeast, by randomly 
sampling sets of collective influencers. Surprisingly, we observed that CIs were increasingly conserved in more 
evolutionarily distant organisms such as fruit fly and yeast. Considering the propensity of interacting pairs of 
interacting human (non-)CI proteins, we found that interacting pairs of CI proteins were preferably conserved 
while we found the opposite for interacting non-CI proteins (Supplementary Fig. 10). Still, our results slightly 
indicate that evolutionary signals were stronger when we considered more evolutionary distant organisms. At 
this point our considerations only accounted for evolutionary conservation of collective influencers if they had 

Figure 2.  Signaling genes and translational regulation of collective influencers (CI) in human protein 
interaction networks. (a) As for recipients of post-translational modifications, we observed that CIs were 
strongly enriched with methylation and acetylation targets in the combined network. While still significant, 
CIs were less enriched with phosphorylation targets. (b) While signaling proteins without membrane domains 
appeared strongly enriched with CIs, we found the opposite when we considered receptors that carried a trans-
membrane protein in the combined network. (c) As a measure of translational regulation, we found that CIs in 
the combined network were significantly enriched with high copy number proteins, while they were depleted 
with low copy number proteins.
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orthologs in other organisms, ignoring any network aspects of orthologs in other organisms. Therefore, we won-
dered if CI proteins may be preferably conserved as CI proteins in other organisms as well. Inferring networks of 
protein-protein interactions in other organisms, we considered an interaction to be conserved if the interacting 
proteins in the human combined network had orthologs in the underlying other organism. For example, we 
found 61,619 conserved interactions between 8,617 mouse proteins and 2,323 CIs in the inferred mouse specific 
protein interaction network. In Fig. 4b, we mapped human proteins to conserved CIs that we found in different 
organisms. Notably, the heatmap indicates that human CIs significantly overlapped with conserved CIs in closely 
related organisms, results that we found significant using Fisher’s exact test (P < 10−10).

Figure 3.  Collective influencers (CI) in the combined network were enriched with disease genes and drug 
targets. In (a) we determined the enrichment of cancer genes in sets of (non-)CI proteins. Using a compilation 
of census cancer genes and a set of onco- and tumor-suppressor genes, we found that such cancer genes 
strongly appeared enriched with CI proteins. (b) Similarly, we observed that various viruses preferably targeted 
CI proteins. (c) Utilizing disease gene information from genetic (HPO) sources, we found that CIs were 
significantly enriched with disease genes. In turn, no significant signal emerged when we considered genomic 
(GWAS) disease gene sources. (d) As a corollary, FDA approved drug targets were enriched with CIs while 
druggable genes appeared diluted with CIs.

Figure 4.  Evolutionary conservation of collective influencers (CI). In (a) we determined the propensity 
of (non-)CI proteins in the human combined network to be evolutionarily conserved in other organisms. 
Surprisingly, we observed that CIs were significantly more conserved in distant organisms. In (b) we mapped all 
human genes to evolutionarily conserved CIs in organism specific networks of interactions. Notably, human CIs 
were significantly enriched with CIs in other organisms (P < 10−10, Fisher’s exact test).
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Discussion
Here, we determined collective influencers (CI) in protein interaction networks that were defined as the subset of 
proteins that damaged the underlying network to the largest possible degree. The underlying model is based on 
optimal percolation of a network that also considers the influence on other nodes in the network that are a given 
shortest distance away from a removed node in question. As indicated in22 minimizing the number of removed 
nodes to optimally percolate the network is tractable only when nearest neighbors of removed nodes are consid-
ered. However, the optimization procedure becomes hard if nodes are considered that are further away. Generally, 
finding collective influencers has been classified as NP-hard39, prompting the application of a heuristic that is 
not guaranteed to find the exact solution. Furthermore, the underlying percolation model was largely based on 
the assumption of locally tree-like random graphs. Notably, protein-protein interaction webs do not fall into this 
class of networks, sugesting that the observed sets of collective influencers portray a rather rough approximation 
of the exact solution.

Despite these limitations, we still found that collective influencers in protein interaction networks carry 
enough biological weight to emphasize their biological and topological relevance. Generally, we observed that the 
source of the underlying network information did not play a discriminatory role when we considered topological 
characteristics of CI proteins. While such CI proteins were preferably highly connected, their degree distribution 
suggests that a fair amount of CI proteins are rather sparsely connected. Such an observation indicates that high 
local centrality alone is no sufficient criterion to be relevant for the integrity of the underlying network. In turn, 
the way to determine CIs considers the whole network, providing an optimal smallest set of strategically placed 
proteins. As a consequence, we also found that CI proteins were enriched with bottleneck proteins that had a high 
betweenness centrality, indicating a global measure of centrality. As another indicator of topological relevance, we 
observed that interactions preferably appeared between CI proteins, but were diluted between non-CI proteins. 
Such a result is probably rooted in the way CIs are determined as CIs occupy central positions that are crucial for 
the integrity of the network.

With such results that highlight the topological placement of CI proteins, the question remains if such char-
acteristics translate into a governing, biological role in the underlying networks. As CI proteins are crucial for 
the integrity of the underlying protein interaction networks, we confirmed our obvious hypothesis that CIs may 
be essential genes. As a corollary of our observation that essential genes significantly set up a large connected 
network component, the propensity of CI proteins to interact with each other was enforced when we considered 
essential CI proteins. In a similar vein, the central placement of CI proteins may support functional interactions 
that exert biological control. While CI proteins were strongly enriched with kinases, we did not find any signifi-
cant signals when we considered transcription factors. Such a result may be rooted in the fact that transcription 
factors are ubiquitous in terms of gene regulation, while kinases may tap their central topological position to 
collect and disseminate biological information. As a corollary of this hypothesis, we expected that the controlling 
(i.e. transcription factors, kinases) and controlled entity (i.e. target genes, substrates) were CI proteins. Indeed, 
we found that such interactions appeared most enriched when both transcription factors/kinases and targets/
substrates were CI proteins, while we found the opposite when we considered non-CI proteins. Given that the 
topological placement of CI nodes was heralded as crucial for spreading information in different non-biological 
networks22, a transcription factor or kinase that is a CI may have an advantage to efficiently disseminate signals 
through corresponding interactions. In turn, a signal that is mediated by the expression levels of a target gene 
or the phosphorylation of substrates may have stronger efficacy when distributed through the interactions of a 
CI protein. As a consequence, CIs may be considered a complement that allows transcription and phosphoryla-
tion events to efficiently control biological processes. To corroborate this point, we also found that methylation 
and acetylation targets, as well as proteins that appear in signaling pathways, were enriched with CI proteins. 
Assuming that CI proteins play a fundamental role in the dissemination of information, we further hypothesized 
that such proteins need to be highly abundant. Indeed, we found that CI proteins were enriched with highly abun-
dant proteins, a correlation that decreased with lower abundance.

In terms of network biology, mutations that cause diseases mediate their influence through the interactions 
of an afflicted protein11. As a consequence of this assumption, we hypothesized that CI proteins may be enriched 
with disease genes as the topological placement of CI proteins allows fast transmission of a perturbation. Indeed, 
we found that cancer genes, viral targets and disease genes that carry mutations were found enriched in the set of 
CI proteins, while they were diluted among non-CI proteins. Surprisingly, we did not find any significant results 
when we considered genomic disease gene sources from genome-wide association studies, most likely reflecting 
the fact that GWAS identify genomic regions but not specific disease causing genes21. As CI proteins tend to 
shape large connected components, such patterns resemble the propensity of disease genes to shape connected 
subnetworks11,40. Usually, topological properties such as hubs and modules are used to identify disease genes, 
suggesting that CI proteins may serve as a complementary framework for network medicine21. Furthermore, we 
corroborated the role of CI proteins as central to dissemination of cellular information in the transition from a 
disease to a healthy cellular state, when we found that drug targets were enriched with CI proteins. Surprisingly, 
druggable genes generally showed the opposite, suggesting that protein domain-folds that can interact with drugs 
alone are no good indicators of a potential drug target.

Finally, we investigated the evolutionary characteristics of CI proteins, observing that human CI proteins were 
enriched with orthologs in more distant organisms. Such an observation was surprising at first, as we expected 
that human CI proteins may be rather conserved in closely related organisms. In turn, however, conservation over 
long distances in the phylogenetic trees may require genes that prevailed in evolution under strong selective pres-
sure. Such an assumption may therefore indicate that such genes may have important functional and topological 
roles that are reflected by their presence of collective influencers in conserved topological network patterns. By 
constructing conserved interolog networks in different organisms that were inferred from a human interaction 
network, we observed that human CI proteins are preferably conserved as CI proteins in closely related organism 
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specific networks. Such an observation suggests that topological aspects of the underlying networks are preserved 
in evolution as well.

As a closing remark, the topological and biological characteristics of collective influencers are reminiscent of 
properties of protein sets in protein interaction network that constitute minimum dominating sets (MDSet)20,41. 
In particular, the investigation of MDSet proteins in protein interaction network emphasized the role of centrally 
placed and weakly connected nodes as well, suggesting similarities in the way collective influencers and MDSet 
proteins were determined. However, the determination of minimum dominating sets aimed at the determination 
of the smallest set of nodes in a network, securing that each node in the network is either participating in the 
MDSet or adjacent to a MDSet node. While collective influencers were selected as the smallest set of nodes to 
percolate a network, MDSet nodes are rather considered as topological controllers, as each node can easily be 
reached by nodes in the MDSet.

Materials and Methods
Protein-protein interactions.  We utilized a total of 168,292 high quality protein interactions between 
15,547 human proteins from the HINT database23. Furthermore, we accounted for 55,493 binary interac-
tions between 11,846 proteins and 121,564 co-complex interactions between 12,508 proteins from the HINT 
database23.

Determination of collective influencers.  The determination of collective influencers is based on optimal 
percolation, aiming at the determination of a minimum set of nodes that fragments the underlying network. In 
the follwing we briefly introduce the model (details of the underlying model can be found in22).

The collective influence theory for optimal percolation is based on the message passing equations of the per-
colation process. For a directed link from i to j →vi j represents the probability that node i belongs to the giant 
component G of a network with N nodes and M edges in the absence of node j that can be defined as 
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Therefore, a heuristic was applied that allows the minimization of the largest eigenvalue of  for a given  
through a greedy algorithm, approximating 
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The main idea of the heuristic is to remove the nodes that cause largest decrease of energy function 



nE ( ). In 
each step of the algorithm, the CI score for each node i in the largest connected compoenent of the underlying 
network was calculated by the above formula, where we define ∂ =Ball i( , 1) being the set of nodes that are 
connected to node i. After sorting proteins according to their CI score, nodes were removed with the highest 
score, and CI scores for all nodes in the remaining largest connected component were recalculated. The adaptive 
removal continued until the giant component was completely fragmented (i.e. G(q) = 0).

Betweenness centrality.  As a global measure of its centrality, we calculated node betweenness, indicating 
a node’s appearance in shortest paths through the whole network. In particular, we defined betweenness centrality 
cB of a node v as σ σ= ∑ ≠ ≠ ∈c v( )/B s t v V st st, where σst was the number of shortest paths between proteins s and t. 
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Furthermore, σ v( )st  was the number of shortest paths running through v. Based on this measure, we defined a set 
of bottleneck proteins as the top 20% of proteins with the highest betweenness.

Functional sets of genes.  We collected 2,708 human essential genes from the online gene essentiality data-
base (OGEE)24 and the Database of Essential genes (DEG)25.

As for human transcription factors and kinases, we used a set of 1,471 manually curated sequence-specific 
DNA-binding transcription factors28,29 and 501 genes from the Kinome NetworkX database27 that collects kinase 
information from the literature and other databases. Furthermore, this database provided 7,346 interactions 
between 357 kinases and 2,181 substrates. We collected 95,722 links between 209 human transcription factor and 
8,910 human genes from the TRANSFAC42 database as provided by mSigDB43.

As for post-translational modifications (PTMs), we used 17,511 phosphorylated proteins, 6,928 acetylated 
proteins and 5,418 methylated proteins from the PhosphoSitePlus database44.

As for signaling genes, we used 4,408 genes that were annotated with a signaling function without recep-
tor domain function from Gene Ontology (GO)45 as well as 5,701 genes that carried a trans-membrane protein 
domain46.

Furthermore, we utilized a set of protein abundances30 in human cell lines. In particular, we accounted for 
810 highly (>100,000 copies), 2,401 moderately (5000–100,000), 1,977 lowly (500–5000) and 2,102 very lowly 
abundant proteins (<500).

Disease genes and drug targets.  As representative sets of cancer genes, we used 568 genes that were 
annotated by the Sanger Center as causally implicated in oncogenesis31 and 1,259 onco- and tumor suppressor 
genes that were predicted as cancer-related32. As for viral infections, we obtained 988 human proteins that were 
targeted by the Hepatitis C virus, as well as 2,157 targets of the Herpes simplex virus, 872 targets of HIV-1 and 
2,358 targets of the Influenza A virus from the HPIDB database33.

As for disease genes, we utilized 2,661 genes that were identified as causal for a disease as of the human pheno-
type ontology database (HPO)34 based on the Online Mendelian Inheritance in Man (OMIM) database35, as well 
as 11,002 disease genes that were identified from GWAS studies36.

As for drug targets, we collected a set of 2,289 drug targets that were approved by the Food and Drug 
Administration (FDA) as of the DrugBank database37 as well as 2,436 genes that were annotated as druggable47.

Orthologous proteins.  As a source of orthologous protein information, we utilized the OMA database that 
obtains ortholog groups from pairwise orthology inference and hierarchical orthologous group clustering38. In 
particular, we utilized 7,979 proteins in M. musculus that had orthologs to human genes in the underlying protein 
interaction network, 7,722 in B. taurus, 7,474 in C. familiaris, 7,697 in G. gorilla, 6,423 in S. scrofa, 5,990 in D. 
rerio, 5,874 in G. gallus, 5,051 in X. tropicalis, 1,717 in C. elegans, 1,427 in A. thaliana, 218 in E. coli, 2,499 in D. 
melanogaster and 893 in S. cerevisiae.

Virus-host interactions.  Collecting data from the HPIDB database, we obtained 988 human proteins that 
were targeted by the Hepatitis C virus, as well as 2,157 targets of the Herpes simplex virus, 872 targets of HIV-1 
and 2,358 targets of the Influenza A virus33.

Enrichment analysis.  Binning proteins with a certain characteristic d (e.g. viral target) we calculated the 
fraction of proteins that had a feature i (e.g. bottleneck protein) in each group d, fi(d). As a null model we ran-
domly sampled protein sets with feature i of the same size 10,000 times and calculated the corresponding random 
fraction, fi,r (d). The enrichment/depletion of proteins with feature i in a group d was then defined as 

= ( )E d lg f d f d( ) ( )/ ( )i i i r2 , . After averaging Ei over 10,000 randomizations, Ed > 0 pointed to an enrichment and 
vice versa, while Ei ~ 0 indicated a random process48.
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