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Alternative splicing produces various mRNAs, and thereby various protein
products, from one gene, impacting a wide range of cellular activities. How-
ever, accurate reconstruction and quantification of full-length transcripts using
short-reads is limited, due to their length. Long-reads sequencing technologies
may provide a solution by sequencing full-length transcripts. We explored the
use of both Illumina short-reads and two long Oxford Nanopore Technology
(cDNA and Direct RNA) RNA-Seq reads for detecting global differential
splicing during mouse embryonic stem cell differentiation, applying several
bioinformatics strategies: gene-based, isoform-based and exon-based. We
detected the strongest similarity among the sequencing platforms at the
gene level compared to exon-based and isoform-based. Furthermore, the
exon-based strategy discovered many differential exon usage (DEU) events,
mostly in a platform-dependent manner and in non-differentially expressed
genes. Thus, the platforms complemented each other in the ability to detect
DEUs (i.e. long-reads exhibited an advantage in detecting DEUs at the
UTRs, and short-reads detected more DEUs). Exons within 20 genes, detected
in one or more platforms, were here validated by PCR, including key differ-
entiation genes, such as Mdb3 and Aplp1. We provide an important
analysis resource for discovering transcriptome changes during stem cell
differentiation and insights for analysing such data.
1. Introduction
High-throughput short-read sequencing transcriptional profiling (RNA-Seq)
was pioneered in 2008, enabling quantitative transcriptome-wide surveys of
gene expression and alternative splicing [1–4]. RNA-Seq has greatly expanded
our knowledge of the transcriptome, providing reliable quantification and
detection of differential expression at the gene level [5,6]. However, transcript
level or isoform-based analysis is error-prone, since short reads cannot unam-
biguously resolve the connectivity between distant exons, particularly when
alternative splicing generates multiple, partially redundant isoforms [6–9]. Iso-
form-based analysis requires a complete and accurate isoform construction and
quantification of full-length transcripts as the basis for a confident differential
splicing (DS) analysis. With the emergence of third-generation sequencing,
it is now possible to sequence full-length transcripts in ‘one go’ and directly
identify isoform structures thereby overcoming the challenges posed by compu-
tational assembly of short reads [10–13]. Oxford Nanopore Technology (ONT)
directly sequences a native single-stranded DNA molecule, by measuring
characteristic current changes as the bases are threaded through the nanopore
by a molecular motor protein [14]. Using ONT technology, both cDNA and
Direct RNA long reads can be sequenced [10–12,15–19]. In the Direct RNA
approach, individual poly-adenylated RNA transcripts are directly sequenced,
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without recoding and amplification biases inherent in other
sequencing methodologies. Yet, the relatively high long
reads error rates, of above 10% for both direct RNA and
cDNA sequences, complicate the detection of the transcript’s
exact exon structure [10,11,20,21]. Several computational and
sequencing methods have been developed to overcome this
challenge [22–24], yet all these methods are applicable only
to cDNA.

Many studies have compared the transcriptome landscape
between these long- and short-read sequencing technologies
[10,11,13,15,16,25–27]. A study by Mehmood et al. using short
reads has shown that exon-based methods generally performed
better than the isoform-based methods [9]. Furthermore, studies
have used long reads using the exon-based approach [27–30].
To characterize the strengths and remaining challenges in
using long-read approaches, a community effort called the
Long-read RNA-Seq Genome Annotation Assessment Project
Consortium has been launched [31].

Here, we characterized the strengths and potential of both
short- and ONT long-read sequencing platforms to explore
transcriptomic changes during in vitro differentiation of
mouse ESCs induced by retinoic acid (RA) [32,33]. Differen-
tiation of embryonic stem cells (ESCs) is among the most
dynamic processes in biology. Mouse ESCs, derived from
the inner cell mass of mouse blastocysts, are pluripotent
cells that have the capacity to differentiate into cell types of
all three primary germ layers [34]. Regulation of ESC devel-
opment, pluripotency and reprogramming is mediated by
transcription factors [35], and involves transcriptome changes
and isoform switching via alternative splicing [36–41].
Recently, long reads were used to study alternative splicing
events during early embryogenesis [10,42].

In this study, RNA was collected before and after RA-
induced ESCs differentiation, and sequenced via Illumina to
generate short reads (RNA-Seq). In parallel, long-read sequen-
cing was performed using ONT technology, generating both
cDNA and Direct RNA long reads. Our bioinformatics analy-
sis aimed to explore changes using three strategies: the gene,
isoform-based and exon-based levels. We demonstrated that
detection of differential exon usage (DEU) events, developed
for short reads, was also applicable with long reads, and that
the three sequencing platforms predictions complement one
another and are reliable as validated by PCR. In addition,
we provide an important sequence and analysis resource for
discovering transcriptome changes occurring during stem
cell differentiation.
2. Results
2.1. Study design and data processing
This study focused on detecting transcriptome changes during
ESC differentiation. Towards this aim, total mouse RNA was
extracted from embryoid body duplicate samples before
(Undiff) and after (Day4) differentiation with RA (figure 1a;
see also Material and methods). RA plays multiple roles in
the nervous system, including induction of neural differen-
tiation, axon outgrowth and neural patterning [32]. The RNA
was used for short-read sequencing with the TruSeq library
and Illumina platform, and for ONT long-read sequencing
technology with both cDNA and Direct RNA kits (named
herein as platforms: Illumina TruSeq, ONT cDNA and ONT
Direct RNA, respectively). The yield of short reads was
around 50 M (paired-end fragment sequenced) per sample.
The ONT MinION flow cell yield was around 3.5 M for
cDNA, and around 1 M for the Direct RNA (table 1). ONT
and Illumina dataset sequence processing required different
bioinformatics tools, as demonstrated in figure 1b and
described in the Material and methods section. Analyses start-
ing at the stage of the mapped reads from all three platforms
(Illumina TruSeq, ONT cDNA and ONT Direct RNA) were
conducted using the same procedures, to compare sequence
quality features, and detected expression at the gene, transcript
and exon levels, as well as the ability to detect differentially
expressed genes (DEGs) and DEUs.
2.2. Inter-platform comparison of aligned read
characteristics

Using the aligned reads, we compared the general sequence
quality features between the platforms. The median read
length in the ONT Direct RNA platform (1615 bases) was
longer than the ONT cDNA (1060) (table 1). ONT Direct
RNA reads were also found to be longer in the study of
Workman et al. [20], perhaps due to shorter transcripts bias
in cDNA PCR amplification process. The average ONT
error rate for the aligned reads was high, i.e. 14.3% and
11.6% in the ONT Direct RNA platform and in the ONT
cDNA, respectively, in comparison to that of Illumina
(0.3%), similar to the extent observed in previous reports
[10,11,20,21,43]. A difference in the GC content distribution
was observed (figure 2a; electronic supplementary material,
figure S1). Illumina TruSeq reads exhibited a broader distri-
bution (s.d. of 8.8) than the ONT reads, and broader than
all GENCODE annotated transcripts (s.d. 6.2–6.4). In
addition, all platforms showed a right-shift toward higher
GC% values (48–50%), compared to that computed for all
known transcripts (45%). To monitor whether ONT captures
more novel transcripts, we examined the saturation of known
and novel junctions (figure 2b). While all platforms reached
saturation of known junctions, examination of the novel junc-
tions showed that unlike Illumina and ONT Direct RNA, the
ONT cDNA platform was farthest away from saturation.
Novel junction reads can reflect the ability to capture novel
transcripts, or alternatively, it can be indicative of junction
mapping inaccuracies due to sequencing errors. To gain
further insight, we partitioned between junctions that were
detected by a single read and those detected by at least two
reads, with the assumption that junctions determined by
several reads are more reliable. ONT cDNA had more unan-
notated junctions (67%) compared to the other platforms
(figure 2c), yet most of these complete novel (both splice
sites 50 and 30 are novel) and partial novel (one of the splice
sites 50 or 30 is novel) junctions were detected with a single
read (52%) and are therefore less trustworthy. Analysis of
read distribution over exonic features (figure 2d ) showed
that the proportion of coding DNA sequence (CDS) exons
was the highest in Illumina TruSeq (0.63), and that the 50

and ׳3 UTR exons were less represented in Illumina TruSeq
in comparison to the ONT reads (0.35 versus at least
0.55 in ONT). The representation of introns and intergenic
regions adjacent to annotated genes comprised a small frac-
tion (less than 0.03) of the reads, yet the ONT platform had
a higher representation (electronic supplementary material,
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Figure 1. (a) A schematic workflow of the experimental design. Mouse embryonic stem cells were grown for 4 days in mES growth medium (Undiff ), and then for
an additional 8 days, of them 4 days with retinoic acid (RA) (Day4). RNA was extracted and sequencing libraries were prepared for short-read sequencing with
Illumina (TruSeq library), and long-read sequencing with Oxford Nanopore Technologies, either cDNA or Direct RNA library platforms. (b) The bioinformatics analysis
pipeline. Raw sequences were pre-processed and aligned to the mouse genome using tools for either short or long reads. Expression was quantified at gene,
transcript and exon levels, to identify differentially expressed genes (DEGs) and differential exon usages (DEUs) in Undiff versus Day4 samples, using the same
tools for all platforms.

royalsocietypublishing.org/journal/rsob
Open

Biol.12:220206

3

figure S1D). In accordance with this observation, read cover-
age on the gene body (figure 2e) showed that Illumina
TruSeq’s coverage was significantly reduced at the 50 and 30

ends of the genes ( p-values of 0.001 and 0.00025 for the
10% and 90% gene body percentiles, respectively; see
Material and methods). The reduced coverage of Illumina
TruSeq at the 30 of the gene body in comparison to ONT
sequencing was also demonstrated previously [24,27]. This
bias can be a result of the sequencing protocol, in which tran-
scripts are sequenced from the 30 to the 50 end in the ONT
Direct RNA, and can be truncated due to fragmentation
during the library preparation, or pore blocking during
sequencing. Such 30 bias has been shown also for ONT
cDNA for the same reasons. Despite the differences in the
total number of reads obtained from the different platforms
(table 1), gene RPKM saturation analysis revealed a similar
relative error rate per quantile of gene expression levels,
upon subsampling in all three platforms (electronic sup-
plementary material, figure S1E; from the second to the
fourth quantile). The above-described quality features
observed for Day4 samples were similar when analysing
the Undiff datasets (electronic supplementary material,
figure S1). To summarize, we have detected many differences
between the platforms compared.

2.3. Comparison of gene expression levels
We next performed a gene-level analysis and observed on
average, 0.6 M, 1.6 M and 36.9 M reads mapped to genes of
the ONT Direct RNA, ONT cDNA and TruSeq Illumina
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Figure 3. Gene-level expression analysis across the sequencing platforms. (a) Heatmap of Spearman correlation coefficients of raw gene counts for the Day4 and
Undiff samples (in duplicates), sequenced with either Illumina TruSeq, ONT cDNA or Direct RNA. (b) Principal component analysis (PCA) of log-normalized values
(rld) from all samples. Colours denote differentiation day and shapes denote sequencing platform. (c) Proportional Venn diagram of DEGs overlap, the presented
numbers are the total amount of DEGs for each platform and the amount of DEGs shared by all platforms. (d ) Ingenuity pathway analysis showing the top enriched
canonical pathways, computed using DEGs from the three sequencing platforms. (*) indicates pathways elaborated in (e). (e) Ingenuity pathway analysis showing the
log-fold-change expression of the top upregulated and downregulated DEGs for the human or mouse embryonic stem cell pluripotency pathways.
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datasets, respectively (table 1), in accordance to the raw
sequencing yields. The biological replicate samples from the
same platform were grouped together and exhibited high simi-
larity (figure 3a,b), with a Spearman correlation coefficient
in the range of 0.92–0.99. Furthermore, datasets collected at
the same differentiation state from different platforms also
exhibited a high correlation coefficient value, which ranged
between 0.82 and 0.91 (figure 3a). By contrast, between differ-
ent differentiation state samples (Undiff and Day4), and
different platforms, a minimum correlation coefficient of 0.75
was reached. Similarly, principal component analysis (PCA)
found the differentiation state to be the main source of
variation, with PC1 explaining 69% of the variation, whereas
PC2, which depicts the difference between the sequencing
technologies, explaining 18% of the variation (figure 3b).
2.4. Detection of differentially expressed genes across
differentiation states

Statistically significant DEGs between Day4 and Undiff were
separately detected for each dataset (see Material and
methods). In total, 1834, 2058 and 8168 DEGs were detected
using ONT Direct RNA, ONT cDNA and Illumina TruSeq,
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respectively, indicating that the cells underwent numerous
significant changes in the transition between the Undiff
and Day4 states (figure 3c). As expected, the number of
DEGs detected in the ONT datasets was lower than Illumina
TruSeq, due to fewer reads and fewer aligned bases (table 1)
and consequently, lower detected gene expression levels (see
difference in x-axis scale in electronic supplementary
material, figure S2). We detected 1112 DEGs overlapping in
both ONT cDNA and ONT Direct RNA datasets, and most
of them (1034) were also detected in Illumina TruSeq. Only
two DEGs showed opposite directions among the three
platforms (electronic supplementary material, table S2,
Clmp and Plvap).

The three DEG sets, comparing Day4 versus Undiff, also
shared similar enriched canonical pathways (Ingenuity path-
way analysis; figure 3d ), among them, the following expected
canonical pathways: ‘Role of Oct4 in Mammalian Embryonic
Stem Cell Pluripotency’ and ‘Embryonic Stem Cell Pluripo-
tency’ in both human and mouse. For example, within the
latter pathway, the genes FZD1, BMPR2 were upregulated
and NANOG, POU5F1 were downregulated (figure 3e).
2.5. Isoform-based reconstruction and quantification
of transcripts

To address our goal to detect global changes in DS during ESC
differentiation, and to leverage our long read datasets, we
assembled and quantified transcripts using two reference-
guided methods, namely StringTie2 and TALON. Initially,
TALON was used to assemble transcript models from the
aligned long reads, namely Day4 and Undiff, from both
ONT cDNA and Direct RNA (analysis was performed with
pooled replicates). TALON identified and quantified 97 903
distinct transcript models, of them 28 575 were novel or par-
tially novel (electronic supplementary material, figure S3A;
we filtered transcripts that had less than five reads in any
of the pooled samples; see Material and methods). The pro-
portions of known transcripts detected by ONT Direct (62%)
was higher than ONT cDNA (44%). Correlation between tran-
script abundancies (Spearman correlation coefficient) of 0.55
was observed among the ONT cDNA pooled datasets (Day4
and Undiff) and 0.82 among the ONT Direct RNA pools
(electronic supplementary material, figure S3B). There was
an unexpectedly negligible similarity between the platforms
(ONT cDNA and Direct RNA). We also used StringTie2 [23]
to quantify TALON transcripts with the 12 genome-aligned
datasets (RNA-Seq mappings), and evaluated the similarity
between biological replicated pairs including Illumina
TruSeq datasets. Spearman correlation coefficients among the
ONT replicates were in the range 0.68–0.69 and 0.84 for the
Illumina replicates (electronic supplementary material, figure
S3C). Between the ONT and Illumina platforms Spearman
correlations were in the range of 0.1 to 0.17, for the same differ-
entiation day, and from 0.32 to 0.41 between ONT cDNA and
Direct RNA.

As a second assembly approach, StringTie2 was used on
ONT and Illumina genome-aligned reads. A total of 147 769
transcripts (of them 16 852 novel) and 53 592 genes were
assembled and quantified (see Material and methods;
table 1). As in the TALON transcript analysis, the correlation
of transcript expression among the biological replicates
within the same platform was the highest for Illumina
TruSeq samples (0.86), compared with ONT Direct RNA
and ONT cDNA (0.63–0.66, respectively) (electronic supple-
mentary material, figure S4A). Furthermore, the correlation
coefficient between platforms was in the same range, and as
low as 0.3, within the same differentiation day, implying
dramatic differences in quantification across the platforms.
A recent study has demonstrated that standard RNA-seq is
able to robustly recapitulate only about 50% of isoforms
detected by long-read Iso-Seq sequencing [44]. The lack of
quantified transcript similarities between the platforms in
our study and, more alarmingly, the moderate similarity
between the biological replicates tested in each platform,
implies that the quantified levels may not reflect the
real signal, and we therefore are not describing here an
isoform-based analysis, aimed to detect DS.
2.6. Detecting differential exon usages
Towards our goal to detect DS, we applied an exon count-
based strategy, in which exon expression levels were quantified
for all the datasets and compared between the differentiation
states (see Material and methods). The average total number
of exons detected was 155 K for ONT and 261 K for Illumina
(table 1). This was in agreement with the high number of Illu-
mina aligned bases (on average around 4.5-fold higher). The
highest similarity of exon expression values was observed
between the same platform biological replicates (Spearman
correlation coefficient of at least 0.82; figure 4a). The Spearman
correlation coefficient was at least 0.76 among the samples
derived from the same sequencing platform, even if they origi-
nated from different differentiation states. Yet, the correlation
coefficient between platforms was lower (range 0.55–0.82),
and, interestingly, ONT Direct RNA was more similar to the
Illumina TruSeq dataset.

The moderate similarity in exon expression between
the platforms indicates a high variance of exon detected
expression between the platforms. Comparison of DEUs
(i.e. changes in the relative usage of exons between the data-
sets) was performed using DEXSeq [45]. This is a statistical
generalized linear model with the following concept: for
each exon (or part of an exon) and each sample, the tool
counts the number of reads that map to this exon as well as
how many reads map to any of the other exons of the same
gene. The ratio of these two counts, and how it changes
across conditions (in this case sequencing platforms or differ-
entiation states), infers changes in the relative exon usage (see
Material and methods). Recent studies applied DEXSeq to
detect DEUs with long reads [27,30]. To identify DEUs that
result from a technical issue, i.e. a consequence of the sequen-
cing platform, we ran DEXSeq on datasets collected from the
same differentiation state, yet sequenced by different plat-
forms. Running this analysis is problematic due to the
significant difference in read counts between the different
platforms, therefore yielding thousands of DEUs. For
example, comparing the ONT Direct RNA Day4 samples to
Day4 samples acquired using the other platforms, resulted
in 30 423 significant DEUs. Some of these exons were visually
inspected using a genome browser. One convincing example
was the protein tyrosine phosphatase 4A1 gene (electronic
supplementary material, figure S5), to which the platforms
diverged in the coverage at both ends of the gene as well
as in internal exons.
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Figure 4. Exon-level expression analysis across the sequencing platforms. (a) Heatmap of Spearman correlation coefficients of raw exon counts for the Day4 and Undiff
samples, sequenced with either Illumina TruSeq, or with ONT cDNA or Direct RNA. (b) Venn diagram depicting the overlap of DEUs detected in the different sequencing
platforms. (c) Venn diagram depicting the overlap of DEUs, accounting only for exons which passed the expression filtering cutoffs in all platforms (see Material and
methods). (d ) Proportions of DEUs detected by the various platforms (left, a pie presentation of the Venn diagram presented in (b)), and specifically for DEUs in genes 30

and 5’ UTRs (right). (e) Box plot distribution of DEU lengths (in bases) per platform. Kolmogorov–Smirnov test p-values are shown. ( f ) Proportions calculated by a
comparison of DEUs to DEGs, categorized by the gene: same significant trend (‘same’, both upregulated or downregulated); opposite significant trend (opposite); or
the gene did not change significantly (unchanged). Proportions are shown for each sequencing platform separately, depicting the number of DEUs.
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Due to the moderate similarity in exon expression
between the platforms, differentiation state DEUs were
sought for each platform separately. The number of exons
used (passed the threshold, described in the Material and
methods section) was 167 274, 46 638 and 46 418 for the Illu-
mina TruSeq, ONT cDNA and ONT Direct RNA platforms,
respectively. Overall, 7317 significant DEUs were detected
in 3599 genes (figure 4b; electronic supplementary material,
table S3), with 148 DEUs being detected in more than one
platform and only 16 DEUs being detected in all three
sequencing platforms. Most of the DEUs were detected
only by the Illumina TruSeq dataset (7152, 97.8%). Further-
more, half of the DEUs detected by ONT were not detected
by TruSeq (165 out of 329). Analysis of DEUs that passed
the filtering criteria (50 counts in a least one sample) in all
platforms, reveals a smaller proportion of DEUs detected
only by TruSeq (figure 4c; 621, 88%). The reasons for the vari-
ation between the platforms are differences in the specific
exon coverage as well as the expression of other exons in
the gene.

Of all DEUs detected, 2889 exons contained coding
sequence (CDS) regions (electronic supplementary material,
table S3); 1933 were in ‘intron’ exons (exhibiting an alterna-
tive donor/acceptor site within an intron, intron retention
or exon skipping, and named herein as an intron), 2022
were in 50 UTRs and 470 were in 30 UTRs. Interestingly, an
analysis of the proportions of DEUs by exon category and
platform indicated a decrease in detecting DEUs in 30 and
5’ UTRs in TruSeq relative to their percentage in all exons
(figure 4d, decrease for DEUs detected only by TruSeq from
95.8% to 92.7%). This was in agreement with the read cover-
age proportions shown in figure 2d and the decrease in
coverage of TruSeq reads towards the 30 end of genes
shown in figure 2e.

Exploring the DEU length distributions per sequencing
platform, revealed a significant difference between the
TruSeq and the ONT platforms (figure 4e). For instance, the
expressed exons’ median lengths were 190, 115 and 78
bases for TruSeq, ONT cDNA and Direct, respectively. This
difference may be attributed to both the differences in read
length and the assumptions underlying the mapping
algorithms (i.e. STAR and minimap2).

To evaluate the relation between DEUs and DEGs, and
their direction of regulation, we calculated the proportions
of the DEUs to DEGs, categorized by the differential gene
expression analysis information: same statistically significant
trend (‘same’, both upregulated or downregulated); opposite
trend, (opposite); or significantly unchanged (unchanged)
(figure 4f ). We detected that among the three platforms, at
most, only 14% of DEUs showed the same statistically signifi-
cant trend as in the gene-level analysis. Thus, exon-based
analysis reveals many transcriptomic changes not apparent
at the gene-level analysis.

Some of the genes with DEUs were already reported to
exhibit DS events during mouse embryonic development.
For example, Dnmt3b (DEUs found by ONT Direct RNA and
Illumina TruSeq), Clk1 (DEUs identified by Illumina TruSeq
and ONT cDNA) and Ctage5 (identified only by TruSeq) were
found to exhibit DS in the transitional stage (from E8.0 to E9.0)
[46]. Some of the genes detected only by Illumina TruSeq to
have DEUs were previously reported, e.g. transcriptional
initiation of a short Stra6 isoform was found in mouse ESCs in
response to RA [47] and novel alternative splicing variants of
Klf4 were first identified in mouse ESCs [48]. Smarcb1 was
found to undergo DS in ESCs when compared with Embryoid
bodies (Ebs) [49] and in our analysis in ONT Direct RNA and
ONT cDNA (and was PCR validated, see next section).
2.7. Selection and validation of DEUs by qRT-PCR
and RT-PCR

Initially, we explored the correlation between the calculated
DEXSeq exon expression-fold changes (Day4 versus Undiff)
in the three platforms, and their observed qRT-PCR-fold
change values. Towards this aim, qRT-PCR was performed
on 26 DEUs from 19 different genes (Acot7, Aplp1, Ash2 l,
Caprin1, Egfl7, Gemin7, Hmgxb4, Mbd3, Mta1, Myl6, Nfu1,
Pcolce, Rpl31, Rps24,Tmsb10, Serf2, Usp7, Wbp1, Zmynd8,
see electronic supplementary material, table S3), and 15 consti-
tutive exons (i.e. exons which did not exhibit differential usage)
from the same genes (electronic supplementary material, tables
S4 and S5A). The selected DEUs were calculated to be signifi-
cant by either one (seven exons) or more of the platforms: 14
by ONT cDNA, 13 by ONT Direct RNA and 18 by Illumina
TruSeq. Some of the DEUs (13 exons) were in the coding
sequence and protein motifs (four exons), thus presumably
affecting the protein function (electronic supplementary
material, table S3), and some were in ‘introns’ (14 exons). The
observed qRT-PCR-fold change values were highly correlated
(Spearman correlation coefficient of at least 0.92) to their calcu-
lated DEXSeq-fold changes (figure 5a). To validate the DEUs,
we selected more than one exon per gene, either a DEU or a
constitutive exon or at least two DEUs (excluding the genes
Serf2 and Tmsb10; see Material and methods). The experimen-
tal qRT-PCR mean expression values of DEUs from 11 genes
along with their calculated DEXSeq values demonstrated that
these DEUs significantly changed between the differentiation
days, while the additional exon from the same gene showed
an opposite trend or an insignificant change (figures 5b, 6c
and 7c). For instance, the gene Hmgxb4 had a significantly
high expression of the DEU named Hmgxb4_TruSeq_74998835
(detected as a significant DEUs in TruSeq) in the qRT-PCR
Undiff samples, whereas the additional DEU named
Hmgxb4_direct_75016222 (detected as a significant DEU in
TruSeq and Direct) had a significantly high expression in
qRT-PCR Day4 samples (figure 5b). In five additional genes,
both the DEU and the constitutive exon were upregulated in
the same differentiation state but not to the same extent, as evi-
dent by their log2 fold-change of Day4 versus Undiff by both
DEXSeq and qRT-PCR (electronic supplementary material,
figure S6 and table S4). We present also the gene Rps24, in
which the exon expression values were in the trend expected,
yet in order to better validate the DEU, a different constitutive
exon should have been selected (electronic supplementary
material, figure S6 and table S4, not considered as validated).

As a second validation approach, we performed RT-PCR
to confirm DEU events of alternative splicing in ‘intronic’
coding exons within the genes: Enah detected by TruSeq
and Zfp207, Mark3, Smarcb1 and Mta1, detected by ONT
Direct (one DEU was detected also by TruSeq and two
others also by ONT cDNA). RT-PCR was performed using
primer pairs designed to target the immediately flanking
constitutive exons, and detected the two expected amplified
product sizes, in accordance to the differentiation day
(figure 5c; electronic supplementary material, table S5B). The
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Figure 6. (Overleaf.) DEU analysis for the amyloid precursor-like protein 1 (Aplp1) gene. (a) Sashimi plot visualization of read coverage and splice junctions along the
entire Aplp1 gene. Bottom tracks show DEU and known transcripts (GENCODE). In the DEU track, the greyscale is indicative of fold change (Day4 versus Undiff ). The area
in the rectangle marks the gene 50-end, containing many DEUs. Purple arrows denote the DEUs selected for validation. (b) Visualization of ONT reads spanning the 30-
end of the Aplp1 gene. Purple arrows denote the exons selected for validation. (c) Validation of Aplp1 DEUs by qRT-PCR. DEXSeq exon counts as explained in figure 5.
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2.8. Exploring DEUs in the Aplp1 gene
An example of a gene that exhibited DEUs was the amyloid-
like protein 1 (Aplp1) gene, belongs to a family of proteins
involved in neuronal development and in dementia [50].
This gene was also identified as a DEG only by ONT cDNA.
Overall, we identified 12 DEUs within this gene, many of
them are in the 50 end of the gene and were identified
mostly by ONT Direct in a region of the gene that contains
the ‘E1’ domain (figure 6a; electronic supplementary material,
table S3). The Aplp1 gene harbours transcripts (for example:
ENSMUST00000207514.1 and ENSMUST00000208404.1) that
might not encode a protein, and have alternative transcription
start sites (TSS). Some of the ONT reads start at these TSS, in
addition, we identified two DEUs (Aplp1_cDNA_30436895
and Aplp1_cDNA_30440303; figure 6) that overlap these
alternative TSS and were significantly upregulated in the
Undiff state, as detected by the TruSeq and ONT cDNA plat-
forms. These DEUs were validated by qRT-PCR and their
expression was demonstrated to be significantly different
between Undiff and Day4, as expected (figure 6c; electronic
supplementary material, table S4).

In an attempt to decipher differentially expressed tran-
script models containing and starting at the two validated
DEUs, we explored the StringTie2 assembled and quantified
transcripts (electronic supplementary material, figure S4B).
The analysis revealed two short transcripts that were highly
expressed in the Undiff state within the ONT cDNA datasets.
Similarly, TALON assembled two short transcripts with a TSS
similar to ENSMUST00000208404.1, starting with the DEU
Aplp1_cDNA_30440303, which were more abundant in
Undiff. Yet, no evidence was found for a transcript starting
at the DEU Aplp1_cDNA_30436895 (data not shown).
2.9. Exploring DEUs in the Mbd3 gene
Gene-level analysis did not identify the Mbd3 (methyl-CpG
binding domain protein 3) gene as a DEG between Undiff
and Day4 samples, yet exon-based analysis identified DEUs
within this gene. Mbd3 is an essential pluripotency gene,
and is a key component of the NuRD chromatin remodelling
complex [51,52]. Four Mbd3 gene DEUs were detected by
either one or more platforms (figure 7; electronic supplemen-
tary material, figure S7). In GENCODE, these are three
exons, however, in the analysis, one exon was split into two
since there were transcripts in which this exon was only par-
tially overlapping. Two of the exons were upregulated in
Undiff (Mbd3_cDNA_80395202 and Mbd3_cDNA_80395286
are in fact part of the same exon), and two were upregulated
in Day4 samples (Mbd3_cDNA_80395436 and Mbd3_cDNA_
80399218; figure 7a,b). These exons, along with a constitutive
exon were selected for validation by qRT-PCR (figure 7c),
and their expression was demonstrated to be significantly
different between Undiff and Day4, as expected.

ONT reads revealed an annotated transcript start of a short
Mbd3 isoform, presumably upstream to the DEUs upregulated
in Undiff (Mbd3_cDNA_80395202 and Mbd3_cDNA_
80395286) (figure 7d; electronic supplementary material,
figure S8). Spliced isoforms for Mbd3 are reported in the
sequence databases, and result in different protein products
(figure 7e). Specifically, the N-terminal methyl-CpG binding
and MBD2/MB3_p55 binding domains are shorter in the
known transcripts (i.e. ENSMUST00000105347.1; figure 7e),
or entirely missing in ENSMUST00000125618.1 (annotated as
non-coding, therefore not shown in figure 7e). Yet, the above
annotated isoforms initiate downstream to our ONT reads
(figure 7d). The ONT reads initiate proximal to a reported
alternative promoter (located at chr10:80 395 362–80 395 421;
EPDnew UCSC track in figure 7d), that suggests the presence
of an additional mechanism for transcriptional regulation. A
second indication for the above TSS is that its ׳5 exon encodes
an ORF in frame with the Mbd3 gene, extending by 49 amino
acids an internal exon encoding the MBD2/MB3_p55 binding
domain (sequence detailed in electronic supplementary
material, file S1). Part of this ORF (28 amino acids) overlaps
an exon in ENSMUST00000105348.7. An alignment generated
by TBLASTX with the 50 end of our predicted shorter tran-
script, showed that the 49 amino acids were conserved in
other species, such as Rattus norvegicus (GenBank:
EDL89285.1) (figure 7f ).

Even though this isoform does not exist in the public
sequence repositories, experimental support for the functio-
nality of this alternative transcript was reported by Ee et al.
[53]. They demonstrated mouse ESCs expression of an
Mbd3 isoform (Mbd3C) bearing a unique 50-amino-acid
N-terminal region that is necessary for interaction with the
histone H3 binding protein WDR5. This interaction creates a
unique NuRD complex variant that specifically functions
in ESCs.

We further explored the presence of the novel short
Mbd3 and its differential upregulation in the Undiff state,
within our transcript assembly datasets. No Mbd3 novel
transcript was detected in the StringTie2 assembly. Further-
more, transcript expression plots for the Mbd3 gene did not
reveal a coherent transcript expression pattern between the
replicates or between the platforms (using StringTie2
FPKM quantification; electronic supplementary material,
figure S4C). Therefore, StringTie2 did not support transcript
models explaining the validated DEUs. By contrast, in
TALON-assembled transcripts predicting for the Mbd3, we
identified five known isoforms and seven novel transcripts
with at least five supporting reads (electronic supplemen-
tary material, figure S9). One of the detected novel
transcripts (TALONT000325042), initiated downstream to
the alternative TSS described above, was 10-fold more abun-
dant in Undiff in both ONT platforms (figure 7b,d,e;
electronic supplementary material, table S6).
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Figure 7. DEU analysis for the methyl-CpG binding domain protein 3 (Mbd3) gene. (a) Visualization of exon usage and estimated expression of Mbd3 gene exons
from DEXSeq analysis results, for Day4 (red) and Undiff (blue) samples, sequenced by ONT cDNA and Direct RNA platforms. The arrows denote the DEUs selected for
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models, and a novel transcript predicted by the TALON pipeline. (c) Validation of Mbd3 DEUs by qRT-PCR, as explained in figure 5. (d ) Top tracks show the alterna-
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starting at the depicted methionine (see top arrow pointing downwards). In the DEU track, the greyscale is indicative of fold change (Day4 versus Undiff ). A plot of
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3. Discussion
This work aimed to detect transcriptome changes in the gene,
transcript and exon levels using three sequencing platforms,
namely Illumina short reads, ONT cDNA and ONT Direct
long reads, towards the discovery of DS events in mouse
ESCs undergoing differentiation.

At the gene level, the differentiation state was the domi-
nant cause for variations in gene expression values. While
there was a high overlap in the DEGs detected by the sequen-
cing platforms and all DEG lists were enriched for ESC
pluripotency pathways, the Illumina technology had an
advantage in detecting more DEGs due to the higher
number of reads and thus higher transcriptome coverage.

In contrast to the gene level, in the isoform-based analysis
the agreement in expression levels between platforms
decreased, comparing transcripts assembled and quantified
(using TALON and StringTie2) across the platforms resulted
in a weak or non-detectable correlation. Given the high
number of expected transcripts assembled (greater than
threefold than the number of genes), it is likely that the low
ONT read yield imposes a limitation to accurately quantify
transcripts. Thus, despite the premise of long reads in con-
structing transcripts, their low throughput and low
sequence accuracy demonstrate that generating accurate tran-
scriptomes from imperfect RNA reads is still a challenge
[22,31]. Moreover, it is hard to distinguish whether reads
with premature starts and ends indicate native internal tran-
scription start or end sites, or technical issues such as
fragmented reads or blocked pores. This phenomenon
inflates the number of reconstructed transcripts. Neverthe-
less, they can also be genuine alternative TSSs, as we
demonstrated for the Mbd3 gene that are upregulated in
the Undiff state, and encode a shorter Mbd3 protein that
lacks the N-terminal methyl-CpG DNA binding domain.

We have shown that each of the technologies presents
various sequence biases, which is a consequence of differ-
ences in reads length, number of reads, error rates, biased
coverage along the gene body and the ability to accurately
detect exon junctions. These biases can explain the low repro-
ducibility of reconstructed transcripts quantification. A recent
hybrid approach uses both short and long reads to improve
the final reconstructed transcripts set [27]. However, sequen-
cing biases that we observed (i.e. decreased coverage of the
short reads at the transcript UTRs) still need to be addressed
in the hybrid approach. In addition, the short reads cannot
aid in identifying true internal transcription start or end
sites. Ongoing advances in computational algorithms
increase the accuracy of sequence and isoforms detection,
such as isONcorrect method described by Sahlin et al. [21],
and is applicable to cDNA long-read sequencing. Further-
more, technology advancements have improved ONT
cDNA sequencing accuracy by implementing rolling circle
amplification to concatemeric consensus (R2C2) method
[43,54,55] and by ONT latest chemistry (kit 12 chemistry)
and R10.4 pores, which enables 99.3% raw read accuracy.
Yet, all the above-described advancements are not applicable
to Direct ONT sequencing.

The exon-based strategy enabled the detection of numer-
ous statistically significant DEUs, by both short and long
sequencing platforms. Interestingly, most of DEUs were
detected uniquely by one of the platforms: the long reads
exhibited an advantage in detecting DEUs at the UTRs,
whereas short reads had an advantage in detecting an
order of magnitude more DEUs than with the ONT plat-
forms. The fact that most of the DEUs were not found in
genes detected as DEGs, suggests that numerous DS events
occur during ESC differentiation, and could not be detected
at the gene-level analysis. Only a fraction of DEUs were
detected by all platforms (16 out of 7317), still, DEUs from
20 genes (detected by one or more platforms) were validated
by qRT-PCR and RT-PCR, including DEUs that are protein
coding and alternatively spliced introns in key genes of the
ESCs differentiation process (Mbd3 and Aplp1), or in chro-
matin modification (Ash2 l, Mbd3, Mta1, Smarcb1, Usp7) as
well as others. Taken together, we suggest the exon-based
approach as a promising strategy for deciphering DS
events, furthermore, we highlight that the sequencing
platforms reveal complementary information. In summary,
this work provides an extensive repository of short and
long reads, along with gene and exon-based analyses, profil-
ing the transcriptomic changes upon RA-induced mouse
ESC differentiation, which can be used as a resource for
discovering functional diversity.
4. Conclusion
In this study, we explored three sequencing platforms,
namely Illumina short reads, ONT cDNA and ONT Direct
long reads, and found that at the gene-level expression, Illu-
mina short reads identified more changes due to its higher
sequencing yield, yet the three platforms discovered similar
transcriptomic profiles. In an attempt to discover DS during
mouse ESC differentiation, quantification of reconstructed
transcripts was found to be irreproducible. Thus, even with
the use of long reads, precise transcript structure reconstruc-
tion and transcript quantification remain challenging, due to
the low read yield and accuracy. We hereby demonstrated
that exon-based strategy can bridge this challenge and
detect statistically significant DEU, by both short and long
sequencing platforms, and that the three sequencing plat-
forms complement one another. In addition, we provide an
important analysed resource of transcriptome changes
occurring during stem cell differentiation.
5. Material and methods
5.1. Cells and RNA extraction
R1 mouse embryonic stem (mES) cells were maintained in
mES growth medium (DMEM, fetal bovine serum, L-gluta-
mine, non-essential amino acids, penicillin/streptomycin,
ß-mercaptoethanol and leukaemia inhibitory factor), and
named herein as sample Undiff. Embryoid bodies were gener-
ated from R1 single-cell suspensions (35 000 cells ml−1) in mES
growth medium without Leukaemia inhibitory factor in low
adherence dishes and grown for 4 days. Thereafter, they
were treated for 4 days with 2 µM RA (Sigma R2625), and
termed sample Day4. The experiment was conducted in two
biological replicates from distinct samples that were grown
and treated separately. RNA was extracted using the RNeasy
Mini Kit (Qiagen), and its quality was assessed using TapeSta-
tion (Agilent). Poly(A) RNA was isolated from the total RNA
using the Dynabeads mRNA DIRECT kit (ThermoFisher
Scientific) according to the manufacture’s protocol.
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5.2. Illumina library preparation and sequencing
A total of 1 µg RNAwas processed using the Illumina TruSeq
RNA Sample Preparation Kit v. 2 protocol. Libraries were
evaluated by Qubit and TapeStation. Sequencing libraries
were constructed with barcodes to allow multiplexing.
Between 39 and 59 million paired-end reads were sequenced
(2 × 101 bases) per sample (table 1), on Illumina HiSeq Rapid
2500 instrument using protocols RTA (1.17.21.3) and HCS
(2.0.12.0).

5.3. ONT library preparation and sequencing
For cDNA-PCR library preparation, a total of 50 ng poly(A)
RNA was used as input. Libraries were prepared according
to manufacturer’s protocols using the cDNA-PCR Sequen-
cing Kit (SQK-PCS108, ONT, Oxford, UK; one dimension—
meaning that the template and the complement strands are
sequenced as individual strands). Input of 500 ng poly(A)
RNA was used for the Direct RNA library preparation kit
(SQK-RNA002, ONT, Oxford, UK). Both types of libraries
were sequenced using the ONT MinION 106D R9 version
flow cells. MinKNOW software (v. 3.1.8, ONT) was used to
run each flow cell for 48 h.

5.4. Quantitative real-time reverse transcription
polymerase chain reaction

Complementary DNAwas synthesized from 500 ng total RNA
using the PrimeScript RT Reagent Kit (TAKARA) according to
the manufacturer’s instructions, with both oligo-dT primers
and random hexamers. qRT-PCR primers were designed for
DEUs and constitutive exons (for the genes Serf2 and
Tmsb10, only one DEU was designed and no constitutive
exon was selected) using either primer3 (https://bioinfo.ut.
ee/primer3-0.4.0/) or Blast-Primer (https://www.ncbi.nlm.
nih.gov/tools/primer-blast/) and are listed in electronic sup-
plementary material, table S5A. qRT-PCR analyses were
performed with SYBR Green (Applied Biosystems, Foster
City, CA, USA) on five replicates per exon and differentiation
day. Signals (cT) were normalized to genes and exons that
were found to have high and similar expression levels in all
platforms and differentiation days (Pum2, Sec24d, Copg1).
To compare between Day4 and Undiff, we performed a t-test
on 2^(-ΔCт) of Day4 versus Undiff, and p-values were cor-
rected with a Benjamini–Hochberg adjustment. Fold-changes
were calculated between mean Day4 values 2^(-ΔCт) and
mean Undiff values.

5.5. Reverse transcription polymerase chain reaction
RT-PCR primers were designed from constitutive exons that
flank DEUs classified as introns and yield an amplified
product less than 500 bp (primers are listed in electronic sup-
plementary material, table S5B). The Copg1 gene was used as
a loading control. cDNA was prepared as described above,
and PCR was done using the primers and KAPA Hifi HotStart
ReadyMix (Roche; Cape Town, South Africa). The cycling
acquisition programme used was: initial denaturation at 98°
C for 2 min, followed by 35 cycles of denaturation temperature
at 98°C for 20 s, annealing at 64°C for 30 s and elongation at
72°C for 30 s; and a final elongation step at 72°C for 1 min.
RT-PCR products, assayed in triplicates per differentiation
state, were resolved using 2% SeaKem LE (Lonza, Rockland,
ME, USA) agarose gel.

5.6. Genome browsers
The UCSC genome browser [56] (https://genome.ucsc.edu/
s/bareket/mm10%2DES%2Dtranscriptome%2Danalysis) and
IGV v. 2.9.4 [57] were used to visualize the reads and the
assembled transcripts on selected genomic regions. Searching
for protein sequence similarities with novel Mbd3 transcript
start was performed by running TBLASTX against the nucleo-
tide database (nt) at NCBI (https://blast.ncbi.nlm.nih.gov/).

5.7. Bioinformatics analysis of Illumina sequences
Raw reads were analysed using the UTAP transcriptome
analysis pipeline [58]. Initially, reads were trimmed using
cutadapt v. 1.15 [59] to remove TruSeq adaptors, with the
parameters: -times 2 -q 20 -m 25. Reads were mapped to
the Mus musculus genome (mm10, GENCODE annotation)
using STAR (v. 2.4.2a) [60], with the following parameters:
-alignEndsType EndToEnd, -outFilterMismatchNoverLmax
0.05 and -twopassMode Basic.

5.8. Bioinformatics analysis of ONT sequences
Direct RNA reads were acquired using the MinION software
from Oxford Nanopore Technologies (ONT), and base-called
using either ONT albacore (MinKNOW v. 2.3.1 and 2.3.3) or
Guppy software v. 2.1.3 (electronic supplementary material,
table S1). Raw reads were converted from fast5 to fastq
format and processed to base calls using Poreplex v. 0.3.1
and 0.4.1 (https://github.com/hyeshik/poreplex), trimmed
to remove any 30 adapter sequences, and filtered to remove
chimeras (unsplit reads fused of two or more RNAs), with
the parameters -trim-adapter -basecall -filter-chimera.

ONT cDNA raw reads from the ‘skip’ folder were base-
called using Guppy (–flowcell FLO-MIN106 –kit SQK-
PCS108). These reads were merged with reads from the
pass folders, and processed using porechop (v. 0.2.3) to
remove adaptors.

The pre-processed reads were aligned to the Mus musculus
genome (mm10, UCSC) using minimap2 (v. 2.10) adjusted for
long-read spliced alignment (-x splice, -secondary = no, -MD).
SAM alignment files were sorted, and converted to indexed
BAM files. For DEXSeq analysis, the resulting primary aligned
reads were marked with ‘NH:i:1’ tags using the UNIX
awk command. The per cent of reads multiple aligned was
below 2.4%.

5.9. Gene-level analysis
Reads on genes were counted using htseq-count [61] with
mm10 annotation (downloaded from iGenomes UCSC), and
considering the strandedness of the samples (Direct RNA
samples were run as strand-specific; -s yes).

Spearman correlation coefficient analysis was performed
on the raw counts using the cor function in the R stat package
[62], and heatmaps were created using the gplots package
(heatmap.2). PCA analysis was performed on log-normalized
values, computed with DESeq2 (rlog function, blind = TRUE)
[63] using the R prcomp package.

https://bioinfo.ut.ee/primer3-0.4.0/
https://bioinfo.ut.ee/primer3-0.4.0/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://genome.ucsc.edu/s/bareket/mm10%2DES%2Dtranscriptome%2Danalysis
https://genome.ucsc.edu/s/bareket/mm10%2DES%2Dtranscriptome%2Danalysis
https://blast.ncbi.nlm.nih.gov/
https://github.com/hyeshik/poreplex
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Differential gene expression analysis was performed sep-
arately on the count matrix for each of the platforms, using
the UTAP pipeline [58]. Specifically, normalization of the
counts and differential expression analysis were performed
using DESeq2 (v. 1.16.1) with the parameters: betaPrior=
True, cooksCutoff = FALSE, independentFiltering = FALSE.
The following criteria were used to select DEG: adjusted
p-value≤ 0.05, |log2FoldChange|≥ 1 and baseMean≥ 5.

Enrichment analysis of canonical pathways of the three
DEG lists along with their log-fold change values (Day4
versus Undiff) was performed using Ingenuity Pathway
Analysis (Qiagen, 2021, https://digitalinsights.qiagen.com/
products-overview/discovery-insights-portfolio/analysis-and-
visualization/qiagen-ipa/). The DEG lists enrichment results
were compared using the ‘comparison’ feature in IPA, using
both human and mouse, in order to benefit from the rich path-
way knowledge of both organisms.

5.10. Comparison of sequence quality control features
Various sequence quality control featureswere extracted from the
aligned reads (separate BAM file for each sample and platform)
using the RSeQC tool v. 2.6.4 [64] and NanoPlot v. 1.14.1 [65].
The features extracted were GC content per read (read_GC.py),
read distribution over genome regions (read_distribution.py),
junction novelty ( junction_annotation.py), junction saturation
( junction_saturation.py), genebody coverage (genome_covera-
ge.py) and RPKM saturation (rpkm_saturation.py, ONT Direct
RNA was run with –d ‘++,–’). The read coverage analysis on
genebodywasdonebyscalingall transcripts to100basesandcal-
culating the proportions of reads covering each nucleotide
position. Statistical significance was calculated for specific gene
body percentile coverage (10%, 90%) using ANOVA. The
RSeQC output files per sample were merged using R and Excel
to a single plot, and in some of the plots, the replicate values
were averaged before plotting. GC content of the transcriptome
was calculated using bedtools nuc on all transcripts [66]. Align-
ment error rates were calculated using AlignQC v. 2.0.5, read
bases alignedwere countedusing samtoolsv. 1.12 (stats, selecting
‘bases mapped (cigar)’) [67].

5.11. Exon-count-based analysis
The GENCODE annotation gtf file vM15 was processed by
running the python script dexseq_prepare_annotation.py
(option -r no). The exons were quantified with dexseq_
count.py using options:’ -r pos -s no’, except for ONT
Direct RNA that ran with the option ‘-s reverse’, and ‘-p
yes’ for Illumina TruSeq. Spearman correlation coefficient
analysis of the raw counts of all exons (merged using
DESeq2 DESeqDataSetFromHTSeqCount) was as described
above for the gene-level analysis.

DEUs between Undiff and Day4 (or the day attribute)
samples was detected using R 3.5.1 and DEXSeq R package
(v. 1.26.0) [45], run separately for each platform. Initial
filtering was performed to keep exons that have 50 counts
in a least one sample, and at least 10 reads in ‘other exons’
in all samples. Differentially used exons were found using
the DEXSeq function testForDEU using the full model (full-
Model = sample + exon + day:exon), and a reduced model
(reducedModel =∼ sample + exon). Analysis of exons that
are differentially expressed between the sequencing platforms
for a certain differentiation state (either Undiff or Day4), was
performed by including the platform category in the model
(instead of the day). Criteria for selecting differentially
expressed exons were adjusted p-value≤ 0.05 and an absolute
|log2FoldChange|≥ 1, and a minimal exon length of 18
bases. For validation we also included an exon from the
gene Wbp1, ENSMUSG00000030035.14:E016, that had an
adjused p-value of 0.09. Annotation of the DEUs (between
Undiff and Day4) into 50 UTR, 30 UTR, CDS or intron (mean-
ing alternatively spliced intron) categories was done by
running bedtools intersect (parameters -s -u) using a BED
file of the DEUs and exon category-derived GTF files. These
GTF files were derived using the R package GenomicFeatures
[68] and GENCODE (vM15) annotation. The outputs were
intersected with the original GENCODE GTF to add the
gene_id using bedtools [66] (parameters: intersect -s -wa -f
1.0). Annotation of protein domains was done by intersection
with UCSC table unipDomain (release 2020_06).
5.12. Quantifying and characterizing isoform-level
expression of genes with TALON

The TALON package [22] was applied to identify and quan-
tify isoforms in ONT samples (cDNA and Direct RNA). The
alignments, pooled from both replicates, were pre-processed
with talon_label_reads to remove artefacts of internal prim-
ing with A-rich sequences (20 bp window). The TALON
database was initialized from the GENCODE (vM15) annota-
tion with talon_initialize_database module (parameters: –l 0
–5p 500 –3p 300). The TALON module was applied for tran-
script annotation (parameters: –cov 0.9 –identity 0.8),
keeping transcript models with greater than 5 reads in at
least one of the pooled replicates. Overall, each pool ident-
ified less than 48.3 K distinct transcripts that were merged
to a total of 97 904 distinct transcript models (merged GTF)
(electronic supplementary material, figure S3A). A Spearman
correlation was calculated between the transcript abundances
(quantified using talon_abundance function) for the pooled
replicates. In addition, the pooled transcripts (merged GTF)
were quantified for each sample (using the aligned reads),
including the Illumina TruSeq genome-aligned sequences
using StringTie2 (see details below for parameters). The
FPKM values from the t_data.ctab file outputs were used to
calculate Spearman correlation coefficients.
5.13. Transcript assembly and quantification with
StringTie2

StringTie2 [23] v. 2.1.4wasused to runguidedassemblywith the
GENCODE (vM15) annotation (parameter -G -B) from the
aligned reads. The parameter (-L) was implemented for the
ONT reads and the parameter (–rf) for the ONT Direct RNA
reads. The transcripts were then merged to one gtf file (–
merge) and estimates of transcript abundancewere done by run-
ning StringTie2 with the addition of the parameter (-e). Overall,
147 769 distinct transcript models were identified. Spearman
correlations were calculated on the transcripts FPKM counts.
Expression plots were prepared with the R package ballgown
v. 2.22.0 [69] function plotTranscripts using FPKMmeasures.

https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
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5.14. Protein domain analysis
Protein domains in Mbd3 isoforms were inferred by DoChaP
[70] and Pfam database searches [71].

Data accessibility. Custom tracks are available on the UCSC browser
using the session: https://genome.ucsc.edu/s/bareket/mm10%
2DES%2Dtranscriptome%2Danalysis. The data discussed in this pub-
lication have been deposited in NCBI’s Gene Expression Omnibus
and are accessible through GEO Series accession number GSE156371.

The data are provided in electronic supplementary material [72].
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