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ABSTRACT

Background: In this prospective cohort study, we investigated the association between 
fatty acid ethyl esters (FAEEs) in meconium as biomarkers of prenatal ethanol exposure and 
growth deficits, as birth outcomes, that constitute several of the key cardinal features of fetal 
alcohol syndrome.
Methods: A total of 157 meconium samples were collected from enrolled infants within 24 
hours of birth, and nine FAEEs were quantified using liquid chromatography/tandem mass 
spectrometry. The relationships between cumulative concentrations of nine species of FAEEs 
in meconium and birth parameters of growth (age-sex-specific centiles of head circumference 
[HC], weight, and length) and respective and combined birth outcomes of growth deficits 
(HC ≤ 10th centile, weight ≤ 10th centile, and length ≤ 10th centile) were determined.
Results: Multivariate logistic regression analysis demonstrated that higher cumulative 
concentrations of meconium FAEEs correlated with elevated risks for HC and length, both, 
10th percentile or less (adjusted odds ratio [aOR], 2.94; 95% confidence interval [CI], 
1.12–7.74; P = 0.029) and HC and weight and length, all of them, 10th percentile or less (aOR, 
3.27; 95% CI, 1.12–9.59; P = 0.031).
Conclusion: The elevated cumulative FAEEs in meconium were associated with combined 
growth deficits at birth, specifically HC and length, both, 10th percentile or less, which 
might be correlated with detrimental alcohol effects on fetal brain and bone development, 
suggesting a plausible alcohol-specific pattern of intrauterine growth restriction.
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INTRODUCTION

Prenatal alcohol exposure of the developing fetus may lead to fetal alcohol spectrum 
disorders (FASD), associated with a wide range of adverse offspring outcomes representing 
the deleterious effects of ethanol.1-4 Fetal alcohol syndrome (FAS), the most severe end of this 
continuum, is characterized phenotypically by growth retardation, microcephaly, and three 
specific facial dysmorphologies.1,2,4 Fatty acid ethyl esters (FAEEs), a non-oxidative ethanol 
metabolites, have been used as direct biomarkers of gestational ethanol consumption 
analyzed in the meconium of neonates, and even in very-low-birth-weight infants, with the 
detection time window of the second and third trimesters of pregnancy, largely in the last 3 
months.5-10 The detection of FAEEs in meconium elucidates the patterns of ethanol exposure 
during the gestational period in contrast to women's hair, which cannot be guaranteed 
during pregnancy.5

Limited published data are available to support the relationship between meconium FAEEs 
and birth outcomes of fetal growth. There are two studies addressing the correlation of 
higher amounts of specific meconium FAEE analytes with greater birth weight, greater birth 
length, and greater gestational age at birth under low-to-moderate prenatal alcohol exposure, 
without adjusting for age and sex and analyzing for birth outcomes of prenatal growth 
restriction.11,12 Furthermore, the degree to which cumulative FAEEs in meconium are related 
to fetal growth restriction in occipital frontal circumference (OFC), weight, and length that 
constitute several of the key cardinal features of FAS is unknown. Most studies investigating 
the effects of ethanol exposure on prenatal growth restriction assessed individual outcomes 
or largely focused on birth weight ≤ 10th centile (intrauterine growth restriction or small-for-
gestational-age). However, based on the FAS diagnostic criteria,4 birth outcomes as a result 
of fetal growth restriction display combined manifestations of individual growth deficits. 
Accordingly, it is necessary to include the combined effects of growth deficits as well as 
the respective individual growth deficits in any correlation analysis. In Korea, risky alcohol 
consumption has been increasing among young females,13,14 and the estimated prevalence 
of FAS was 4.2% among a sample of children receiving services in institutional settings.15 
A population-based survey revealed that alcohol abuse among Korean women showed the 
highest prevalence between ages 20–34 years and increased among the recent generations.16 
There has been an increasing interest among pediatricians, as the most likely practitioners 
to first encounter the neonates, for the early identification of infants with prenatal alcohol 
exposure who are potentially at risk for FASD, which can lead to reduced secondary 
disabilities, particularly in early infancy where facial dysmorphology assessment may be 
unavailable. We performed a prospective cohort study to examine the association between 
the accumulation of FAEEs in meconium and birth outcomes of growth deficits regarding 
OFC, weight, and length based on the FAS diagnostic growth criteria.

METHODS

Participants
This study was designed to include all infants born and receiving neonatal care in Uijeongbu 
St. Mary's Hospital, The Catholic University of Korea between 1st April and 31st August 2016. 
During the study period, 52 out of 209 infants born in the hospital were excluded: one with 
chromosomal disease, one with a congenital malformation, 19 due to multiple pregnancies, 
two with inaccurate gestational age, 11 who refused parental consent, and 18 with missed 
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specimen collections. In total, meconium samples from 157 singleton infants were obtained 
and successfully analyzed. Information related to perinatal characteristics was acquired from 
the medical records, encompassing gestational age, infant sex, maternal age, parity, delivery 
method, prematurity, maternal hypertension, maternal diabetes, infant head circumference 
(HC), infant weight, and infant length. Each anthropometric measurement (HC, weight, 
and length at birth) was transformed into an age-sex-specific centile using Fenton growth 
charts.17 Birth outcomes of growth deficits were defined based on the key growth deficiency 
criteria for FAS as HC 10th percentile or less, weight 10th percentile or less, and length 
10th percentile or less at birth. All possible combinations of each individual outcome were 
examined. Data pertaining to maternal drinking and smoking habits during pregnancy were 
acquired using standardized questionnaires and in-person interviews in the hospital during 
postpartum stay or within 1 month postpartum. All mothers were requested to provide details 
of the amount and frequency of their gestational alcohol consumption on an electronic form 
especially designed for the purpose of the study. In order to minimize the response bias 
and maximize the validity of self-reports,18 trained investigators recorded the information 
using electronic files, which were immediately stored in a password-protected system with 
restricted access. The number of weekly drinks was estimated based on the alcohol content of 
beverages (beer, wine, soju, or hard liquor) consumed. As previously described by the United 
States National Institute on Alcohol Abuse and Alcoholism,19 one standard drink contains 
0.6 oz or 14 g of absolute ethanol. A FAEE concentration more than 2.00 nmol/g meconium 
has been recommended as positive for significant prenatal alcohol exposure.6,7,20 For initial 
comparisons, all subjects were categorized into one of the three groups: undetectable FAEE 
(a group with meconium FAEE levels less than limit of quantitation (LOQ), under FAEE2 
(a group with meconium FAEE levels greater than LOQ and 2.00 nmol/g or less), FAEE2 (a 
group with meconium FAEE levels greater than 2.00 nmol/g).

Meconium FAEE assessment
All meconium samples (> 500 mg per infant) were collected within 24 hours after birth, 
frozen and stored at −60°C for ≤ 6 months, and couriered to the Seoul Pharma Laboratories 
for the analysis of FAEEs. Quantification of FAEEs was performed by liquid chromatography/
tandem mass spectrometry as described previously.21 Nine FAEEs including ethyl laurate 
(E12:0), ethyl myristate (E14:0), ethyl palmitate (E16:0), ethyl palmitoleate (E16:1), ethyl 
stearate (E18:0), ethyl oleate (E18:1), ethyl linoleate (E18:2), ethyl linolenate (E18:3), and 
ethyl arachidonate (E20:4) were quantified. The limits of detection varied from 0.01 to 0.08 
nmol/g, whereas the LOQ ranged from 0.02 to 0.27 nmol/g. Intra- and inter-assay precisions 
varied from 7% to 21% and from 10% to 17%, respectively. The intra-assay and inter-assay 
accuracies ranged from −17% to 15% and from −4% to 14%, respectively. The individual 
concentrations of the nine FAEEs were summed to obtain the cumulative concentration.

Statistical analysis
The FAEE concentration groups were compared using Fisher's exact test for categorical 
variables and Kruskal-Wallis test for continuous variables. Spearman rank order correlation 
was used to assess the association of cumulative FAEE concentrations with alcohol exposure 
(drinks per week) during all the trimesters and during second-to-third trimesters, and 
anthropometric parameters at birth. Logistic regression modelling was performed for 
individual and combined variables of growth deficits, and the odds ratios (ORs) and 95% 
confidence intervals (CIs) were calculated. All baseline characteristics were included as 
possible confounders in the models. Receiver operating characteristic (ROC) curve and area 
under the ROC curve (AUC) were used to determine the accuracy of the model in categorizing 

3/10https://jkms.org https://doi.org/10.3346/jkms.2018.33.e318

Meconium FAEEs and Growth Deficits at Birth

https://jkms.org


the significant outcomes in multivariate logistic regression. Fisher's exact test and conditional 
logistic regression were conducted to determine adequate cut-offs. Statistical analyses were 
performed using SPSS version 17.0 (SPSS, Chicago, IL, USA). A two-tailed P ≤ 0.05 was 
considered statistically significant.

Ethics statement
The present study has been approved by the Institutional Review Board (IRB) of Uijeongbu 
St. Mary's Hospital (IRB No. UC110NMI0044). Written agreements were acquired from 
parents under the declaration of Helsinki.

RESULTS

Baseline characteristics and birth outcomes of growth deficits
Of the 157 meconium samples analyzed successfully, four (2.5%) tested positive for cumulative 
FAEE concentrations exceeding 2 nmol/g, 67 were detected at total FAEE concentrations ≤ 2 
nmol/g, and 86 were undetected for quantifiable amounts of FAEEs (Table 1). The prevalence 
of gestational ethanol use was 8.9% (14/157 female) during all trimesters, and 2.5% (4/157 
female) during second-to-third trimesters. Among the four mothers with infants testing 
positive for FAEEs, two reported ethanol use during the second-to-third trimesters (Table 1). 
Maternal ethanol ingestion during all the trimesters, HC and weight, both, 10th percentile 
or less, and HC and weight and length, all of them, 10th percentile or less were significantly 
associated with the cumulative FAEE concentrations (Table 1).

Relationships of meconium FAEEs with prenatal alcohol exposure, birth 
growth and birth outcomes of growth deficits
Correlation analyses revealed significant associations between cumulative meconium FAEE 
levels and drinks per week during all the trimesters (ρ = 0.160 and P = 0.046) and during 
second-to-third trimesters (ρ = 0.174 and P = 0.029). However, no correlation with birth growth 
parameters in the age-sex-specific centile (HC, ρ = −0.128 and P = 0.111; weight, ρ = −0.018 
and P = 0.825; length, ρ = 0.068 and P = 0.398) was found. In logistic regression, for each 1 
nmol/g higher FAEE concentration, the odds for HC and weight, both, 10th percentile or 
less increased by 1.84-fold (P = 0.044), the odds for HC and length, both, 10th percentile 
or less increased by 2.17-fold (P = 0.015), and the odds for HC and weight and length, all of 
them, 10th percentile or less increased by 2.37-fold (P = 0.009) (Table 2). After adjusting for 
potential confounders (gestational age, infant sex, maternal age, parity, caesarean section 
delivery, prematurity, maternal hypertension, maternal diabetes, and smoking during 
pregnancy), the odds of HC and length, both, 10th percentile or less increased by 2.94-fold 
(P = 0.029), and the odds of HC and weight and length, all of them, 10th percentile or less 
increased by 3.27-fold (P = 0.031) (Table 2).

Meconium FAEEs: analysis at different cut-off levels
ROC curve evaluating cumulative FAEE concentrations to identify newborns with HC and 
length, both, 10th percentile or less generated an AUC of 0.68 (95% CI, 0.44–0.93; P = 0.162). 
The sensitivity and specificity were 40.0% and 92.8%, respectively, at a cut-off of 0.5 nmol/g, 
and 20.0% and 98.0%, respectively, at a cut-off of 2 nmol/g. In the ROC analysis of cumulative 
FAEE concentrations distinguishing newborns with and without HC and weight and length, all 
of them, 10th percentile or less, the AUC was 0.79 (95% CI, 0.61–0.97; P = 0.05). The sensitivity 
and specificity were 50.0% and 92.8%, respectively, at a cut-off of 0.5 nmol/g and 25.0% and 
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Table 1. Baseline characteristics and birth outcomes of growth deficits in 157 infants based on meconium FAEE concentrations
Characteristics Undetectable FAEE Under FAEE2 FAEE2 P value
No. of infants 86 67 4
Total concentration of FAEEs, nmol/g < 0.001a

Mean ± SE - 0.22 ± 0.04 3.57 ± 0.64
Range < LOQ 0.01–1.63 2.14–5.03
95% CI - 0.14–0.29 1.52–5.61

Baseline characteristics
Gestational age, wk 37.5 (24.7–40.9) 37.4 (29.0–40.6) 38.6 (34.9–39.1) 0.759a

Sex, male 38 (44.2) 34 (50.7) 1 (25) 0.525b

Maternal age, yr 32.5 (20–45) 34.0 (17–46) 27.0 (24–39) 0.320a

Parity 1.0 (0–4) 0.0 (0–4) 0.0 (0–2) 0.494a

Caesarean section delivery 50 (58.1) 38 (56.7) 4 (100) 0.276b

Prematurity 32 (37.2) 26 (38.8) 1 (25.0) 0.951b

Maternal hypertension 6 (7.0) 11 (16.7) 1 (25.0) 0.089b

Maternal diabetes 7 (8.1) 11 (16.7) 1 (25.0) 0.145b

Smoking during pregnancy 1 (1.2) 1 (1.5) 1 (25.0) 0.075b

Ethanol ingestion (all trimesters) 6 (7.0) 6 (9.0) 2 (50.0) 0.048b

Drinks per week 0.25 (0.25–2.50) 1.25 (0.50–3.00) 3.50 (2.00–5.00) 0.085a

Ethanol ingestion (2nd and 3rd trimesters) 1 (1.2) 1 (1.5) 2 (50.0) 0.067b

Drinks per week 0.25 0.50 3.50 (2.00–5.00) 0.259a

Birth parameters of growth
HC, cm 33.5 (22.8–38.0) 32.8 (25.5–38.5) 34.0 (29.9–36.0) 0.474a

HC, percentile 64.5 (0–100) 54.0 (0–100) 81.0 (0–90) 0.113a

Weight, g 3,035 (740–4,000) 2,880 (900–5,530) 3,075 (2,070–3,525) 0.841a

Weight, percentile 49.0 (3–100) 47.0 (1–100) 63.0 (0–90) 0.636a

Length, cm 47.0 (32.0–53.0) 47.5 (34.1–54.0) 48.0 (43.0–50.0) 0.750a

Length, percentile 37.5 (0–99) 41.0 (0–99) 35.5 (0–93) 0.645a

Birth outcomes of growth deficits
HC ≤ 10P 7 (8.1) 11 (16.4) 1 (25.0) 0.144b

Weight ≤ 10P 6 (7.0) 9 (13.4) 1 (25.0) 0.172b

Length ≤ 10P 15 (17.4) 8 (11.9) 1 (25.0) 0.343b

HC and weight ≤ 10P 1 (1.2) 6 (9.0) 1 (25.0) 0.022b

HC and length ≤ 10P 1 (1.2) 3 (4.5) 1 (25.0) 0.055b

Weight and length ≤ 10P 4 (4.7) 4 (6.0) 1 (25.0) 0.221b

HC and weight and length ≤ 10P 0 (0.0) 3 (4.5) 1 (25.0) 0.011b

Weight and/or length ≤ 10P 17 (19.8) 13 (19.4) 1 (25.0) 1.000b

HC and weight and/or length ≤ 10P 2 (2.3) 6 (9.0) 1 (25.0) 0.052b

Values are presented as median (range) or number (%).
FAEE = fatty acid ethyl ester, SE = standard error, CI = confidence interval, LOQ = limit of quantitation, HC = head circumference; Undetectable FAEE = a group 
with meconium FAEE levels less than LOQ, Under FAEE2 = a group with meconium FAEE levels greater than LOQ and 2.00 nmol/g or less, FAEE2 = a group with 
meconium FAEE levels greater than 2.00 nmol/g, HC ≤ 10P = head circumference 10th percentile or less, Weight ≤ 10P = weight 10th percentile or less, Length ≤ 10P 
= length 10th percentile or less.
aKruskal-Wallis test; bFisher's exact test.

Table 2. Association of cumulative meconium FAEE concentrations with birth outcomes of growth deficits
Outcomes at birth, ≤ 10P Unadjusted Adjusted

ORa 95% CI P value ORa,b 95% CIb P valueb

HC 1.45 0.84–2.52 0.184 1.53 0.81–2.89 0.187
Weight 1.47 0.84–2.59 0.182 1.26 0.67–2.38 0.471
Length 1.22 0.68–2.17 0.503 1.38 0.72–2.63 0.330
HC and weight 1.84 1.02–3.32 0.044 1.76 0.84–3.67 0.134
HC and length 2.17 1.16–4.04 0.015 2.94 1.12–7.74 0.029
Weight and length 1.74 0.97–3.14 0.064 1.94 0.91–4.13 0.087
HC and weight and length 2.37 1.25–4.52 0.009 3.27 1.12–9.59 0.031
Weight and/or length 1.13 0.64–2.00 0.668 1.09 0.59–2.01 0.784
HC and weight and/or length 1.76 0.98–3.16 0.061 1.79 0.87–3.72 0.116
FAEE = fatty acid ethyl ester, OR = odds ratio, CI = confidence interval, HC = head circumference.
HC ≤ 10P = head circumference 10th percentile or less, Weight ≤ 10P = weight 10th percentile or less, Length ≤ 10P = length 10th percentile or less.
aORs are estimated per 1 nmol/g higher FAEE concentration; bValues are adjusted for gestational age, infant sex, maternal age, parity, caesarean section delivery, 
prematurity, maternal hypertension, maternal diabetes, and smoking during pregnancy.
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98.0%, respectively, at a cut-off value 2 nmol/g. In conditional logistic regression, significant 
ORs were found at cut-offs of 0.5 and 2.0 nmol/g for HC and length, both, 10th percentile 
or less (Table 3) and at cut-offs of 0.3, 0.4, 0.5 and 2.0 nmol/g for HC and weight and 
length, all of them, 10th percentile or less (Table 4). Fisher's exact test revealed the only 
significant cut-off of 0.5 nmol/g for HC and weight and length, all of them, 10th percentile 
or less (P = 0.035) (Table 4).

DISCUSSION

The current study demonstrated that higher cumulative concentrations of nine FAEEs in 
meconium were associated with birth outcomes of combined growth deficits, including HC 
and length, both, 10th percentile or less and HC and weight and length, all of them, 10th 
percentile or less (Table 2), despite lack of associations with individual birth outcomes of 
growth deficits and growth parameters (age-sex-specific HC, weight and length centiles) in 
multivariate logistic modelling. The association was even more robust with the combination 
of all three individual outcomes representing symmetric intrauterine growth restriction in 
unadjusted and adjusted models. These findings suggest that the combined growth deficits at 
birth were significantly correlated with ethanol exposure relative to the respective outcomes. 
The common denominator of HC and length, both, 10th percentile or less of the significant 
variables suggests that OFC and length reflecting fetal brain and bone growth were more 
significant than weight largely contributed to by other soft tissues in fetal growth restriction 
related to ethanol exposure, indicating the existence of a plausible alcohol-related pattern 
of intrauterine growth restriction. To date, numerous studies involving animal models 
have documented detrimental effects of alcohol on fetal brain and bone development. A 
variety of mechanisms investigated in experimental models revealed significant deficits 
in neural development following embryonic ethanol exposure, including rapid cerebral 
vasoconstriction,22 abnormal neural maturation,23 neurodegeneration by reactive oxygen 
species24 and neuroapoptosis25 in the developing brain. A chick embryo model demonstrated 
that ethanol exposure represses development of craniofacial and long bones by inhibiting 
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Table 3. Meconium FAEE concentrations at different cut-offs and HC and length, both, 10th percentile or less (HC and length ≤ 10P) at birth
FAEE cut-offs, nmol/g HC and length ≤ 10P, No. (%) P valuea ORb (95% CI)b P valueb

Positive (n = 5) Negative (n = 152)
> 0.2 2 (40.0) 21 (13.8) 0.156 3.88 (0.65–23.25) 0.137
> 0.3 2 (40.0) 17 (11.2) 0.111 4.84 (0.81–28.98) 0.084
> 0.4 2 (40.0) 14 (9.2) 0.081 5.88 (0.98–35.16) 0.052
> 0.5 2 (40.0) 11 (7.2) 0.055 7.39 (1.23– 44.19) 0.029
> 2.0 1 (20.0) 3 (2.0) 0.123 9.56 (1.07–85.56) 0.043

FAEE = fatty acid ethyl ester, HC = head circumference, OR = odds ratio, CI = confidence interval.
aFisher's exact test; bConditional logistic regression.

Table 4. Meconium FAEE concentrations at cut-offs and HC and weight and length, all of them, 10th percentile or less (HC and weight and length ≤ 10P) at birth
FAEE cut-offs, nmol/g HC and weight and length ≤ 10P, No. (%) P valuea ORb (95% CI)b P valueb

Positive (n = 4) Negative (n = 153)
> 0.2 2 (50.0) 21 (13.7) 0.103 5.83 (0.82–41.36) 0.078
> 0.3 2 (50.0) 17 (11.1) 0.072 7.26 (1.02–51.56) 0.047
> 0.4 2 (50.0) 14 (9.2) 0.052 8.81 (1.24–62.56) 0.030
> 0.5 2 (50.0) 11 (7.2) 0.035 11.08 (1.56–78.64) 0.016
> 2.0 1 (25.0) 3 (2.0) 0.099 12.75 (1.33–122.57) 0.027

FAEE = fatty acid ethyl ester, HC = head circumference, OR = odds ratio, CI = confidence interval.
aFisher's exact test; bConditional logistic regression.
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the generation of cranial neural crest cells, chondrogenesis and ossification via excessive 
production of reactive oxygen species and altered osteogenesis-related gene expression.26 
A mouse micro-computed tomography study documented growth retardation of fetal 
craniofacial bone following alcohol exposure, with the neurocranium (upper skull) more 
significantly affected than the viscerocranium (face).27 Studies involving sheep and rat 
fetuses revealed that fetal bone growth was more sensitive to alcohol than overall growth 
as measured by body weight, particularly at moderate exposure levels.28,29 Taken together 
with our results, it is postulated that OFC and length are more significant predictors of 
developmental ethanol exposure than weight that has been focused on in previous studies.

The prenatal ethanol exposure levels of our infants studied considered low-to-moderate 
depending on the maternal self-reports. Maternal alcohol intake, especially at relatively 
higher levels during pregnancy, results in fetal growth restriction in weight, OFC and 
length.30-32 However, inconsistent results have been observed in infants prenatally exposed 
to light-to-moderate maternal drinking, including lack of effect on fetal growth restriction 
and greater birth weight.33-35

The prevalence of positive FAEE analyses for significant prenatal alcohol exposure in our 
cohort was 2.5%. This is lower than the 3.1%–4.4% (39–56 of 1,271 samples) reported in the 
Prince Edward Island population-based study36 with the greater observed maximum FAEE 
level than ours, and higher than the 2% (11 of 505 specimens) in a cohort of Southwestern 
Ugandan women with the maximum FAEE level similar to ours.37 The relatively low 
prevalence in our cohort may result from sample collection in a low-risk community hospital 
setting, as opposed to high-risk settings such as special institutional clinics offering 
structured services. The high opt-out rate of 25% and the short study period of 5 months 
in our study may have biased the sample towards the lower prevalence of positive FAEE 
analyses as well as the lower maximum FAEE concentration. This result may be attributed to 
the differential decline in participation rate by high-risk women, and the possible effect of 
seasonal variation in drinking habits.

Meconium FAEEs have been accepted as established biomarkers of prenatal alcohol exposure 
in the updated clinical guideline for the diagnosis of FASD.4 The clinical use of meconium 
FAEE analysis has been attempted to identify children at risk for future alcohol-related 
problems,11,38 and was advocated by a meta-analysis complementing maternal self-reports 
increasing the risk of under-reporting of gestational ethanol intake.39 It is likely that more 
robust data correlate prenatal alcohol exposure with the cumulative sum of FAEEs rather than 
individual FAEEs in meconium.7 Our study showed a positive correlation between cumulative 
FAEE concentrations in meconium and maternal self-reported drinking, as reported 
previously.6,7,40 The cut-offs for positive FAEE analyses in meconium indicating significant 
prenatal alcohol exposure vary widely from 0.17 to 33 nmol/g.6,7,20,40 Our study found that 
a cut-off of > 0.5 nmol/g in meconium was significant for HC and weight and length, all of 
them, 10th percentile or less at birth in both Fisher's exact test and logistic regression analysis 
(Table 4). However, this finding was limited by the results from ROC analyses showing the low 
sensitivity of 50.0% at the 0.5 nmol/g cut-off despite an AUC of 0.79 (P = 0.05) with a cut-off 
specificity of 92.8%.

The study has limitations. The small size of the sample collected in one setting limits 
generalization of the results and warrants further investigations. Another limitation is the 
detection window of meconium restricted to the latter half of gestation. However, a cohort 
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study of premature newborns proposed ethyl linolenate, a meconium FAEE analyte, as a 
potential biomarker for the detection of trimester one ethanol exposure.10

In conclusion, this study suggests that elevated cumulative FAEEs in meconium are 
associated with combined growth deficits at birth, specifically HC and length, both, 10th 
percentile or less, which might be related to detrimental effects of alcohol on fetal brain 
and bone growth, suggesting a plausible alcohol-specific pattern of intrauterine growth 
restriction. It additionally suggests that elevated meconium FAEEs may be an informative 
biomarker for the early detection of infants potentially at risk for FASD. Our results reinforce 
other studies recommending the complementary use of meconium FAEE assay in a multi-step 
approach involving maternal self-reporting and screening with a panel of other biomarkers in 
neonatal and maternal matrices.5,6,10
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