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Data sharing is challenging but important for healthcare research. Methods for privacy-preserving data dissemination based on
the rigorous differential privacy standard have been developed but they did not consider the characteristics of biomedical data
and make full use of the available information. This often results in too much noise in the final outputs. We hypothesized that
this situation can be alleviated by leveraging a small portion of open-consented data to improve utility without sacrificing privacy.
We developed a hybrid privacy-preserving differentially private support vector machine (SVM) model that uses public data and
private data together. Our model leverages the RBF kernel and can handle nonlinearly separable cases. Experiments showed that
this approach outperforms two baselines: (1) SVMs that only use public data, and (2) differentially private SVMs that are built from
private data. Our method demonstrated very close performance metrics compared to nonprivate SVMs trained on the private data.

1. Introduction

Data sharing is important for accelerating scientific discov-
eries, especially when there are not enough local samples to
test a hypothesis [1, 2]. However, medical data are sensitive
as they essentially contain personal information and can
reveal much about ethnicity, disease risk [3], and even family
surnames [4]. To promote data sharing, it is important
to develop privacy-preserving algorithms that respect data
confidentiality and present data utility [5], especially when
one wants to leverage cloud computing [6].

Privacy preserving data analysis and publishing [7, 8]
have received considerable attention in recent years as a
promising approach for sharing informationwhile preserving
data privacy. Differential privacy [9–11] has recently emerged
as one of the strongest privacy guarantees for statistical
data release [12–17]. A statistical aggregation or computa-
tion is DP (we shorten differentially private to DP) if the
outcome is formally indistinguishable when run with and
without any particular record in the dataset. The level of
indistinguishability is quantified as a privacy parameter 𝜖.
A common mechanism to achieve differential privacy is the
Laplace mechanism [18] which injects calibrated noise to a
statistical measure determined by the privacy parameter 𝜖

and the sensitivity of the statistical measure influenced by
the inclusion and exclusion of a record in the dataset. A
lower privacy parameter requires larger noise to be added and
provides a higher level of privacy.

General purpose algorithms for privacy protection (e.g.,
[19, 20]) often introduce too much perturbation error, which
renders the resulting information useless for healthcare
research. Our contribution is to leverage a small portion of
open-consented data to maximally explore information that
resides in the private data through a hybrid framework.
Figure 1 shows an example of an environment in this case.We
recently published differentially private distributed logistic
regression using public and private biomedical datasets [21],
which demonstrated advantages over pure private or public
models. However, logistic regression is a generalized linear
model, which has limited flexibility in classifying complex
patterns. In this paper, we sought to extend our previous
effort to themore powerful, RBF-kernel based support vector
machines.

The remainder of the paper is organized as follows.
Section 2 reviews background knowledge of differential pri-
vacy and SVM and RBF kernel. Section 3 describes the
framework and details for our hybrid SVM mechanism.
Then, Section 4 contains an extensive set of experimental
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Figure 1: Biomedicine data sharing system. A small amount of public data and a large amount of private data are available for different data
providers. A privacy preserving support vector machine can leverage both public and private data to maximize the classification accuracy
under differential privacy. Then users can classify their test data via the released privacy preserving classifier.

evaluations. Finally, Section 5 concludes the paper with con-
clusions, limitations, and directions for future work.

2. Related Work

Rubinstein et al. [22] propose a private kernel SVM algo-
rithm (shortened as PrivateSVM) which only works for a
translation-invariant kernel 𝑔(Δ). The method approximates
the original infinite feature space Ω of 𝑔(Δ) with a finite
feature space Ω̃ using the Fourier transform 𝑝(𝜔) of 𝑔(Δ).
Then add the noise to the weight parameters in the primal
form based on the new space Ω̃. One weakness is that the
parameters used to construct Ω̃ are randomly generated
from 𝑝(𝜔) which degrades the approximation accuracy of
Ω̃ to Ω. Another problem is that the utility bounds use
the same regularization parameter value to compare the
private and nonprivate classifiers.They take no consideration
into the change of regularization parameter incurred by
privacy constraints. Chaudhuri et al. [23] investigated a
general mechanism, namely, DPERM, to produce private
approximations of classifiers by regularized empirical risk
minimization (ERM) with good perturbation error. Akin to
PrivateSVM, DPERM requires that the underlying kernel
is translation invariant. In this paper, we will compare our
method to the PrivateSVM algorithm, since DPERM has
comparable performance with PrivateSVM.

3. Preliminary

Consider an original dataset 𝐷 = {(x
𝑖
, 𝑦
𝑖
) | 𝑖 ∈ 𝑍

+
, 1 ≤

𝑖 ≤ 𝑛} that contains a small portion of public data 𝐷public

and a large part of private data 𝐷private. Our goal is to release
a differentially private support vector machine using both
public and private data. In this section, we first introduce
the definition of differential privacy; then, we give a brief
overview of SVM and RBF kernel.

3.1. Differential Privacy. Differential privacy has emerged as
one of the strongest privacy definitions for statistical data
release. It guarantees that if an adversary knows complete
information of all the tuples in 𝐷 except one, the output
of a differentially private randomized algorithm should not
give the adversary toomuch additional information about the
remaining tuples.We say that datasets𝐷 and𝐷 differ in only
one tuple if we can obtain 𝐷 by removing or adding only
one tuple from 𝐷. A formal definition of differential privacy
is given as follows.

Definition 1 (𝜖-differential privacy [18]). LetA be a random-
ized algorithm over two datasets 𝐷 and 𝐷 differing in only
one tuple, and let O be any arbitrary set of possible outputs f
A. Algorithm A satisfies 𝜖-differential privacy if and only if
the following holds:

Pr [A (𝐷) ∈ O] ≤ 𝑒𝜖Pr [A (𝐷) ∈ O] . (1)

Intuitively, differential privacy ensures that the released
output distribution ofA remains nearly the same whether or
not an individual tuple is in the dataset.

A common mechanism to achieve differential privacy is
the Laplace mechanism [18] that adds a small amount of
independent noise to the output of a numeric function 𝑓 to
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Figure 2: Detailed framework of our hybrid SVM.

fulfill 𝜖-differential privacy of releasing 𝑓, where the noise is
drawn from Laplace distribution with a probability density
function Pr[𝜂 = 𝑥] = (1/2𝑏)𝑒−|𝑥|/𝑏. A Laplace noise has a
variance 2𝑏2 with a magnitude of 𝑏. The magnitude 𝑏 of the
noise depends on the concept of sensitivity which is defined
as follows.

Definition 2 (sensitivity [18]). Let 𝑓 denote a numeric func-
tion, and the sensitivity of 𝑓 is defined as the maximal 𝐿

1
-

norm distance between the outputs of𝑓 over the two datasets
𝐷 and𝐷 which differ in only one tuple. Formally,

Δ
𝑓
= max
𝐷,𝐷







𝑓(𝐷) − 𝑓 (𝐷


)





1
. (2)

With the concept of sensitivity, the noise follows a zero-
mean Laplace distribution with the magnitude 𝑏 = Δ

𝑓
/𝜖. To

fulfill 𝜖-differential privacy for a numeric function 𝑓 over 𝐷,
it is sufficient to publish 𝑓(𝐷) + 𝑋, where 𝑋 is drawn from
Lap(Δ

𝑓
/𝜖).

3.2. Review of SVM and RBF Kernel. SVM is one of the
most popular supervised binary classification methods that
takes a sample and a predetermined kernel function as input,
and outputs a predicted class label for this sample. Consider
training data𝐷 = {(x

𝑖
, 𝑦
𝑖
) | 𝑖 ∈ 𝑍

+
, 1 ≤ 𝑖 ≤ 𝑛}, where x

𝑖
∈ 𝑅
𝑑

denotes the training input points, 𝑦
𝑖
∈ {1, −1} are the training

class labels, and 𝑛 is the size of training data. Here, 𝑑 is the
dimension of input data and “+1” and “−1” are class labels. A
SVMmaximizes the geometricmargin between two classes of
data and minimizes the error from misclassified data points.
The primal form of a soft-margin SVM can be written as

min
w∈𝑅𝐹
1

2

‖w‖2
2
+ 𝐶

𝑛

∑

𝑖=1

𝑙 (𝑦
𝑖
, 𝑓w (x𝑖)) , (3)

where w is the normal vector to the hyperplane separating
two classes of data, 𝑙(𝑦, 𝑦) is a loss function convex in
𝑦, 𝐶 is a regularization parameter that weighs smoothness
and errors (i.e., large for fewer errors, smaller for increased
smoothness), and 𝑓w(x𝑖) = ⟨𝜙(𝑥𝑖),w⟩, where 𝜙(x) : 𝑅𝑑 →
𝑅
𝐹 is a function mapping training data point from their

input space 𝑅𝑑 to a new 𝐹-dimensional feature space 𝑅𝐹
(𝐹 may be infinite). Sometimes we map the training data
from their input space to another high-dimensional feature
space in order to classify nonlinearly separable data. When

𝐹 is large or infinite, the innerproducts in feature space 𝑅𝐹
may be computed efficiently by an explicit representation
of the kernel function 𝑘(x, y) = ⟨𝜙(x), 𝜙(y)⟩. For example,
𝑘(x, y) = x𝑇y is a linear kernel function for a linear SVM, and
𝑘(x, y) = exp(−‖x − y‖2

2
/𝜎
2
) is a RBF kernel function, which

is translation invariant.
In this paper, we use a RBF kernel function. Our method

can be applied to any translation invariant kernel SVM.With
the hinge loss 𝑙(𝑦

𝑖
, 𝑓w(x𝑖)) = max(0, 1 − 𝑦

𝑖
𝑓w(x𝑖)), we can

obtain a dual form SVM written as

max
𝛼∈𝑅
𝑛

𝑛

∑

𝑖=1

𝛼
𝑖
−

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝑘 (x
𝑖
, x
𝑗
)

s.t. 0 ≤ 𝛼
𝑖
≤ 𝐶, ∀𝑖 ∈ 1, . . . , 𝑛,

(4)

where 𝛼
𝑖
∈ 𝛼, 𝑖 ∈ (1, 𝑛) is a persample parameter and

𝑤
𝑗
∈ w, 𝑗 ∈ (1, 𝑑) is a perfeature weight parameter. The

weight vector w can be converted from sample weight vector
𝛼 via w = ∑𝑛

𝑖=1
𝑦
𝑖
𝛼
𝑖
x
𝑖
in the linear SVM.

4. Privacy Preserving Hybrid SVM

In this section, we first introduce a framework overview and
then the technical details of our hybrid SVM method. We
assume that all data samples follow the same distribution.
Here, we assume that all original data from different data sets
follow some unknown joint multivariate distribution and all
data tuples are samples from this distribution.

4.1. The General Framework. Figure 2 illustrates the general
framework of hybrid SVM. Algorithm 1 presents the hybrid
SVM algorithm. First, we use the small amount of public data
and (5) and (6) to compute the parameter 𝜌 = (𝜌

1
, . . . ,𝜌

𝐷
)
𝑇,

𝜌
𝑖
∈ 𝑅
𝑑 in the mapping function of the approximation

form to the RBF kernel. Second, with 𝜌, we transform the
private data from the original sample space to the new 2𝐷-
dimensional feature space via the mapping function �̂�(𝑥) in
(7). Then we can compute the parameter 𝛼 in the dual space
with the transformed private data and w in the primal space
via the linear relationship between𝛼 andw in the linear SVM.
Finally, draw 𝜇 from Lap(𝜆)2𝐷 where 𝜆 = 22.5𝐶√𝐷/𝑛𝜖 and
return ŵ = w + 𝜇 and 𝜌. Then users can transform their
test data to the new 2𝐷-dimensional feature space with 𝜌 and
classify the transformed data with ŵ. Here the computation
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Input: Public data𝐷public, private data𝐷private, the dimensionality𝐷 of 𝜌, a regularization parameter 𝐶,
and privacy budget 𝜖;
Output: Differentially private SVM;
(1) Use the public data to compute 𝜌 = (𝜌

1
, . . . ,𝜌

𝐷
)
𝑇 via (5), (6);

(2) Transform each record of the private data to new 2𝐷-dimensional data via the mapping function �̂�(𝑥)
defined by (7);
(3) Compute the parameter 𝛼 in the dual space with the transformed private data, and w in the primal space
via w = ∑𝑛

𝑖=1
𝑦
𝑖
𝛼
𝑖
�̂�(x
𝑖
);

(4) Draw 𝜇 from Lap(𝜆)2𝐷, 𝜆 = 22.5𝐶√𝐷/𝑛𝜖, then return ŵ = w + 𝜇 and 𝜌.

Algorithm 1: Hybrid SVM algorithm.

of parameter 𝜌 has no privacy risk because it is retrieved
directly frompublic data.More details about hybrid SVMwill
be given in the successive subsections.

Privacy Properties. We present the following theorem show-
ing the privacy property of Algorithm 1.

Theorem 3. Algorithm 1 guarantees 𝜖-differential privacy.

Proof. For step 1, no private data is used, and hence step 1 does
not impact the privacy guarantee. Due to Corollary 15 in [22]
and the fact that the hinge-loss is convex and 1-Lipschitz in
𝑦, the sensitivity of w over a pair of neighbouring datasets is
Δw = 2

2.5
𝐶√𝐷/𝑛. Then the scale parameter 𝜆 in step 4 is set

to 𝜆 = Δw/𝜖 = 2
2.5
𝐶√𝐷/𝑛𝜖 due to the Laplace mechanism

introduced in Section 3.1.Therefore, Algorithm 1 preserves 𝜖-
differential privacy which completes the proof.

4.2. The Computation of 𝜌. Rahimi and Recht [24] approxi-
mate aReproducingKernelHilbert Space (RKHS)H induced
by an infinite dimensional feature mapping with a random
RKHŜH induced by a randomfinite-dimensionalmapping 𝑧.
The random finite-dimensional RKHŜH can be constructed
by drawing 𝐷 i.i.d. vectors 𝜌

1
, . . . ,𝜌

𝐷
from the Fourier

transform of a positive-definite translation-invariant kernel
function 𝑘(𝑥, 𝑦), such as the RBF kernel function. Then we
can obtain an approximation form 𝑧(𝑥)𝑇𝑧(𝑦) of 𝑘(𝑥, 𝑦) using
the real-valued mapping function 𝑧(𝑥) : 𝑅𝑑 → 𝑅𝐷 defined
by the following equation:

𝑧 (𝑥) = √
2

𝐷

[cos (𝜌𝑇
1
x + 𝑏
1
) ⋅ ⋅ ⋅ cos (𝜌𝑇

𝐷
x + 𝑏
𝐷
)]

𝑇

, (5)

where 𝑏
1
, . . . , 𝑏

𝐷
are i.i.d. samples drawn from a uniform

distribution 𝑈[0, 2𝜋]. 𝑧(𝑥) : 𝑅𝑑 → 𝑅
𝐷 maps the data

from its original 𝑑-dimensional input space to the new 𝐷-
dimensional feature space. Their approach is based on the
fact that the kernel function of a continuous positive-definite
translation-invariant kernel is the Fourier transform of a
nonnegative measure. The uniform convergence property of
the approximation form 𝑧(𝑥)𝑇𝑧(𝑦) to the kernel function
𝑘(𝑥, 𝑦) has also been proved in [24]. In our context, the kernel
function 𝑘(𝑥, 𝑦) refers to the RBF kernel function.

In our problem setting, since a small amount of public
data can be considered as 𝑥 in 𝑧(𝑥) and only the vec-
tors 𝜌

1
, . . . ,𝜌

𝐷
are needed to construct the random finite-

dimensional RKHŜH, we can compute the vectors 𝜌
1
, . . . ,𝜌

𝐷

with an optimization function defined as follows:

min
𝜌∈𝑅
𝐷×𝑑

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1









2

𝐷

𝑧(𝑥
𝑖
)
𝑇
𝑧 (𝑥
𝑗
) − 𝑘 (𝑥

𝑖
, 𝑥
𝑗
)









. (6)

Since (6) is an unconstrained nonlinear optimization func-
tion, we solve it using L-BFGS (the full name is Limited-
memory Broyden Fletcher Goldfarb Shanno) algorithm.

Thus, we can obtain a more accurate approximation form
𝑧(𝑥)
𝑇
𝑧(𝑦) of the kernel function 𝑘(𝑥, 𝑦) by deploying the

public data to compute the 𝜌, than randomly sampling 𝜌
from the fourier transform of the kernel function 𝑘(𝑥, 𝑦)
as shown in [25]. To guarantee differential privacy, we
need only consider the data-dependent weight parameter w.
Fortunately we can employ the differentially private linear
SVM approach in [25] to compute w after transforming all
private data to a new 2𝐷-dimensional feature space using the
mapping �̂�(𝑥) : 𝑅𝑑 → 𝑅

2𝐷 defined in (7) with the vectors
𝜌
1
, . . . ,𝜌

𝐷
as follows:

�̂� (𝑥) =

1

√𝐷

[cos (𝜌𝑇
1
𝑥) , sin (𝜌𝑇

1
𝑥) , . . . ,

cos (𝜌𝑇
𝐷
𝑥) , sin (𝜌𝑇

𝐷
𝑥)]

𝑇

.

(7)

4.3. The Computation of ŵ. With the vectors 𝜌
1
, . . . ,𝜌

𝐷
to

approximate the RBF kernel function, we can convert RBF
kernel SVM in the 𝑑-dimensional input space into the linear
SVM in a new 2𝐷-dimensional feature space with (7), then
use the privacy preserving linear SVM algorithm in [25].The
general idea of this algorithm is that with the transformed
2𝐷-dimensional private data, we first compute the parameter
𝛼 in the dual space and then w in the primal space using
w = ∑𝑛

𝑖=1
𝑦
𝑖
𝛼
𝑖
�̂�(x
𝑖
); then we draw 𝜇 from Lap(𝜆)2𝐷, where

𝜆 = 2
2.5
𝐶√𝐷/𝑛𝜖 and compute noisy ŵ with ŵ = w + 𝜇.

5. Experiments

In this section, we experimentally evaluate our hybrid SVM
and compare it with one state-of-the-art method, called
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private SVM and on baseline method. We evaluate the utility
of the trained SVM classifier using the AUC metric. Hybrid
SVMand private SVMare implemented inMATLABR2010b,
and all experiments were performed on a PC with 3.2 GHz
CPU and 8G RAM.

5.1. Experiment Setup

Datasets. We used two open source datasets from the
Integrated Public Use Microdata Series (Minnesota Pop-
ulation Center, Integrated public use microdata series—
international: Version 5.0., 2009, https://international.ipums
.org), the US and Brazil census datasets with 370,000 and

Table 1: Experiment parameters.

Parameter Default value
Number of records in the public data used by
hybrid SVM 20

Number of records in the private training dataset 27000
Number of records in the test dataset 3000
Number of dimensions 14
Privacy budget 𝜖 1.0

190,000 records collected in the US and Brazil, respec-
tively. One motivation for using these public datasets is
that it bears similar attributes (e.g., demographic features)
as some medical records, but it is publicly available for
testing and comparisons. From each dataset, we selected
40,000 records, with 10,000 records serving as the public
data pool. There were 13 attributes in both datasets, namely,
age, gender, marital status, education, disability, nationality,
working hours per week, number of years residing in the
current location, ownership of dwelling, family size, number of
children, number of automobiles, and annual income. Among
these attributes,marital status is the only categorical attribute
containing more than 2 values, that is, single, married, and
divorced/widowed. Because SVMs do not handle categorical
features by default, we transformed marital status into two
binary attributes, is single and is married (an individual
divorced or widowed would have false on both of these
attributes). With this transformation, our two datasets had 14
dimensions. For each dataset, we randomly extract a subset
of original data as a public data pool, from which public data
is sampled uniformly, and use the remaining 30000 tuples as
the private data.

Comparison. We experimentally compared the performance
of our hybrid SVM against two approaches, namely, public
data baseline and private SVM [25]. The public data baseline
is a RBF kernel SVM that uses only public data. In our
experiment figures, we use “Public—#” to denote the public
data baseline method with # as the size of public data. The
private SVM is a state-of-the-art differentially private RBF
kernel SVM that uses private data only. The parameters in all
methods are set to optimal values.

Metrics. We used the other attributes to predict the value of
annual income by converting annual income into a binary
attribute: values higher than a predefined threshold were
mapped to 1, and otherwise to −1. Here, we set the pre-
defined threshold as the median value of annual income.
The classification accuracy was measured by the AUC (the
area under an ROC curve) [26]. The boxplot was used to
measure the stability of our method and private SVM. The
boxplots of “Public—50,” “Public—100,” and “Public—200,”
are qualitatively similar to our hybrid SVM; hence, we do not
report boxplots of these baseline methods. We performed 10-
fold cross-validation 10 times for each algorithmand reported
the average results. We varied three different parameters:
the privacy budget 𝜖, the dataset dimensionality, and the
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data cardinality (i.e., the size of training data). To vary the
data cardinality parameter, we randomly generate subsets of
records in the training records set, with the sampling rate
varying from 0.1 to 1. For various data dimensionalities with
the range being 5, 8, 11, and 14, we select three attribute
subsets in the US and Brazil datasets for classification. The
first five dimensions include: age, gender, education, family
size, and annual income.The second eight dimensions contain
the previous five attributes, and additionally nativity, owner
of dwelling, and number of automobiles. The third eleven
dimensions consist of all the attributes in the second 8
dimensions and is single, is married, and number of children.
Table 1 summarizes the parameters and their default values in
the experiments.

5.2. AUC versus Privacy Budget. Figures 3 and 4 illustrate the
AUCs of each method under various privacy budgets from
0.5 to 4, where “Public—#” means the public data baseline
methods with various sizes of public data. Observe that our
hybrid SVM outperforms the private SVM and performs
better than the public data baseline defined by the public data.
The AUC of our method remains stable under all privacy
budgets and is significantly close to the public data baseline
that uses the complete private data set as public data.

5.3. AUC versus Dataset Dimensionality. Figures 5 and 6
present the AUCs of each algorithm as a function of the
dataset dimensionality for the US and Brazil datasets. With
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Figure 6: AUC versus dimensions for Brazil.

a higher number of dimensions, the AUCs of the hybrid
SVM and of the SVM that uses the public data (baseline)
increase. This is reasonable because the training data size
with the default value being 27,000 is much larger than the
number of data dimensions which are at most 14. When the
number of dimensions grows, the performance improves.
In contrast, the performance of the private SVM degrades
in 14 dimensions with poor boxplots because more noise is
introduced with higher dimensions.

5.4. AUC versus Data Cardinality. Figures 7 and 8 investigate
the relationship between the sampling rate and AUC of
hybrid and private SVMs. From the figures, our method con-
sistently outperformed the private SVM at different sampling
rates. It is worth mentioning that AUCs of the hybrid SVM

are large even at small sampling rates and tend to stabilize
when the size of training data grows (i.e., large sampling rate).
The boxplots reflect that the private SVM has larger variance
than the hybrid SVM, because private SVM selects the values
of 𝜌 randomly from the Fourier transform of RBF kernel. In
contrast, hybrid SVM computes 𝜌 via the public data. This
helps improve the accuracy of 𝜌 and leads to less variance.

5.5. Computation Time. Finally, Figure 9 shows the time
cost of our proposed algorithm with varying dimensions
and different sampling rates. We only report the results
for the US dataset; the results for the Brazil dataset are
greatly similar. One can notice that the dimensionality, rather
than the sampling rate, determines the computational cost
of the hybrid SVM. The overhead of the hybrid SVM is
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from computing 𝜌 with the public data, since a nonlinear
optimization equation needs to be solved. As the other private
SVM methods, our hybrid SVM is intended for off-line
use, and hence the time is generally acceptable for even 14
dimensional datasets.

6. Discussion and Conclusion

We proposed and developed a RBF kernel SVM using a small
amount of public data and a large amount of private data
to preserve differential privacy with improved utility. In this
algorithm, we use public data to compute the parameters
in an approximation form of the RBF kernel function and
then train private classifiers with linear SVM after converting
all private data into a new feature space defined by the
approximation form. A limitation of our approach is that we
used the L-BFGS method [27], which is not very efficient, to

find the optimal solution. Because the objective function in
(6) is not a convex function, our model is computationally
intensive in order to calculate the local optimal values,
especially when the size of the public data set is large. We
will develop more efficient methods and test the model on
clinical records in future work. Another limitation is that we
assume all original data from different data sets follow some
unknown joint multivariate distribution. Our assumption
might now always be true in practice, and calibration is
necessary for future investigation. That is, in the presence of
distributional difference, we will leverage transfer learning to
build the global model.
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