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Intrinsic cancer cells and the tumor-infiltrating immune cells (TIICs) recruited to the immune microenvironment define the
malignant phenotype of lung squamous cell carcinoma (LUSC). Understanding more about the immune microenvironment of
LUSC enables the selection of high-risk patients who would derive benefit from immunotherapy. Based on large public LUSC
cohorts obtained from TCGA and GEO datasets, 22 types of infiltrating immune cell subgroups were evaluated by CIBERSORT.
Meta-analysis, principal component analysis (PCA), single-sample gene set enrichment analysis (ssGSEA), and hierarchical
clustering analysis were used to evaluate specific immune responses of LUSC. The distribution of TIICs of LUSC was entirely
different from normal. TIIC subpopulations were also found to be closely associated with clinical features and molecular subtypes.
Unsupervised clustering analysis revealed that three distinct TIIC subgroups existed with different survival patterns. TIICs are
extensively implicated in the pathogenesis and development of LUSC. Characterizing the composition of TIICs influences the
metabolism, pathological stage, and survival of tumor patients. It is hoped that this immune landscape could provide a more
accurate understanding of the development and immunotherapy of LUSC.

1. Introduction

Lung cancer is currently the leading cause of cancer-related
death in the world, with high morbidity and mortality, in
which non-small-cell lung cancer (NSCLC) accounts for
85% [1]. The main modalities of treatment in use for LUSC
currently include surgery, chemotherapy, radiation therapy,
molecular targeted therapy, and immunotherapy [2–4].
Notably, despite these options, the overall five-year survival
rate of lung cancer was 19%, one of the cancers with poor
prognosis [5]. Therefore, it is crucial to uncover effective bio-
markers for diagnosis and accelerate development of new
classes of antitumor targeted drug.

Immunotherapy, a strategy using immune checkpoint
inhibitors to inhibit or activate different immune cell sub-
types, can improve the antitumor immune response and get
better clinical outcomes. The prognosis of patients receiving
immune checkpoint blockers can be significantly improved
[6]. Thus, the distribution of TIICs in tumors has been a vital
subject for researches. TIICs, consisting of B cells, T cells,

macrophages, and other immune cells, are one of the essen-
tial components of the tumor microenvironment and play
an important role in monitoring antitumor immune
responses [7–9]. Drugs targeting specific TIICs have also
been found to be associated with better clinical outcomes
[10, 11]. Researchers have also revealed the dual role of TIICs
in improving body immunity and promoting tumorigenesis,
which means that there are complex and undiscovered inter-
actions between TIICs and tumor cells [10, 12].

Newman et al. developed a deconvolution algorithm
called CIBERSORT based on gene expression for electronic
quantification of various types of immunocytes in heteroge-
neous samples [13]. CIBERSORT can properly determine
the diversity and pattern of TIICs. 22 immune cell types
can be enumerated at a time by using CIBERSORT. Because
of these, this analysis has received increasing attention in the
research of cell heterogeneity [9]. In this research, we used
CIBERSORT to assess the proportions of 22 immune cell
types in tumor and adjacent samples and analyze their rela-
tionship with molecular subpopulations and overall survival.
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This study is aimed at exploring the intricate relationship
between intratumoral immune cell heterogeneity, tumor
molecular subtypes, and disease progression in LUSC.

2. Materials and Methods

2.1. Study Design and Participants. The TIIC composition
and clinical information used for analysis were obtained
from TCGA database up until October 2019. All gene expres-
sion data of primary LUSC patients were thought to be qual-
ified, without applying specific criteria for exclusion. Patients
with complete information on clinical characteristic, such as
gender, age, survival time, and TNM stage, were further ana-
lyzed while the rest of the patients were excluded. A total of
424 LUSC expression profiles were included for further
study. Table S1 summarizes LUSC patient demographic
information. We also screened eligible LUSC microarray in
the GEO dataset (http://www.ncbi.nlm.nih.gov/gds/) up
until October 2019. All chips with detailed data of gene
expression (containing at least 15 samples) from LUSC
patients were considered useful, without applying specific
criteria for exclusion. A total of 8 chips were included in
the further verified study (Table S2): GSE10929, GSE19804,
GSE21933, GSE33356, GSE33479, GSE33532, GSE51855,
and GSE67061. The flowchart in Figure 1 details the
study design.

2.2. Evaluation of Tumor-Infiltrating Immune Cells. Taking
P < 0:05 and ½logFC� > 1 as the cutoff criteria, we normalized
gene expression data and then identified the differently
expressed genes (DEGs) via the limma package. Then, the
CIBERSORT algorithm was used to explode the normalized
data, which infered the relative ratio of 22 types of infiltrating
immune cell. The CIBERSORT algorithm basing on parts of
reference gene expression values derives the proportions of
various immune cell types from tumor samples mixed with
kinds of multiple cells [12]. The CIBERSORT P value repre-
sents a measure of confidence in the results using Monte
Carlo sampling. Immune cell profiles from TCGA and
GEO databases were analyzed using CIBERSORT, and the
number of permutations was set to 100. The geometric mean
of GZMA and PRF1 was calculated to represent immune
cytolytic activity [14].

2.3. Meta-Analysis. Meta-analysis was manipulated by
Review Manager to infer each infiltrating immune cell in
LUSC. Continuous outcomes were reported as a standard
mean difference (SMD) with a 95% confidence interval
(CI). The DerSimonian and Laird method was characterized
as the standard method, which offered an average impact
estimate of the heterogeneity of effects across a series of chips.
We took P < 0:05 as statistically significant.

2.4. Principal Component Analysis (PCA). PCA involves a
mathematical process in which several potentially related
variables are converted into a smaller number of unrelated
variables called principal components. The eigenvector asso-
ciated with the largest eigenvalue has the same path as the
first principal component. As a result, the group bias and

the individual difference errors have been examined by
PCA, thus proving the credibility of the in-depth results.

2.5. Single-Sample Gene Set Enrichment Analysis (ssGSEA)
and Gene Set Enrichment Analysis (GSEA). The enrichment
scores of the PD-1 immunotherapeutic were calculated by
ssGSEA by the gsva package [15, 16]. The PD-1 score was
defined as the average of the standardized values of IDO2,
TIM-3, IDO2, PDL-1, CTLA4, LAG3, and TIGIT [17]. The
correlation between the composition of the TIICs and the
immune score was calculated using the Pearson correlation.
GSEA based on gene expression profiles was constructed by
GSEA.4.0.1. The KEGG pathways significantly altered were
identified using cutoff FDR 0.1.

2.6. Evaluation of Immunoscore. TMB was defined as the
total number of somatic mutations (except silent mutations)
and plotted by maftools. According to gene expression pro-
files, the ESTIMATE algorithm quantifies the immune activ-
ity for each tumor sample.

2.7. Single Nucleotide Polymorphism (SNP) Analysis. Affyme-
trix SNP 6.0 arrays were gained by using the VarScan method
to analyze the germ cell/somatic cell mutation site data
obtained from the second-generation sequencing data of
LUSC tissues in TCGA database (https://cancergenome.nih
.gov/). We assess the influence of mutant genes on the prog-
nosis of patients with LUSC using the Kaplan-Meier plot and
screened out the most frequent mutated genes for further
analysis.

2.8. Hierarchical Clustering Analysis. Samples were grouped
using hierarchical agglomerative clustering, which func-
tioned in assigning a similar sample into a data frame and
finding the closest cluster pair. The distribution of samples
was shown in the consensus matrix heat map.

2.9. Statistical Analyses. The Mann–Whitney U test was used
for continuous variables. Meta-analysis was conducted by
Review Manager 5.3 to verify the proportion of immune cell
infiltration, and results were remarked as standard mean dif-
ference (SMD) with a 95% confidence interval (CI). The clin-
ical endpoints of this investigation included overall survival
(OS) and disease-free survival (PFS). Patients with a CIBER-
SORT P value of ≤0.05 were included in the survival analysis.
Log-rank survival analysis was employed to determine the
effect of various immune cell infiltrations on patient OS
and PFS. Statistical analysis was conducted with SPSS, R lan-
guage (3.4.4), and GraphPad Prism. Differences among vari-
ables were determined to be statistically significant when the
P value was ≤0.05 (one/two tails).

3. Results

3.1. Performance of CIBERSORT for Characterizing TIIC
Composition of LUSC. CIBERSORT was firstly implemented
to calculate the different TIIC subpopulations of LUSC tissue.
As shown in Figure 2(a) and sFig 1, the proportion of
immune cells in LUSC tissues is quite different from that in
normal lung tissues. Meanwhile, the proportions of TIIC
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composition showed a distinct group-bias clustering and
individual difference (Figure 2(b)). We also particularly
investigated the TIIC composition between matched cancer
and adjacent tissues from 19 patients. As shown in the sFig
2, the majority proportions of immune cells were similar
within intergroup. Compared to adjacent tissue, the propor-
tions of plasma, M0 macrophage, and M1 macrophage were
higher in LUSC tissues, whereas the fraction of resting CD4
memory T cells and M2 macrophage was relatively lower
(Figures 2(c) and 2(d) and sFig 1, P < 0:05). On the other
hand, we also checked the CIBERSORT outcome in which
barcode genes were randomly removed in increments of
10% [18]. As expected, the P value was highly sensitive to
the reduction of expressed barcode genes (Fig S3). Convinc-
ingly, these data did not show cohort bias, which speaks vol-
ume for the high reliability of our results.

3.2. Meta-Analysis of the Proportions of TIICs in LUSC
Tissue. To confirm the accuracy of the above outcome, we
further verified its accuracy in other independent LUSC chips
both containing tumor and adjacent normal specimens. As
shown in Table S2, we downloaded all of the eligible LUSC
chips from GEO datasets. Overall, there were 289 LUSC
cases and 234 normal tissue samples enrolled in the
following exploration. Fig S4 represents the summary of
each TIIC composition of the included studies. We merged
different platform datasets and eliminated binding batch
effect. As shown in Figure 2(e), the proportions of each
chip’s TIIC subpopulations showed no evident cohort bias
to TCGA both in normal and cancer tissues.

As is universally acknowledged, meta-analysis is an effec-
tive standard way to sum up the results of studies rather than
subjective judgment. So, we thoroughly conducted a meta-

analysis for all significantly different TIIC compositions. As
shown in Figure 3, plasma cells (95% CI, 3.30-4.84; P < 0:01),
Tfh (95% CI, 0.55 to 1.38; P < 0:01), Tregs (95% CI, 0.83 to
1.36; P < 0:01), and M1 macrophages (95% CI, 5.73 to 8.13;
P < 0:01) exhibited an increasing tendency, whereas mono-
cytes (95% CI, -2.10 to -1.02; P < 0:01), M2 macrophages
(95% CI, -6.46 to -4.80; P < 0:01), and resting mast cells
(95% CI, -2.41 to -1.11; P < 0:01) exhibited downtrends in
LUSC tissues in agreement with the previous conclusions
(except for resting CD4 memory). Thus, the CIBERSORT
results were powerful enough to discriminate TIIC subpopu-
lations in LUSC. Collectively, it highlighted the role of spe-
cific TIICs in LUSC, which could provide valuable
candidates as diagnostic markers and potential therapy tar-
gets for patients.

3.3. Proportional Distribution of TIIC Subpopulation and
Clinical Characteristics. We further combined clinical char-
acteristics with TIIC composition to investigate whether the
TIIC subpopulations were statistically associated with LUSC
development. As shown in Figs S5A–S5D, the proportion of
activated mast cells, resting mast cells, neutrophils, and T fol-
licular helper cells were correlated with advanced T stage.
And the proportions of M1 macrophage and CD8 T cell sub-
population had a strong connection with lymph node metas-
tasis (Figs S5E and S5F). These TIIC subpopulations were
also evaluated by univariate Cox regression analysis. As Figs
S5G and S5H showed in the forest plot, M2 macrophages
(OR: HR = 1:09, P = 0:0093), regulatory T cells (OR: HR =
1:53, P = 0:029), T follicular helper cells (OR: HR = 1:39,
P = 0:00862), activated CD4 memory T cells (OR: HR =
1:30, P = 0:0011), M0 macrophages (OR: HR = 1:29, P =
0:045), and plasma cells (OR: HR = 1:58, P = 0:043) were

TCGA cohort
(samples = 473)

Gene Expression Omnibus⁎
Search “(lung cancer) AND ‘‘Homo sapiens’’[porgn:__txid9606]”

Paired tumor tissue
(N = 19)

Normal = 49
Cancer = 424

Without normal samples
Sample size < 20

Missing gene expression data
with uncertain integrity

Selected 523 cases with matched
CIBERSORT data

Unpaired tumor tissue
(N = 405)

Immune cluster and SNP;
survival analysis

Analyse the clinical information
(TNM stage, tumor stage, grade, and

other features)

Analysis of the infiltrated immune cells

Analyse the association between P
value and clinical features

Figure 1: Flowchart detailing the procedure of sample collection and analysis.
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significantly related with poor overall survival, whereas resting
mast cells (HR = 0:74, P = 0:00049) were correlated with
improved OS. Resting mast cells (OR: HR = 0:62, P = 0:035)
and T follicular helper cells (OR: HR = 1:61, P = 0:013) were
closely associated with PFS.

3.4. Identification of Immune Cluster in LUSC. The CIBER-
SORT P value reflected the ratio of immune cells and nonim-
mune cells, and a greater proportion of immune cells would
produce a corresponding smaller P value. It is well acknowl-

edged that inflammation cytolytic activity could be described
by the geometric mean of GZMA and PRF1 expression [14].
Strong relationship existed in P value and inflammation
cytolytic activity in both the GEO and TCGA datasets
(Figures 4(a) and 4(b), Fig S6). Meanwhile, cytolytic activity
of inflammation was most strongly related with the propor-
tion of CD8 T cells (R2 = 0:3274, P < 0:0001) and activated
memory T cells (R2 = 0:26, P < 0:0001). Based on the ESTI-
MATE algorithm, we calculated each patient’s immune score
distributing between 0.68 and 1.14 and divided them into
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Figure 2: Landscape of microenvironment TIIC composition in LUSC. (a) The composition of TIICs of normal and LUSC tissues. (b) The
proportions of TIIC composition from normal and cancer tissues displayed distinct group-bias clustering and individual differences. (c)
Volcano plot visualizing the differentially TIIC composition. The point outside the dotted line represents the differential subpopulations
with statistical significance (P < 0:05) between cancer and normal samples. (d) Violin plot of the proportions of TIIC subpopulation (blue
represents normal tissue, red represents LUSC). (e) Relative proportions of 22 TIIC subpopulations are compared between two
independent datasets (TCGA and GEO cohort).
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(a) (b)

Figure 3: Meta-analysis verified different expression TIIC composition in LUSC.
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high vs. low immune score groups in Figure 4(c). Then, we
particularly studied the relationship between immune cells
and specific immune signatures. Figures 4(d)–4(f), respec-
tively, depict the relationship between immune cells and
PD-L1, APC, and checkpoint. It was worth mentioning that
the high immune fractions were notably enriched in the T
cell receptor signaling pathway, B cell receptor signaling
pathway, cytokine interaction, and chemokine signaling
pathway(Figure 5(a)).

3.5. Immune Cells Associated with Prognosis and Molecular
Subtypes. Single nucleotide polymorphisms (SNPs) most fre-
quently occurred in genomic mutations. Then, we firstly ana-
lyzed the most frequent SNP mutation in LUSC. As shown in

Figure 5(b), TTN and TP53 (respectively, accounting for
81.08% and 80.87%) were the most characteristic SNPs in
LUSC. TTN and TP53 mutant distinctly influenced the over-
all survival of LUSC patients (Figures 5(c) and 5(d)). There
was a significant difference of TIIC proportion between the
mutant and wild-type subgroups. Surprisingly, both TP53
and TTN mutant subgroups were reversely enriched in the
T cell receptor signaling pathway, B cell receptor signaling
pathway, cytokine interaction, and chemokine signaling path-
way, which was opposite to immunoscore (Figures 5(a), 5(c),
and 5(d)). Therefore, we made a detailed analysis of TIIC
prognostic effect in TP53 and TTN molecular subtypes. As
shown in Figures 5(e) and 5(f), resting dendritic cells played
an important role both in TP53 (HR = 1:37, P = 0:04) and
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Figure 4: TIIC subpopulation was closely correlated with immune score. (a) CIBERSORT P values reflect the overall proportion of immune
cells. (b) Spearman correlation matrix of all 22 TIIC compositions. (c) Heat map of the 22 TIIC compositions in high and low immunoscore
subgroups. The horizontal axis shows the clustering information of samples which were divided into high and low major clusters. (d) The
expression levels of TIIC composition are associated with PD-L1. (e) The expression levels of TIIC composition are associated with APC.
(f) The expression levels of TIIC composition are associated with checkpoint.
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TTP (HR = 1:66, P = 0:007) mutant subgroups. Resting CD4
memory T cells were associated with a favorable outcome in
the TP53 mutant subgroup (HR = 0:73, P = 0:05), whereas
they were associated with an unfavorable outcome in the
wild-type subgroup (HR = 2:05, P = 0:04).

3.6. Identification of Immune Cluster in LUSC.On the basis of
our above findings, the change of TIIC subsets could signifi-
cantly influence tumor progression and affect prognosis. In
order to explore whether distinct patterns of immune infil-
tration can be distinguished, we performed hierarchical clus-
tering analysis of 22 TIIC subpopulations and selected the
optimal number of clusters by the elbow method. As shown
in Figures 6(a) and 6(b), 3 clusters were identified as individ-
ualized clusters. Clusters were correlated with distinct
immune patterns, and the survival curve is depicted in
Figure 6(c). Cluster 1 was characterized by high levels of
CD8 T cells, resting dendritic cells, and M0 macrophages.
Cluster 2 was enriched with M1 macrophages and resting
dendritic cells; cluster 3 was abundant with Tregs and acti-
vated dendritic cells. Collectively, characteristic immune
clusters could influence clinical outcome (Figure 6(c)).

4. Discussion

Lung cancer is currently the leading cause of cancer-related
deaths worldwide with a low 5-year survival rate [5]. The
main treatments for pulmonary carcinoma are surgery,
molecular targeted therapies, and immunotherapy which
gradually emerge in recently years [4]. Researchers now
focused on the complexity of the tumor microenvironment
for its important role in tumorigenesis and suggested that
the types and proportions of TIICs might be associated with
cancer prognosis [19]. Thus, it is hope that exploring the
underlying mechanisms of the relationship between the

immune infiltrating cells and prognosis and diagnosis of lung
cancer can contribute to discover more effective treatments.

In this study, CIBERSORT analysis, based on the gene
expression profiles and deconvolution, was performed to
obtain the proportions of 22 immune infiltrating cells in
LUSC tissues and paracancerous tissues rather than the anal-
ysis of immunohistochemistry which relied on a single
marker to distinguish TIIC subsets. Resting CD4 memory T
cells, monocytes, M2 macrophage, resting mast cells, resting
NK cells, and neutrophils accounted for higher proportions
in LUSC tissues than adjacent tissues, opposite to the propor-
tions of plasma cells, resting dendritic cells, M1 macrophage,
regulatory T cells, T follicular helper cells, activated CD4
memory T cells, and activated NK cells. Macrophages are
one of the main ingredients in tumor microenvironment,
which exist in the center and margin of the tumor [19]. A
series of experiments have confirmed that M1 macrophages
are involved in antitumorigenesis and inflammatory
response, while M2 macrophages have an opposite effect of
M1 [20]. The effect on tumorigenesis in opposite directions
of M1 macrophages and M2 macrophages in lung cancer
was also confirmed in other studies [21]. Analysis with
PCA plot also identified significant group-bias clustering
and individual differences in the ratio of immune infiltrating
cells. To further verify the reliability of the results, a meta-
analysis was performed on 289 LUSC tissues and 234 adjacent
tissues. Regulatory T cells, T follicular helper cells, activated
CD4 memory T cells, and M1 macrophages were not condu-
cive to tumorigenesis, while monocytes, M2 macrophages,
and resting mast cells had protumor effects.

T follicular helper cells were at an advantage in its rela-
tion with favorable OS and PFS. Resting mast cells were
bound up with poor OS and PFS. Mast cells are important
regulators of the immune response [22]. However, the gener-
alizability of the findings to mast cell inactivation in cancer is
still unknown. Oxidized natural polyamines, a kind of
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Figure 5: Prognostic associations of subsets of immune cells and molecular subtypes. (a) GSEA differentiates the molecular mechanism of
diverse immune score group. (b) Waterfall map depicts the top15 SNPs in TCGA-LUSC. (c, d) GSEA differentiates the molecular
mechanism of top 2 SNP wild-type and mutant subgroups. Scattergram of the distribution of immune score between wild-type and
mutant subgroups. Survival plots of SNP wild-type and mutant subgroups. (e) Subgroup overall survival analyses of TP53 mutant. The
prognostic effect of 22 immune cell subsets by TP53 mutant and wild type. (f) Subgroup overall survival analyses of TTP mutant. The
prognostic effect of 22 immune cell subsets by TTP mutant and wild type.
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tumor-derived secretions, might be the reason leading to the
inhibition of mast cells. Natural spermidine and spermidine,
oxidized by polyamine oxidase, can prevent IgE from living
in vitro [25] and the level of polyamine was high in malignant
cells [23, 24]. T follicular helper cells can express Bcl-6, IL-21,
and CD40L signals to facilitate the proliferation and differen-
tiation of B cells [25]. Research findings highlight the impor-
tance of immune checkpoint therapy to induce T follicular
helper cell to activate B cells and inhibit tumor development
[26]. Moreover, Tfh may be useful to develop or support
ELSs, which can recruit CD8+ T cells, NK cells, and macro-
phages to participate in antitumor immune responses [27].
Therefore, our findings raise the interesting possibility that
T follicular helper cells and resting mast cells might be poten-
tial as biological markers in survival prognosis and diagnosis
in LUSC patients.

Obvious enrichment of TTN and TP53 mutations in the
T cell receptor signaling pathway, B cell receptor signaling
pathway, cytokine interaction, and chemokine signaling
pathway was observed in LUSC by analyzing mutation points
of 481 tissue samples, which was opposite of immunoscore.
Resting dendritic cells were positively associated with TP53
mutant and TTPmutant. The TTNmutant and TP53mutant
were noted to have better OS and PFS in contrast to the wild-
type TTN and TP53. Resting CD4 memory T cells were neg-
atively associated with TP53 mutation, which in turn had a
positive correlation with wild-type TP53. As we know,
TP53, a tumor suppressor gene, is the most common mutant
gene in many malignancies and the mutation of TP53 is
closely relevant to cancer progression, which can be found
in around 50% of human cancers [28, 29]. In addition,
TP53 mutations also had several strong links to poor progno-
sis across several cancers such as breast and colorectal [30].
Mutant TP53 has been verified for its ability to promote
tumorigenesis, growth, migration, and invasion [31–33].
Most mutations in the coding region are missense mutations
(87.9%), while missense mutations account for only about
40% outside of this region and most mutations are nonsense
or frameshift mutations [34]. Because mutant TP53 protein

accumulates at higher levels in tumors, targeting mutant
TP53, including renewing wild-type TP53 activity and
depleting mutant TP53, at present shows to be a new thera-
peutic strategy [35]. Reactivating the resting CD4 memory
T cells existing in the lung tumor microenvironment can
induce brisker proliferative capacity and secretion of IFN-γ
to eliminate tumor cells [36]. Blocking CTLA-4 can cause a
dramatic expansion of the CTL response to TP53 and
the expansion of memory T cells which was closely related
to helper T cells [37]. Combined with our conclusions,
there may be a corresponding connection between CD4
memory T cells and TP53 in the process of tumorigenesis
and development.

In this study, we observed a strong association between
the proportions of some TIIC subpopulations and immune
cytolytic activity by analyzing the correlation matrix of each
proportion and immune cytolytic activity between LUSC tis-
sues and adjacent tissues. To ensure the reliability of the data,
the data from TCGA and GEO databases were analyzed,
respectively, and the trends of the results are roughly consis-
tent. Moreover, in this study, T follicular helper cells and
plasma cells were highly associated with TIM-3 receptors as
well as existing high degrees of correlation between regula-
tory T cells and PDL-1. Programmed cell death protein-1
(PD-1), an important immune checkpoint receptor on the
surface of immune cells, plays a pivotal role in regulating
immune response; the dislocation and lack of PD-1 can cause
autoimmune diseases [38]. PD-L1, one of the ligands of PD-
L1, has the ability to help cancer cells to evade the immune
system and inhibit the antitumor immune response [39].
Inhibitors against PD-1/PD-L1 have proved to be effective
in antitumor response in lung cancer and other tumors
[40]. Compared with chemotherapy, pembrolizumab, nivo-
lumab, and atezolizumab, inhibitors of PD-1/PD-L1 immune
checkpoint can significantly improve overall survival of
NSCLC patients [41–43]. High levels of Tregs are associated
with increased tumor infiltration [44]. And the combination
of PD-L1 and PD-1 can inhibit T cell receptor-mediated lym-
phocyte proliferation and cytokine secretion [45]. As
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Figure 6: Immune hierarchical clusters associated with LUSC prognosis. (a) Consensus matrix heat map defining 3 clusters of samples. (b)
Stacked bar charts of samples ordered by hierarchical cluster. (c) Kaplan-Meier curves for immune score cluster.
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described above, it is worth to further explore the relation-
ship between Tregs and PD-1 which might have potential
therapeutic value in clinic.

After these, we divided LUSC cancer patients into 3 clus-
ters according to the relative content of 22 TIIC subtypes.
The majority of these samples were classified as cluster 1.
Moreover, there were classification overlaps among these
three clusters. Unlike cluster 1 and cluster 2, cluster 3 con-
ferred better prognosis to patients. Cluster 1 was defined by
high levels of CD8 T cells, resting dendritic cells, and M0
macrophages. Cluster 2 was enriched with M1 macrophages
and resting dendritic cells, which was consistent with previ-
ous associations with survival outcomes. Each cluster has
corresponding characteristic function enrichment term.
These findings indicate that the character of immune infiltra-
tion across lung cancer has considerable variability, which
can affect the clinical results.

Nevertheless, this retrospective work still has some limi-
tations. Firstly, the data used for the CIBERSORT analysis
was on the basis of TCGA and GEO databases, which lack
basic information of patients and contain the unpaired sam-
ples. Secondly, though cohort bias had been eliminated by
using statistical methods, potential heterogeneity in these
data still exists. Thirdly, CIBERSORT can only estimate
the relative abundance of immune cells, which means
some cell types maybe overestimated or underestimated.
Thus, if possible, further experiments would be performed
in vivo and in vitro to verify these results and overcome
some of these limitations.

In conclusion, we analyzed the proportions of the 22
immune cells in LUSC tissues and adjacent tissues, associated
with tumorigenesis. And some specific immune infiltrating
cells have the potential for diagnosis and prognosis of LUSC.
Moreover, our findings of mutation points are also promising
to also contribute to the implementation of immunotherapy
and provide the possibility for the development of new
immunotherapeutic drugs.
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and inflammation activity. Table S1: the clinical information
of TCGA LUSC patients Table S2: the detailed information of
GEO chips. (Supplementary Materials)
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