
REVIEW
published: 06 May 2022

doi: 10.3389/fvets.2022.880738

Frontiers in Veterinary Science | www.frontiersin.org 1 May 2022 | Volume 9 | Article 880738

Edited by:

Nicola Pugliese,

University of Bari Aldo Moro, Italy

Reviewed by:

Ruediger Hauck,

Auburn University, United States

Michael Hess,

University of Veterinary Medicine

Vienna, Austria

*Correspondence:

Lesleigh C. Beer

lcbeer@uark.edu

Specialty section:

This article was submitted to

Parasitology,

a section of the journal

Frontiers in Veterinary Science

Received: 21 February 2022

Accepted: 09 March 2022

Published: 06 May 2022

Citation:

Beer LC, Petrone-Garcia VM,

Graham BD, Hargis BM,

Tellez-Isaias G and Vuong CN (2022)

Histomonosis in Poultry: A

Comprehensive Review.

Front. Vet. Sci. 9:880738.

doi: 10.3389/fvets.2022.880738

Histomonosis in Poultry: A
Comprehensive Review
Lesleigh C. Beer 1*, Victor M. Petrone-Garcia 2, B. Danielle Graham 1, Billy M. Hargis 1,

Guillermo Tellez-Isaias 1 and Christine N. Vuong 1

1Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States,
2 Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli, Mexico

Histomonas meleagridis, the etiological agent of histomonosis, is a poultry parasite

primarily detrimental to turkeys. Characteristic lesions occur in the liver and ceca, with

mortalities in turkey flocks often reaching 80–100%. Chickens and other gallinaceous

birds can be susceptible but the disease was primarily considered sub-clinical until

recent years. Treating and preventing H. meleagridis infection have become more difficult

since 2015, when nitarsone was voluntarily removed from the market, leaving the

poultry industry with no approved prophylactics, therapeutics, or vaccines to combat

histomonosis. Phytogenic compounds evaluated for chemoprophylaxis of histomonosis

have varied results with in vitro and in vivo experiments. Some recent research successes

are encouraging for the pursuit of antihistomonal compounds derived from plants.

Turkeys and chickens exhibit a level of resistance to re-infection when recovered from H.

meleagridis infection, but no commercial vaccines are yet available, despite experimental

successes. Safety and stability of live-attenuated isolates have been demonstrated;

furthermore, highly efficacious protection has been conferred in experimental settings

with administration of these isolates without harming performance. Taken together,

these research advancements are encouraging for vaccine development, but further

investigation is necessary to evaluate proper administration age, dose, and route. A

summary of the published research is provided in this review.
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INTRODUCTION

The first known histomonosis outbreak was described by Cushman (1) and occurred in a Rhode
Island turkey flock. Smith (2) further characterized histomonosis and attributed it to the protozoan
Amoeba meleagridis obtained from liver lesions. Shortly thereafter, Tyzzer (3) more appropriately
renamed this protozoon asHistomonas meleagridis. Further studies confirmedH. meleagridis as the
etiological agent, although the mode of cecal invasion was still uncertain (4). Common synonyms
for the disease have included blackhead disease, infectious enterohepatitis, histomoniasis, and
typhlohepatitis (5–7). Blackhead disease is an unfortunate misnomer as a cyanotic head is neither
pathognomonic nor common (8, 9); therefore, histomonosis will be the preferred terminology used
throughout this review based on the Standardized Nomenclature of Animal Parasitic Diseases (10).
Turkeys are especially susceptible to H. meleagridis infection, although other gallinaceous birds
such as chickens, pheasants, and peafowls can be affected (7, 11, 12). Annual economic losses to the
turkey industry have been estimated to exceed 2million USD, and a 2020 survey listed histomonosis
in position #11 of current issues facing the industry (9, 13).
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Graybill and Smith (14) implicated Heterakis spp. in the
role of transmitting H. meleagridis as they were unable to
initiate the disease in absence of cecal worms. Further research
showed that unprotected histomonads did not survive long
periods outside the host, although duration in the environment
when protected by feces or other materials was not well-
characterized (15, 16). The separate rearing of poultry species
is critical as chickens are considered partially resistant to
histomonosis, frequently serving as asymptomatic carriers and
reservoirs of H. meleagridis-infected heterakid eggs [Figure 1;
(11, 17–21)]. Direct transmission within a flock is considered
to occur through cloacal drinking which transfers materials
from the vent region into the ceca through waves of reverse
peristalsis (22–25). Horizontal transmission of H. meleagridis
has occurred by comingling and contact of infected with
uninfected turkeys, regardless of floor type and in absence
of H. gallinarum (26, 27). The breed of turkeys or chickens
may affect susceptibility to H. meleagridis infection, although
male and female turkeys appear to be similarly susceptible;
however, research is limited on the possible influence on disease
development (28–31).

BIOLOGY OF H. meleagridis

H. meleagridis is a unicellular parasite belonging to the phylum
Parabasalia, class Tritrichomonadea, order Tritrichomonadida,

FIGURE 1 | Complex transmission of Histomonas meleagridis. Histomonads can be consumed by Heterakis gallinarum and can be subsequently incorporated into

the nematode ova. Carrier birds such as chickens can harbor the cecal worms and shed infected heterakid eggs into the environment. Earthworms, flies, and other

invertebrates can serve as intermediate mechanical vectors of infected heterakid ova. Turkeys may ingest infected materials such as excreta or invertebrates

contaminated with the protozoa. Once inside the intestine, the histomonads will migrate to the ceca, replicating and degrading the cecal lining. Direct transmission

can occur rapidly from turkey-to-turkey due to cloacal drinking and reverse peristalsis movement of materials into the vent region (Created with BioRender.com).

and family Dientamoebidae (32, 33). Interestingly, the
morphology can change between flagellated and amoeboid forms
depending on location within the ceca or liver, respectively, with
an average histomonad size of 10–14µm [Figure 2; (3, 5, 9, 34–
36)]. The cell morphology and associated phenotypic changes
have been mimicked experimentally in vitro (37). H. meleagridis
typically exhibits a single-flagellated form within the cecal
lumen, but this flagellum is lost upon mucosal invasion with
the development of pseudopods (38). H. wenrichi (alternatively
Parahistomonas wenrichi), a non-pathogenic but separate
species, appears as 4-flagellated or amoeboid in form with a
larger size of 20–30µm (16, 39–41). H. meleagridis reproduce
via binary fission; lacking mitochondria, these protozoa rely on
hydrogenosomes as modified organelles for energy metabolism
(3, 42–44).

Early in vitro work indicated that histomonads can be grown
at temperatures of 36.5–37◦C but not when reduced to 18–
22◦C for 48 h or 5◦C for 24 h, suggesting that environmental
survival of protozoa shed from infected birds is not likely to be
culpable in mass infectivity (35). Currently, in vitro propagation
occurs anaerobically at 40–41◦C with a Medium 199-based cell
culture and bacterial co-culture to simulate the body temperature
and environment of a healthy turkey (44, 45). Dwyer’s medium
comprised of Medium 199, chick embryo extract, horse sera, and
rice powder has been utilized, although other cell culture media
such as L-15, MEM, or RPMI have been substituted effectively
for Medium 199 (46). Modified Dwyer’s medium, which removes
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FIGURE 2 | Conventional DIC photomicrographs of Histomonas meleagridis. Amoeboid or irregular morphology of histomonads at 200× (A) and 1,000× (B) total

magnification; spherical morphology of histomonads at 200× (C) and 1,000× (D) total magnification. The arrows indicate selected histomonads (Created with

BioRender.com).

the chick embryo extract and increases rice powder from 0.096
(w/v) to 0.8% (w/v), improved histomonad growth following
revival of aliquots from liquid nitrogen and serial passage (47).
Further increasing rice powder from 0.8 (w/v) to 4–8% (w/v)
resulted in a nearly 10-fold growth increase, but this was not
sustained longer than 2 days as the remaining nutrients became
exhausted (48). Cholesterol supplementation has improved H.
meleagridis growth in vitro, even in the absence of serum,
which is typically required for adequate growth (49). Chute
and Chute (50) cryogenically preserved H. meleagridis isolates
in combination with 8% dimethylsulfoxide for up to 345 days
and demonstrated viability of infection to birds following thaw.
Honigberg and Dwyer (51) demonstrated that either 5 or 10%
dimethylsulfoxide effectively preserved the protozoa in cryogenic
storage as observed after 7 weeks; therefore, isolates could be
maintained for future studies.

Field isolates of H. meleagridis can be cultivated from infected
carcasses, particularly cecal samples, if shipment to a laboratory
occurs soon after bird mortality with greater recovery potential
if temperatures are maintained above 30◦C (52). In vitro
growth from cecal samples can usually be confirmed between
1 and 4 days after inoculation into culture media; intracloacal
inoculation back into live birds can be used to further diagnose
H. meleagridis as the original cause of infection in field outbreaks
(53). Histomonads have also been isolated effectively from liver
lesions, but in vitro propagation attempts in absence of bacteria
have been unsuccessful (16, 34, 53, 54). Attempts to culture the
protozoa in absence of live bacteria and serumwere achieved with

difficulty, but supplementation of palmitic acid or cholesterol was
required along with antibiotic-killed bacteria and hamster liver
extract; however, these results have not been easily replicated
(45, 55–57). In vitro growth ofH.meleagridiswas better sustained
with undefined populations of turkey cecal bacteria than with
mixed chicken cecal bacteria (58). Moreover, histomonads have
been grown with supplementation of single species of bacteria
and monoxenic cultures have been established (59, 60).

PATHOGENESIS

After parasitizing and degrading the cecal tissue, histomonads
migrate to the liver via the hepatic portal blood; the resulting
pathognomonic lesions are exhibited as target-like liver lesions
and caseous cecal cores [Figures 3, 4; (44, 61, 62)]. Histomonads
have been observed in the bursa of Fabricius of 6-week-
old commercial chickens diagnosed with histomonosis, further
implicating the intracloacal route for natural infection (63).
Although less common, H. meleagridis has also been shown
to infect areas including the brain, pancreas, heart, lungs,
kidneys, and spleen (64–68). Turkeys are especially vulnerable
to histomonosis, and chickens (Figure 5) are less susceptible
but function to serve as reservoirs and can develop the disease
(17). Cloacal transmission seems less important to chickens than
turkeys for transfer of histomonosis, as horizontal transmission
did not occur in the absence of vectors and was not exacerbated
with Eimeria adenoeides challenge, which is not surprising as
this Eimeria spp. is turkey-specific (69). While cloacal drinking
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FIGURE 3 | Classic lesions resulting from Histomonas meleagridis infection.

(A,B) Caseous cheese-like cecal core; (C,D) focal necrosis resulting in

target-like liver lesions (Created with BioRender.com).

is a well-known occurrence in chickens and turkeys, species
differences in horizontal transmission could result from higher
litter moisture and huddling behavior in turkeys than chickens,
allowing greater survival and subsequent transmission of H.
meleagridis in the absence of vectors (22, 69). Mortalities in
turkey flocks can reach 80–100%; organic farms co-rearing
turkeys and broilers have struggled with series of outbreaks
with broiler and turkey mortalities reaching 100 and 67.2%,
respectively, possibly due to co-infection with Eimeria spp. (19,
44, 70). Susceptibility of different poultry species and genetic
lines has only been evaluated briefly, but infection incidence and
severity do appear different (28, 29, 68, 71, 72). In chickens, sex-
related variations and environmental differences have influenced
intestinal structure and function; therefore, it seems reasonable
that these differences could factor into the incidence and
severity of histomonosis (73). In addition to age and genetic
line of poultry, variations in mortality rate and lesion severity
could result from strain-specific differences in virulence of H.
meleagridis or exposure dose (23, 74, 75). Although chickens were
previously regarded as sub-clinically affected by histomonosis,
outbreaks have occurred recently in broiler breeder and free-
range flocks (76, 77). Interestingly, recent research has indicated
thatH.meleagridis infection and replication are similar regardless
of chicken genetic line, further suggesting that chickens may be
asymptomatic or sub-clinically infected but not actually resistant
to infection (78).

A virulent clonal strain of H. meleagridis induced similar
mortality and pathology in turkeys regardless of age, sex, or
dose (31). A low dose of 3,162 histomonads induced 100%
mortality in British United turkeys (BUT-Big6) by 2-weeks
post-infection (30). Three different genetic lines of turkeys
showed similar susceptibility to histomonosis, although wild
Canadian turkeys exhibited higher mortality rates and lower liver
lesions than BUT-Big6 or Kelly-Bronze lines (72). Concurrent
infection with E. tenella can aggravate the development of
histomonosis in broiler chickens, specifically increasing liver
lesions (79). Conversely, turkeys co-infected with E. adenoeides
and H. meleagridis resulted in significantly reduced cases of
histomonosis (24). The dosage and timing of Eimeria vaccination
of chickens will influence the severity of aggravation due to
histomonosis, although further co-infection studies are necessary
to conclude effects of combined pathogens to severity in chickens
and turkeys (80).

Bradley and Reid (81) inoculated gnotobiotic (bacteria-
free) turkeys with H. meleagridis in combination with either
Escherichia coli, Bacillus subtilis, or Clostridium perfringens and
suggested that a combination of the protozoa and bacteria
populations was required to initiate histomonosis. Incidence of
H. meleagridis infection in gnotobiotic chickens and turkeys
increased when concurrently challenged with a mixture of E.
coli and C. perfringens, whereas histomonosis was lessened with
administration of a single bacteria species (82). Healthy turkey
ceca contain predominantly (>50%) anaerobic Lactobacillus
spp. and relatively low (<1%) coliforms and Enterococcus
spp. (61). Salmonella typhimurium, E. coli, and H. meleagridis
infections have been found concurrently in broiler chicken
flocks (83). Cultures of H. meleagridis were identified to favor
obligate anaerobes of the Clostridiaceae family, aerotolerant
anaerobes of the Bacteriodaceae family, or facultative to obligate
anaerobes of the Baccillaceae family (84). The Proteobacteria
phylum increased in relative abundance in birds with severe
histomonosis, but E. coli populations were maintained at the
same level in turkeys regardless of the level of gut inflammation
(85). E. coli mutually benefited histomonad growth in vitro
and increased cecal involvement in vivo (60, 86). Co-infection
of laying chickens with H. meleagridis and E. coli produced
severe dysbiosis, increased microscopic lesions, and enhanced
colonization of the cecal tissue (86). Recently however, the
gastrointestinal pathology and E. coli load were not associated
with severity of histomonosis, while microbiota composition and
dysbiosis were directly attributed to the severity of inflammation
(85). In addition to providing direct nutrients, bacteria appear to
serve a mutualistic role with the protozoa by supplying essential
proteins and metabolites during replication, as well as regulating
in vitro environmental conditions (87).

Histomonosis has been produced in experimental settings
with the intracloacal inoculation of infected liver, cecal tissues,
or with a suspension of in vitro cultivatedH. meleagridis (15, 62).
Variations in host resistance, challenge dose, pathogen virulence,
and frequency of exposure are some factors influencing disease
severity (88). A case reproductive rate of 8.4 was estimated in
a horizontal transmission study and turkeys recovered from
histomonosis were shown to remain infectious for 5.7 days
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FIGURE 4 | Pathogenesis of histomonosis. The parasite induces a severe inflammatory reaction in the ceca. The inflammatory reaction is followed by necrosis, with

dysbiosis causing increased permeability in the ceca (B). This allows bacterial and parasitic translocation to the liver via hepatic portal blood; the resulting

pathognomonic lesions are exhibited as target-like liver lesions and caseous cecal cores (A). Histomonas meleagridis in the liver of a turkey, Periodic acid–Schiff (PAS),

40× (C). From the liver, bacteria and histomonads migrate to other parenchymal organs (spleen, heart, kidneys, pancreas, lungs, brain, bursa of Fabricius) causing

chronic systemic inflammation and multiple organ failure (Created with BioRender.com).

after recovery (89). A retrospective data analysis implicated
an increased relative risk of male commercial turkey grow-out
flocks to contracting histomonosis when located within 1mile
of a broiler breeder flock (90). Lund (74) reported a positive
correlation between infective dose (102-105 histomonads/birds)
and mortality; conversely, a low dose of 10 histomonads
induced 100% mortality in turkeys (91). Liebhart and Hess
(92) administered a virulent isolate via oral administration to
1-day-old turkeys with successful initiation of histomonosis, but
the oral route of infection remains controversial. Presumably,
histomonads cannot survive the low pH in the ventriculus unless
protected by a vector such as Heterakis spp. or with a neutral to
alkaline pH in the gastrointestinal tract to allow survival of the
protozoa (67, 93). H. meleagridis has been shown to persist up
to 9 h in non-chlorinated water and fecal droppings and up to
6 h on materials such as feathers and feed (94). Histomonads
are fragile when shed unprotected into the environment, but
not much is known about the methods for disinfection (95).
Consequently, the importance of H. meleagridis-infected water
as a possible source of involvement for cloacal transmission has

been suggested as an important risk factor (94, 96). Although
previously disregarded to form resistant structures, cyst-like
forms have recently been described in vitro, but the importance
of these structures to pathogenesis is not yet understood
(95, 97–100).

Oral challenge with virulent histomonads on day-of-hatch has
previously induced histomonosis in turkeys (31), although the
oral route in absence of vectors remains somewhat controversial
in older birds. Recently, challenge with wild-type H. meleagridis
before feeding on day-of-hatch induced disease regardless of
oral or cloacal route, presumably due to the near-neutral pH in
the proventriculus-ventriculus region allowing the histomonads
to survive and parasitize the ceca (101). Interestingly, oral
challenge with virulent H. meleagridis at day 21 did not induce
histomonosis, further suggesting that the cloacal route rather
than the oral route is the primary method for transmitting
unprotected histomonads in older birds; however, the oral route
should not be disregarded for young birds (101).

Tyzzer (102) indicated the survival of H. meleagridis within
heterakid ova for 2 months during winter temperatures.
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FIGURE 5 | Field case of histomonosis in a layer operation. Turkeys are especially susceptible to Histomonas meleagridis infection, although other gallinaceous birds

such as chickens, pheasants, and peafowls can be affected. In this figure, a cage layer hen in a commercial operation with multiple ages and a fly problem developed

clinical signs and lesions of histomonosis without the presence of Heterakis spp. (Created with BioRender.com).

Heterakids can thereby serve as primary transmitters for
initial introduction of disease due to infected ova withstanding
environmental conditions for long durations (18, 103–105).
Histomonads are released when the infectedHeterakis spp. larvae
hatch in poultry (106, 107). Lifetime fecundity of H. gallinarum
is regulated by both inverse density and density-dependent
mechanisms (108). Alphitobius diaperinus (darkling beetle or
lesser mealworm) function as environmental contaminants for
accidental introduction of H. meleagridis into a flock rather
than serving as a primary transmitter like Heterakis spp. (109).
The importance of A. diaperinus as a reservoir is uncertain due
to the persistence of H. gallinarum and H. meleagridis DNA
within dead beetles and litter from depopulated houses even after
long periods (109, 110). Lumbricus spp. (earthworms) are not
required for completion of the heterakid larvae or histomonad
life cycles, serving rather as paratenic hosts and mechanical
vectors if consumed by poultry (12, 20, 21, 111).

PHYLOGENETIC AND MOLECULAR
CHARACTERIZATIONS

Indirect and blocking ELISAs have been developed for detection
of H. meleagridis but have not yet been rigorously tested
for specificity or cross-reactivity to other related protozoa
commonly found in field isolates (112, 113). An indirect
sandwich ELISA has been used successfully to identify H.
meleagridis infections in pullet and layer flocks (114). Other
parasites such as Tetratrichomonas gallinarum and Blastocystis
spp. may be present in field outbreaks and potentially confused
with H. meleagridis (42, 115). Polymerase chain reaction (PCR)

has been successfully utilized to detect H. meleagridis in
samples and infected birds, as well as to differentiate from T.
gallinarum and Blastocystis spp. (89, 116–120). DNA presence
does not necessarily indicate active infection; therefore, diagnosis
of histomonosis is recommended to include microscopy to
confirm presence of the protozoa (78, 110, 115). H. meleagridis
conforms similarly to other trichomonad parasites in structure
and division; close phylogenetic relationships to D. fragilis and
Tritrichomonas foetus were identified based on gene sequencing
analysis of β-tubulin and small subunit rRNA genes (40, 121–
123). Analysis of 18S rRNA and internal transcribed spacer (ITS)-
1 sequences has demonstrated a clear distinction between H.
meleagridis isolates and other trichomonads such as D. fragilis
(98). Genetic sequencing and phylogenetic analysis of 5.8S rRNA
and the flanking ITS-1 and ITS-2 regions revealed marked

genetic diversity of H. meleagridis isolates (33). Furthermore,

combinations of data obtained from Nanopore and Illumina
sequencing platforms resulted in the assembly of genome

sequences exhibiting gene deletions and truncations for two

phenotypically different H. meleagridis isolates, indicating a

difference in attenuated and virulent strains (124).
Analysis of 18S rRNA, α-actinin1, and rpb1 genetic loci

revealed two different phylogenetic clusters of H. meleagridis
isolates in Europe and further identified two genotypes; in
contrast, a probed sequence and partial 18S rRNA have displayed
genetic similarity of six purportedly different isolates (33, 125).
Biological relevance and incidence of these two distinct genotypes
have not yet been fully elucidated (19, 125); although Grafl
et al. (126) described a field outbreak of male turkeys with H.
meleagridis genotype 2 infection as having severe typhlitis with
limited hepatic lesions. Usingmicromanipulation, clonal cultures
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of H. meleagridis and other protozoa have been established
which enable researchers to better understand pathogenicity,
morphology, and genetic differences between species (75).
Mono-eukaryotic cultures have also been established from
mixed field samples containing H. meleagridis, T. gallinarum,
and Blastocystis spp., and these monocultures could potentially
better mimic field strains as opposed to clonal cultures while
removing the interference of other protozoa (127). Thirty-seven
unique surface and intracellular antigens were identified through
analysis of a cDNA library generated from a monoculture and
screened against polyclonal anti-H. meleagridis rabbit sera (128).
A cDNA library generated from a non-clonal culture resulted
in the identification of 3,425 putative genes belonging to H.
meleagridis (84). Hydrogenosome protein-coding sequences and
three different α-actinin proteins (α-actinin1, α-actinin2, α-
actinin3) were identified and shown to be immunogenic to
turkeys and chickens (128, 129). Humoral immune response
to H. meleagridis α-actinin1 and α-actinin3 was higher and
induced sooner in specific-pathogen-free layer-type chickens
as compared to meat-type chickens (68). Shotgun proteomics
has been utilized to compare virulent and attenuated mono-
eukaryotic monoxenic H. meleagridis; cysteine proteases were
the predominant lytic molecules in the virulent exoproteome
as compared to the attenuated isolate (130, 131). Mazumdar
et al. (132) completed a de novo transcriptome sequencing
study utilizing single-cell cloned virulent and attenuated isolates,
demonstrating different gene families. Proteomic comparisons
have detected expression differences including upregulation of
stress response, peptidase, and metabolic proteins in a low-
passaged virulent H. meleagridis isolate; whereas an attenuated
strain had higher expression of cellular division proteins
(133, 134).

CHEMOTHERAPY AND PROPHYLAXIS

Tyzzer (135) tested several trivalent arsenicals (including
arsenious acid, atoxyl, neoarsphenamine, and tryparsamide)
as chemotherapeutics against histomonosis, but with
inconsistent results. Pentavalent arsenicals such as nitarsone
(4-nitrophenyl-arsonic acid; Histostat-50TM), carbasone
(4-carbamylamino-phenylarsonic acid), and roxarsone (3-
nitro-phenylarsonic acid) offered fewer toxicity concerns
than the trivalent compounds for poultry but also exhibited
a narrower chemotherapeutic index (16, 136). Carbasone was
highly effective in prevention of a field isolate of H. meleagridis
(136). Nitroimidazole compounds (including dimetridazole,
metronidazole, ornidazole, and tinidazole) were effective in
vitro at concentrations of ≥10µg/ml and in vivo at 200 ppm in
the feed, but were toxic if overdosed (137–141). Dimetridazole
was highly effective for treating histomonosis and was rapidly
metabolized and eliminated by turkeys with no detectable tissue
residue (<0.02 ppm) following 3-day post-administration (142).
Enheptin-T (2-amino 5-nitrothiazole) was used at 0.05% in the
feed with effective prophylaxis against histomonosis, but average
weights of turkeys were suppressed in direct proportion to
drug inclusion (143). Nithiazide [1-ethyl-3-(5-nitro-2-thiazolyl)

urea] was an effective therapeutic in turkeys when administered
at 3-day post-infection and was somewhat better tolerated
than enheptin-T (144). Benzimidazole compounds, such as
albendazole and fenbendazole, were effective in vivo when
provided prophylactically and mechanism of action was
attributed to damage of heterakid larvae or histomonads residing
in the cecal lumen (145).

Research with H. meleagridis waned around the 1970s, partly
due to effective antihistomonal compounds alleviating disease
outbreak, but research increased again in the early 2000s
following the removal of effective drugs and feed additives from
poultry production in the European Union and the United States
which resulted in a re-emergence of disease due to lack of
treatment options (6, 67, 146–148). The nitroimidazoles and
nitrofurans were banned in the United States in 1987 and
1991, respectively (90, 149). Nitarsone was the last-remaining
prophylactic drug for the treatment of histomonosis until the
voluntary removal from the US market in late 2015 because
of consumer carcinogenic concerns (147, 149–151). Despite
occasional success with antihistomonal candidates in vitro,
subsequent in vivo evaluations have failed to conclusively
prevent or treat histomonosis (150, 152–156). Boric acid,
deoxycholic acid, sodium chlorate, and sodium nitrate are among
just a few chemoprophylaxis candidates with antimicrobial or
antifungal properties that have been recently tested with in vitro
evaluation showing significant antihistomonal properties but
with no effective prophylaxis in vivo (154–156). The antibacterial
properties of some candidate antihistomonal compounds are
known to impact effectiveness in vitro, but histomonads can
survive 48 h after destruction of xenic bacterial populations (16,
62, 70, 157). Further complicating the problem, H. meleagridis
isolates have varied in susceptibility to candidate compounds
in vitro and in vivo (30, 62, 70, 152, 158). Drug resistance was
not previously known to occur with H. meleagridis; however,
some isolates have developed partial resistance to nitarsone
and metronidazole, further emphasizing the necessity of new
solutions to prevent histomonosis and supporting the likelihood
of different populations of protozoa and corresponding drug
susceptibility (38, 159, 160). A comparatively reliable compound
to replace the previously used dimetridazole and nitarsone drugs
is critically needed, but mitigation of histomonosis remains
elusive and inconsistent (6, 16). Adaptations likely need to
occur for concentration and administration of compounds for
in vivo protection, but effective in vitro evaluation is the initial
key step to determining whether to devote resources toward a
live animal study (150, 161). In vitro methods are useful for
initially evaluating candidate chemoprophylactics, but emphasis
is placed on in vivo evaluation against more than one isolate ofH.
meleagridis before concluding effectiveness.

Paromomycin, an aminoglycoside antibiotic that inhibits
protein synthesis, has been effective prophylactically against
histomonosis with the target site of action identified as a small
subunit rRNA (162–164). Inclusion of paromomycin in the feed
at 200 and 400 ppm also reduced Clostridium perfringens counts
in excreta while reducingH.meleagridis-relatedmortalities under
experimental conditions (163). Unfortunately, paromomycin
seems limited to prophylactic rather than therapeutic properties,
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as three commercial turkey flocks in Canada were not successful
in reducing mortalities with paromomycin sulfate treatment in
the feed (165). Taken together, paromomycin sulfate should be
further evaluated as a prophylactic compound for in-feed or
in-water administration to prevent H. meleagridis infection.

In absence of approved effective drugs or vaccines for
histomonosis, the prevailing measure for disease prevention is to
minimize exposure toH. meleagridis.Worm treatment programs
and flock management to prevent H. gallinarum and accessory
hosts such as earthworms and darkling beetles will help to reduce
histomonosis incidence, since histomonads cannot survive for
long durations if shed unprotected directly into the environment
(15, 16). Limiting exposure tomechanical vectors such as rodents,
insects, or contaminated litter is critical to reducing potential
contamination. Prompt removal of infected birds and utilization
of migration barriers are additional control strategies to prevent
rapid horizontal transmission in turkey flocks, while de-worming
options would be more appropriate to control histomonosis in
chickens based on the differences in bird-to-bird transmission
(26, 41, 69).

PHYTOCHEMICALS FOR PREVENTION OF
HISTOMONOSIS

Phytogenic compounds offer great potential as alternatives to
mitigate histomonosis and improve poultry health since the
exclusion of antibiotics (166). Herbal products have received
much interest for antihistomonal properties, but in vitro results
are often encouraging while in vivo trials yield unsuccessful
protection (30, 152, 158). ProtophytTM and NatustatTM, plant-
derived proprietary combinations of herbal extracts, were
successful antihistomonal products in vitro but generated only
limited success in field trials when provided prophylactically (30,
158, 167–169). Further complicating the search and development
of antihistomonal drugs, different monoculture strains of H.
meleagridis have exhibited varied susceptibilities to natural
organic compounds (70). Two proprietary blends of plant extract
products containing unspecified amounts of Capsicum essential
oils exhibited antihistomonal and antibacterial effects after only
48 h in vitro; furthermore, mode of action was suggested as
cell membrane disruption directly on the histomonads rather
than attributed to indirect effects of antibacterial reduction, but
in vivo studies have not yet been conducted (170). Recently, a
dietary supplement (adiCoxSOLPF) comprised of a proprietary
mixture of herbal extracts was effective prophylactically and
therapeutically against histomonosis in a turkey breeder flock
(171). With increasing demand for organic-raised poultry,
naturally derived plant compounds offer a certain attraction as
they could potentially be utilized in both organic and traditional
production facilities. Plant-based compounds are often relatively
cheap to produce, leading to a greater likelihood for industry
application (161).

Quinine, an alkaloid obtained from Cinchona tree bark,
has been successfully utilized to combat malaria (172). Early
researchers postulated its potential for treating histomonosis;
however, researchers hypothesized that an antihistomonal

compound would have to be active more than just locally
within the intestines because H. meleagridis embeds within the
cecal lining and migrates to hepatic tissue (2, 103). Tyzzer
(135) observed no reduction in histomonosis following injection
of unspecified levels of quinine into the veins or muscles of
turkeys. Delaplane and Stuart (173) reported quinine sulfate to
be ineffective against H. meleagridis infection but did not specify
the dose or route of administration. Farmer (174) injected 0.1ml
of 10% quinine iodobismuthate with no apparent protection
against histomonosis. Tyzzer and Fabyan (103) suggested that a
possible reason for the failure of compounds utilized in human
amebic infections to protect poultry from histomonosis could
be due to histomonads exhibiting a predominantly flagellated
form rather than solely an amoebic form, leading to some
products being amebicidal but not antihistomonal. Ensuring
delivery of chemoprophylactic candidates directly to the ceca
is a challenge, and quinine, although recently shown to be an
effective antihistomonal in vitro, may not have reached the ceca
in sufficient concentration to impair the protozoa when evaluated
in vivo (175). Previously, chickens recognized the bitter taste
of quinine and reduced feed intake of diets containing more
than 0.2% quinine, but threshold levels have not been established
for turkeys (176). A 0.2% dietary inclusion of quinine was
hypothesized to be maximum for turkeys as well; however, the
days 0–10 body weight gain in the quinine diets was not different
(p > 0.05) as compared to the basal diet (175). Turkeys may
perceive the bitter taste of quinine differently from chickens and
subsequently have higher threshold levels than 0.2%, but the
impact to performance at higher inclusion levels is unknown.
Other antimalarial compounds such as the herb Artemisia annua
and plant extracts have been tested against H. meleagridis with
limited success in vitro but no protection was transferred to birds
when tested in vivo (152, 170).

IMMUNE RESPONSE TO H. meleagridis

INFECTION

Turkeys and chickens recovered from H. meleagridis infection
have shown a degree of natural resistance, although both species
may retain histomonads sub-clinically and thereby serve as
carriers (5, 177). Joyner (178) administered 0.05% dimetridazole
in the water toH. meleagridis-infected turkeys, and the recovered
turkeys were resistant to re-infection which suggested a level of
acquired immunity. Protective immunity was observed in birds
that recovered from histomonosis and were then subsequently
re-infected with H. meleagridis, but further attempts with
immunization have been inconsistent (18, 102, 103, 177, 179,
180). Sera recovered from immune birds failed to confer robust
protection to histomonosis when injected into the peritoneum
of naïve poultry that were subsequently challenged intracloacally
withH. meleagridis-infected liver homogenate (180–182). Passive
immunity (via peritoneal injection of antisera) or active
immunity (via intramuscular or intraperitoneal injection of
lysed clonal H. meleagridis) failed to protect against wild-type
challenge (183, 184). Turkeys surviving H. meleagridis infection
have exhibited resistance to re-infection while still maintaining
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populations of the protozoa within the ceca (182). Humoral
immunity does not seem to be the primary component of
protective immunity to histomonosis, although antibodies may
work in combination with local immunity initiated by leukocytes
in the ceca (182).

Clarkson (181) reported that turkeys exhibited decreased
albumin and elevated globulin concentrations at 12-day post-
infection as compared to the non-challenged controls. Similarly,
albumin concentrations greatly decreased by 9-day post-
infection in chickens subjected to H. meleagridis infection, with
normal levels of albumin and globulin fractions restored by
12-day post-infection, suggesting disease recovery (185). The
immune barrier in purportedly histomonosis-resistant chickens
was suggested to be limited to cecal epithelial tissue as H.
gallinarum could disrupt and overcome any developed immunity
(74). Natural and experimentalH.meleagridis infection produced
antibodies in both chickens and turkeys but transfer of antibodies
to naïve birds did not successfully confer protection (180,
184). Subsequently, Clarkson (180) suggested that antibody
production alone was not a good indicator of histomonosis
recovery or immunity to re-infection. Antibody titers of
passively immunized birds were increased compared to pre-
immunized groups; however, no protection was induced against
intracloacal infection with 3 × 105 H. meleagridis, possibly due
to the experimental challenge dose not accurately mimicking
a natural challenge, antibody levels lower than needed for
protection, or more likely, serum antibodies not primarily
responsible for protection against H. meleagridis infection (184).
Immunoglobulin A (IgA) levels have been shown to increase
throughout the intestine, while immunoglobulin G (IgG) levels
particularly increased in the ceca following infection with an
established clonal H. meleagridis isolate (186).

Heterophils begin to accumulate around histomonads
following initial infection, but the protozoa secrete tissue-
degrading enzymes to phagocytose leukocytes (44). Total
numbers of heterophils increase throughout the body as
H. meleagridis migrates to parasitize other tissues; other
leukocytes involved include macrophages, giant cells, and plasma
cells (44, 64, 119, 187). Once the histomonads invade the cecal
submucosa or enter the portal blood, degeneratingH. meleagridis
can be observed within the gut-associated lymphoid tissue (44).
Plasma levels of glutamic oxaloacetic transaminase can indicate
cellular damage and this enzyme can increase in turkeys with
liver and cecal damage from histomonosis (28, 29). CD4+ and
CD8α+ T cells have been implicated in the immune response
to histomonosis (188–190). Recently, populations of CD4+,
CD8α+, and non-CD4+CD8α+ T cells in the liver and spleen
of turkeys were induced following administration of attenuated
H. meleagridis as a putative vaccine and subsequent virulent
infection (191). Comparative study of chickens and turkeys
indicated that vaccination with a monoxenic, clonal culture
of live-attenuated H. meleagridis resulted in higher systemic
immune response in turkeys as compared to chickens, with
increased levels of interferon (IFN)-γ producing CD4+ T cells
confirmed in the spleens of infected chickens as compared
to turkeys (191). Increased T-helper cell type-1 (Th1) and
type-2 (Th2) cytokine responses of IFN-γ and IL-13 occurred

in chickens which were co-infected with H. gallinarum and
H. meleagridis (192). Chickens developed a stronger pro-
inflammatory innate immune response than turkeys, along
with higher antibody levels, with specific increase in the Th2
response in cecal and liver tissues to mitigate infection (188).
Despite the extracellular nature of H. meleagridis which would
be expected to stimulate differentiation of Th2 cells, immune
response to this pathogen was suggested to be dominated by
Th1 rather than Th2 cells (190–193). Turkeys appeared to have
a delayed and uncontrolled immune response as compared
to chickens when infected with H. meleagridis, allowing
greater tissue destruction and ultimately higher mortality in
turkeys (194).

ATTEMPTED VACCINATION WITH
ATTENUATED ISOLATES

Tyzzer (102) evaluated avirulent field strains of H. meleagridis
for immunization against histomonosis, but inoculation of
turkeys was required at a young age and constant re-infection
was necessary to maintain a level of effective protection.
Partial protection was conferred with an attenuated isolate
against subsequent cloacal challenge with a virulent isolate;
however, administration of histomonads as an immunization
incorporated into Heterakis spp. ova and likewise challenged
did not satisfactorily confer protection (195, 196). The resulting
conclusion was that the low-virulent histomonads were
not introduced in sufficient numbers via heterakid ova to
successfully initiate immune response to protect against
virulent challenge (195, 196). Tyzzer (102, 179) reported
attenuation of H. meleagridis following repeated passage
in vitro but attempts with immunization did not produce
consistent protection. An isolate repeatedly passaged in vitro
for 6 years resulted in loss of immunizing ability to chickens
and turkeys (196). Further study observed a steady decline
of immunizing ability of attenuated histomonads after 730,
766, and 1,000 passages in vitro (197). Specifically, passage
1,000 was non-pathogenic and had lost nearly all ability to
confer protection to either chickens or turkeys against virulent
challenge (197).

Long-term serial passaging in vitro places selective pressures
on H. meleagridis and co-cultured bacterial populations.
Freshly obtained field samples of histomonads could not
grow in the limited bacterial populations of attenuated
culture media; similarly, the attenuated protozoa were unable
to survive with the field isolates of cecal bacteria (196).
Importantly, in vitro attenuation of H. meleagridis occurred
independently of bacterial populations in culture media (60).
In vitro growth of H. meleagridis Hm-L1 strain at 41.5◦C
for 9 weeks resulted in low pathogenicity while histomonads
stored in liquid nitrogen maintained their original virulence
(198, 199). Serial in vivo passaging of the Hm-L1 attenuated
strain from chicken-to-chicken or turkey-to-turkey restored
the strain to original virulence (198, 199). Differences in
virulence have been found within H. meleagridis isolates
obtained from different geographical locations, in addition
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to varied loss of pathogenicity following repeated passaging
(131). Furthermore, subpopulations of serially passaged
monocultures originating from the same parental isolate
have shown a marked difference in virulence, supporting the
idea of genetic mutation through repeated serial passaging
in vitro (131). Long-term passaging in vitro (>290 serial
passages) resulted in a phenotype shift toward greater tenacity
of histomonad survival at lower temperatures and improved
growth rates (37). Gross lesion scoring and histology samples
have demonstrated the lowered pathogenicity and reduced
ability of attenuated isolates to invade host tissues (200).
After 295 serial passages in vitro, an avirulent strain of
H. meleagridis parasitized only the cecal region with no
translocation to other tissues in chickens or turkeys, while a
virulent strain could be identified in cecal, hepatic, and lung
tissues (200).

Vaccination attempts for histomonosis have yielded
some success in controlled experimental conditions, but
a histomonosis vaccine has not yet been developed for
commercial application (91, 101, 164, 183, 194, 201–203).
A clonal in vitro attenuated strain of H. meleagridis administered
cloacally as a vaccine at day 14 protected turkeys which were
subsequently challenged on day 42 with a virulent strain;
in-contact turkeys from the vaccination were also resistant to
subsequent infection (183). Furthermore, birds which were
administered an attenuated clonal strain as a vaccine were
negative for H. meleagridis DNA in the liver (183). Oral
administration of in vitro attenuated H. meleagridis to turkeys
at day-of-hatch has protected against subsequent wild-type
challenge with no adverse effects to performance data during
the vaccination phase; the oral route would be a preferable
administration route for the poultry industry (91). Under
experimental conditions, vaccination of layer chickens with
attenuated histomonads prevented a drop in egg production
upon virulent challenge and pathological histomonosis lesions
were also reduced (203). In vivo serial passaging five times
in chickens and turkeys did not revert virulence to an in
vitro attenuated strain, demonstrating stability and safety
of attenuated histomonads as vaccine candidates (204). An
attenuated clonal strain (passage 295) induced cross-protective
immunity in turkeys against subsequent challenge with
heterologous virulent isolates; however, vaccination occurred
at 1 day of age and a booster vaccination occurred at day 14,
with challenge administration at 6 weeks of age (205). Repeated
intracloacal passaging of H. meleagridis in turkeys produced an
isolate of low virulence which was successfully used to induce
protection against a virulent strain (206). Candidate vaccination
isolates have been shown distinctly attenuated as indicated
by lowered mortalities (p < 0.05), lowered lesion scores (p <

0.05), and similar body weight gain (BWG) (p > 0.05) as the
non-challenged controls during vaccination phases (101). This
information is consistent with previous research indicating
attenuation of H. meleagridis following repeated in vitro passage
(102, 131, 179, 196). Importantly, administration of non-clonal
vaccination isolates on day 14 has conferred protection against
challenge with homologous and heterologous virulent isolates;
moreover, these conditions potentially better portrayed the field

environment where turkeys are exposed to multiple isolates
(101). More research remains necessary for histomonosis
vaccine development and to elucidate practical methods for
industry application.

FINAL REMARKS

Biosecurity measures to prevent exposure to H. meleagridis or
vectors of this protozoa are important to reduce histomonosis
incidence due to the absence of vaccines or approved drugs.
Proper management practices are critical to reducing disease
incidence, as birds experimentally reared in a non-challenged
environment do not contract histomonosis. Although separate
rearing of poultry (e.g., turkeys raised separately from chickens)
can reduce disease incidence by limiting contact between
asymptomatic carriers and susceptible hosts, an effective
prophylactic or vaccination program is still greatly needed.
Pairing in vitro and in vivo experiments is necessary to ensure
effectiveness of candidate antihistomonal compounds.

Despite immunological research advancements, a
histomonosis vaccine has not been developed for commercial
application (164, 194, 202). Clonal in vitro attenuated
histomonads have been administered orally or cloacally
with efficacious protection in experimental settings against
virulent challenge without negative performance impacts;
however, evaluations have not yet occurred in field conditions
against heterologous, multi-isolate challenges (91, 183, 203).
Day-of-hatch oral vaccination with live-attenuated histomonads
was previously reported as effective, but a booster vaccination
was recommended at day 14 for established protection (91, 205).
Recent vaccination experiments demonstrated that day-of-
hatch administration of attenuated isolates either orally or
cloacally did not protect turkeys against subsequent wild-type
challenge (101), contrary to previously reported success with
oral vaccination at this age (91, 205). Unfortunately, utilizing
live histomonads would be difficult for industry application
due to the required intracloacal administration, as well as the
additional concerns of attenuation stability and inconsistent
protective immunity (6, 9). In practicality, the administration
of live-attenuated histomonads on a commercial scale with the
current methodologies seems unlikely due to the high cost of
cell culture propagation and application complexities, although
the benefit to further develop a histomonosis vaccine would be
tremendous (5, 202).

The overall review of literature reflects the difficulties in
mitigating histomonosis, especially in recent years. Dietary
inclusion of antihistomonal compounds such as quinine alone
was not encouraging for prevention of H. meleagridis infection
in turkeys, but vaccination appeared somewhat efficacious when
live-attenuated histomonads were administered at day 14 via the
cloacal route. Unfortunately, the protection against subsequent
wild-type challenge of vaccinated turkeys was neither consistent
nor robust throughout the literature. Further research should
be conducted with phytochemicals as these compounds may
offer a natural remedy for histomonosis that could be both
economical for the industry and acceptable to the consumer.
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Vaccination should be pursued further, especially to elucidate
the administration route, dose, and age of bird. Taken together,
this information is encouraging for immunity to histomonosis,
but the administration of a vaccine and possible requirement
for booster vaccination with the live-attenuated method is more
experimentally interesting rather than industry applicable.
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