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Abstract

Excessive production of endothelin-1 (ET-1), a potent vasoconstrictor, occurs with several forms of pulmonary hypertension.
In addition to modulating vasomotor tone, ET-1 can potentiate pulmonary arterial smooth muscle cell (PASMC) growth and
migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary
hypertension. It is well established that changes in cell proliferation and migration in PASMCs are associated with
alkalinization of intracellular pH (pHi), typically due to activation of Na+/H+ exchange (NHE). In the systemic vasculature, ET-1
increases pHi, Na+/H+ exchange activity and stimulates cell growth via a mechanism dependent on protein kinase C (PKC).
These results, coupled with data describing elevated levels of ET-1 in hypertensive animals/humans, suggest that ET-1 may
play an important role in modulating pHi and smooth muscle growth in the lung; however, the effect of ET-1 on basal pHi

and NHE activity has yet to be examined in PASMCs. Thus, we used fluorescent microscopy in transiently (3–5 days) cultured
rat PASMCs and the pH-sensitive dye, BCECF-AM, to measure changes in basal pHi and NHE activity induced by increasing
concentrations of ET-1 (10210 to 1028 M). We found that application of exogenous ET-1 increased pHi and NHE activity in
PASMCs and that the ET-1-induced augmentation of NHE was prevented in PASMCs pretreated with an inhibitor of Rho
kinase, but not inhibitors of PKC. Moreover, direct activation of PKC had no effect on pHi or NHE activity in PASMCs. Our
results indicate that ET-1 can modulate pH homeostasis in PASMCs via a signaling pathway that includes Rho kinase and
that, in contrast to systemic vascular smooth muscle, activation of PKC does not appear to be an important regulator of
PASMC pHi.
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Introduction

Pulmonary hypertension can result from a variety of etiologies,

including genetic mutations, environmental factors (i.e, anorexi-

gens), and hypoxia due to chronic lung diseases [1–3]. In all cases,

increased muscularization of the vasculature and enhanced

vasomotor tone contribute to the elevation in pulmonary arterial

pressure. The exact mechanisms underlying the pathogenesis of

PASMC growth are not known, but studies have shown that

increased intracellular pH (pHi) accompanies cell proliferation in

systemic [4–6] and pulmonary [7] vascular smooth muscle cells.

In mammalian cells, pHi homeostasis is maintained in large part

by several membrane bound transporters, including the Na+-

HCO3
- co-transporter, Na+-dependent Cl2/HCO3

- exchange,

Na+-independent Cl2/HCO3
- exchange and Na+/H+ exchange,

all of which have been shown to be functionally present and

contribute to control of pHi in vascular smooth muscle [8–12]. In

PASMCs, the use of Na+/H+ exchanger (NHE) antagonists

revealed that this transporter plays a significant role in regulating

resting pHi [11], [13]. Na+/H+ exchangers are plasma membrane

spanning proteins that use the transmembrane Na+ gradient to

extrude protons. Many stimuli, including acute [10] and chronic

hypoxia [13] and growth factors [7] induce PASMC alkaliniza-

tion. The increase in pHi observed in response to chronic hypoxia

or platelet-derived and epidermal growth factor was demonstrated

to require activation of NHE activity [7], [13]. Moreover,

inhibition of Na+/H+ exchange with amiloride analogs or selective

knockdown of NHE isoform 1 (NHE1) prevents PASMC

proliferation in response to growth factors and attenuated vascular

remodeling and pulmonary hypertension in rodents exposed to

chronic hypoxia, respectively [7], [14], [15]. The results from

these studies indicate that enhanced NHE activity in response to

growth factors is an important component in modulating pHi and

PASMC growth.

Since its discovery in 1988 [16], ET-1 has emerged as a strong

candidate in mediating the development and progression of

pulmonary hypertension. ET-1 is one of the most potent and

abundant endothelial-derived constricting factors identified to

date, and has mitogenic and anti-apoptotic properties [17–21].

Three isoforms of endothelin (ET-1, ET-2, ET-3) have been

identified, of which ET-1 is the most widely distributed, and thus,

the most widely studied. ET-1 was initially identified as a secretory

product from aortic endothelial cells [16] and is primarily

produced in, and secreted from, vascular endothelium. ET-1
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levels are markedly increased in almost all forms of pulmonary

hypertension, and ET-1 receptor antagonists prevent and partially

reverse the development of hypoxic pulmonary hypertension in

animal models [22–30] and are now used clinically in the

management of many forms of pulmonary hypertension [31].

While ET-1 was shown to increase pHi, NHE activity and cell

growth in systemic vascular smooth muscle [32], the effects of ET-

1 on PASMC pH homeostasis are unknown.

Two endothelin receptor subtypes have been identified and

characterized: ETA and ETB, both of which mediate proliferation

in PASMCs [33]. Once ET-1 binds to its surface receptor, a

complex signaling process is set in motion. In general, endothelin

receptors are G-protein coupled to the phospholipase C cascade,

leading to increased [Ca2+]i and activation of protein kinase C

(PKC) and Rho kinase (ROCK) [34–37]. That PKC activation

leads to increased NHE activity has been well documented in

systemic vascular smooth muscle [38–41], and in several cell types

the action of ET-1 on Na+/H+ exchange was confirmed to require

PKC [42–44].

Despite the fact that overwhelming evidence suggests that

alterations in pHi and Na+/H+ exchange are necessary for

vascular smooth muscle cell growth, and that ET-1 levels are

elevated pulmonary hypertension patients and animal models of

pulmonary hypertension, the effect of ET-1 on basal pHi and

NHE activity has yet to be examined in PASMCs. Thus, in this

study, we used fluorescent microscopy to measure basal pHi and

NHE activity to test the hypothesis that challenge with ET-1

would lead to PKC-dependent activation of NHE activity and a

consequent alkaline shift in pHi in PASMCs.

Methods

Ethics Statement
All procedures were performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and were

approved by the Animal Care and Use Committee of The Johns

Hopkins University School of Medicine (Protocol number

MO06M161).

Cell Isolation and Culture
The method for obtaining single PASMCs has been described

previously [13]. Briefly, adult, male C57/B6 mice were anesthe-

tized with sodium pentobarbital (65 mg/kg i.p.), and under deep

anesthesia the heart and lungs removed and transferred to a petri

dish containing HEPES-buffered salt solution (HBSS) containing

(in mmol/L): 130 NaCl, 5 KCl, 1.2 MgCl2, 1.5 CaCl2, 10 N-[2-

hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid] (HEPES) and

10 glucose, with pH adjusted to 7.2 with 5 mol/L NaOH.

Intrapulmonary arteries (100–400 mm outer diameter) were

isolated and cleaned of connective tissue. After disrupting the

endothelium by gently rubbing the luminal surface with a cotton

swab, the arteries were allowed to recover for 30 min in cold (4uC)

HBSS, followed by 20 min in reduced-Ca2+ (20 mmol/L CaCl2)

HBSS at room temperature. The tissue was digested in reduced-

Ca2+ HBSS containing collagenase (type I; 1750 U/ml), papain

(9.5 U/ml), bovine serum albumin (2 mg/ml) and dithiothreitol

(1 mmol/L) at 37uC for 10 minutes. Following digestion, single

smooth muscle cells were dispersed by gentle trituration with a

wide-bore transfer pipette in Ca2+-free HBSS and the cell

suspension was placed on 25 mm glass cover slips. PASMCs were

cultured under normoxic conditions in SmBm complete media

(Lonza) supplemented with 10% fetal calf serum for 2–4 days and

placed in serum-free media 24 hr before experiments. The identity

of the cells under study was confirmed as smooth muscle by

elongated, spindle morphology (Fig 1A), and positive staining for

both smooth muscle specific a-actin (SMA) and heavy chain

myosin (HCM) (Fig 1B). For immunofluorescence, cells were

grown on glass coverslips, fixed with 10% formalin, washed with

PBS, permeabilized with 0.5% Triton-X and blocked with 20%

goat serum. Cells were then incubated with monoclonal antibodies

against SMA (Sigma-Aldrich) or HCM (Abcam), followed by

fluorescent secondary antibody (CY3; Molecular Probes) and the

nuclear dye, YO-PRO. Random fields were examined to achieve a

minimum total cell count of 100 per animal, and the number of

cells exhibiting SMA/HCM positivity calculated as a percent of

total cell number.

Intracellular pH Measurements
PASMCs were placed in a laminar flow cell chamber perfused

with HBSS with pH adjusted to 7.4. pHi was measured in cells

incubated with the membrane permeant (acetoxymethyl ester)

form of the pH-sensitive fluorescent dye 29,79-bis(carboxyethyl)-

5(6)-carboxyfluorescein (BCECF-AM) for 60 min at 37uC under

an atmosphere of 20% O2-5% CO2. Cells were then washed with

HBSS for 15 min at 37uC to remove extracellular dye and allow

complete de-esterification of cytosolic dye. Ratiometric measure-

ment of BCECF fluorescence was performed on a workstation

Figure 1. Characterization of murine pulmonary arterial
smooth muscle cells (PASMCs). A) Representative phase contrast
image showing morphology of murine PASMCs. B) Bar graph showing
mean6SEM values (n = 3-4 isolations) for the percent of cells staining
positive for the smooth muscle cell markers smooth muscle specific a-
actin (SMA) and heavy chain myosin (HCM).
doi:10.1371/journal.pone.0046303.g001

ET-1 and NHE Activity in PASMCs
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(Intracellular Imaging Inc, Cincinnati, OH) consisting of a Nikon

TSE 100 Ellipse inverted microscope with epi-fluorescence

attachments. The light beam from a xenon arc lamp was filtered

by interference filters at 490 and 440 nm, and focused onto the

PASMCS under examination via a 206 fluorescence objective

(Super Fluor 20, Nikon). Light emitted from the cell at 530 nm

was returned through the objective and detected by an imaging

camera. An electronic shutter (Sutter Instruments) was used to

minimize photobleaching of dye. Protocols were executed and

data collected on-line with InCyte software (Intracellular Imaging

Inc). pHi was estimated from in situ calibration after each

experiment. Cells were perfused with a solution containing (in

mmol/L): 105 KCl, 1 MgCl2, 1.5 CaCl2, 10 glucose, 20 HEPES-

Tris and 0.01 nigericin to allow pHi to equilibrate to external pH.

A two point calibration was created from fluorescence measured as

pHi was adjusted with KOH from 6.5 to 7.5. Intracellular H+ ion

concentration ([H+]i) was determined from pHi using the formula:

pHi = 2log ([H+]i).

Experimental Protocols
Effect of ET-1and PMA on basal pHi. Baseline pHi was

measured for five minutes in PASMCs under control conditions.

Values were averaged to obtain a mean value for each cell. The

effect of agonists on baseline pHi was then determined by

monitoring pHi for an additional 10 min in the same cells during

exposure to ET-1 (10210 to 1028 M) or phorbol 12-myristate 13-

acetate (PMA; 1 mmol/L). Each concentration was tested on a

separate coverslip of cells.

Effect of antagonists on basal pHi. The effect of antago-

nists on basal pHi was determined in HBSS-perfused cells. After

obtaining a stable baseline for 5 min, cells were then perfused with

antagonists for 10 min. For Y-27632, cells were pretreated for

30 min to allow complete cell penetration and ROCK inhibition.

Thus, the effect of Y-27632 on basal pHi was determined by

comparing baseline in paired coverslips (control and Y-27632-

treated). To determine the effect of antagonists on the ET-1-

induced increase in pHi, cells were then challenged for 10 min

with 1028 mol/L ET-1 in the presence of antagonist.

Effect of ET-1on Na+/H+ exchange. A standard ammonia

pulse technique was used to measure NHE activity (Figure 2A).

PASMCs loaded with BCECF were perfused at a rate of 1 mL/

min with Solution 1 containing (in mmol/L): 130 NaCl, 5 KCl,

1MgCl2, 1.5 CaCl2, 10 glucose and 20 HEPES with pH adjusted

to 7.4 with NaOH at 37uC. Baseline pHi was measured for 2 min

before cells were briefly exposed to NH4Cl (ammonium pulse) by

perfusing with Solution 2 containing (in mmol/L): 110 NaCl, 20

NH4Cl, 5 KCl, 1MgCl2, 1.5 CaCl2, 10 glucose, 20 HEPES at a

pH of 7.4 using NaOH for 3 min. The ammonium pulse caused

alkalinization due to influx of NH3 and buffering of intracellular

H+ (Fig 2A). Washout of NH4Cl in the absence of extracellular

Na+ using a Na+- and NH4
+- free solution containing (in mmol/L):

130 choline chloride, 5 KCl, 1MgCl2, 1.5 CaCl2, 10 glucose and

20 HEPES at a pH of 7.4 using KOH for 10 min results in

acidification due to rapid diffusion and washout of NH3. The

external solution was then switched back to Na+-containing

Solution 1 for 10 min. Re-addition of extracellular Na+ allows

activation of Na+/H+ exchange and recovery from acidification to

basal levels. The rate of Na+-dependent recovery from intracel-

lular acidification (change in pH over 2 min) corresponds to NHE

activity.

Drugs and Solutions
ET-1 was obtained from American Peptides (Sunnyvale, CA).

Y-27632 and GF 102903X were obtained from Calbiochem (La

Figure 2. Effect of endothelin-1 (ET-1) on intracellular pH (pHi)
and Na+/H+ exchanger (NHE) activity. A) Representative traces
showing pHi measured during the ammonium pulse protocol in control
cells and cells treated with ET-1 (10-8 M). B and C) Bar graphs showing
mean6SEM values for B) the change (D) in baseline pHi (n = 3-6) and C)
NHE activity (n = 5-15) induced by different concentrations of ET-1. *
indicates significant difference from control (0 nmol/L ET-1)
doi:10.1371/journal.pone.0046303.g002

ET-1 and NHE Activity in PASMCs
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Jolla, CA). All other reagents were obtained from Sigma Aldrich

(St. Louis, MO). ET-1 (10–5 mol/L in deionized H2O) was made

up in a stock solution, divided into aliquots, and stored at –20uC
until used. Stock solutions of Y-27632 (10 mmol/L in deionized

H2O) and PMA (0.1 mmol/L in deionized H2O) were made,

aliquotted, and stored at 0uC until used. GF 109203X (GFX;

10 mmol/L in DMSO), and staurosporine (Stauro; 10 mmol/L in

DMSO) were made up in a stock solution and stored at 4uC. A

stock solution of 5-(N,N-Dimethyl)amiloride hydrochloride (DMA;

10 mmol/L in deionized H2O) was made and used on the day of

the experiment. All stock solutions were diluted to working

concentrations in perfusate on the day of experiment.

Data Analysis
All values are expressed as mean 6 SEM. In each experiment,

data was collected from up to 30 cells, and the values averaged to

obtain a single value for each experiment. Cells isolated from

different animals were used in each experiment, thus, ‘‘n’’ refers to

both the number of experiments as well as number of animals

from which cells were derived. Although presented as pHi values

in the text and figures, pH values were converted to [H+]i prior to

running statistics. Change in pHi (DpHi) was computed by

subtracting the average basal pHi, determined from 1 min of

data collected immediately prior to beginning challenge, from the

average of five data points at the peak of the response. For each

agonist (ET-1 and PMA), all data were compared against a single

control group as a single analysis using a one-way ANOVA with a

Holm-Sidak post hoc test to determine differences between groups.

In some cases, a one-sample t-test was used to determine whether

the change in pHi observed after treatment was statistically

different from zero (i.e., value for the DpHi is significantly different

from the test value of 0). A P value ,0.05 was accepted as

statistically significant.

Figure 3. Effect of dimethyl amiloride (DMA; 1 mmol/L) on intracellular pH (pHi) and Na+/H+ exchanger (NHE) activity. A and B)
Representative traces showing pHi measured during the ammonium pulse protocol in cells treated with ET-1 (10-8 M) in the A) absence and B)
presence of DMA. C and D) Bar graphs showing mean6SEM values for C) the change (D) in baseline pHi (n = 3-6) and D) NHE activity (n = 5-15) in
control (Con) cells or in cells treated with DMA alone (n = 4 for pHi and n = 6 for NHE activity) , ET-1 (10-8 M; n = 5 for pHi and n = 11 for NHE activity)
and ET-1 + DMA (n = 6 for pHi and n = 5 for NHE activity). * indicates significant difference from control; {indicates significant difference from ET-1
alone.
doi:10.1371/journal.pone.0046303.g003
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Results

Effect of ET-1 on pHi and NHE Activity
When monitored over 10 min, basal pHi was stable and no

significant change in pHi was observed. However, application of

ET-1 caused concentration-dependent increases in pHi (Fig 2B),

with an average change of greater than 0.1 pH units at 1028 mol/

L ET-1, a concentration that we previously found caused maximal

contraction in pulmonary arteries [45], [46]. The ammonium

pulse technique was used to measure the effect of ET-1 on NHE

activity (Fig 2A). PASMCs were exposed to different concentra-

tions of ET-1 for 15 min before beginning the ammonium pulse.

Consistent with the effects of ET-1 on baseline pHi, the rate of

Na+-dependent recovery from acid-loading (NHE activity), mea-

sured during the first 2 min after re-addition of Na+, was greater in

the presence of ET-1 (Fig 2C). Although increases in NHE activity

were observed at all concentrations of ET-1 tested, with a greater

than 2-fold increase in NHE activity at 10 nmol/L, the difference

with 0.1 nmol/L ET-1 did not quite reach statistical significance.

Although perfusion of cells with bicarbonate-free extracellular

solution should eliminate contributions of the Cl2/HCO3
-

exchangers to regulation of pHi, we verified that the increase in

basal pHi was due to increased NHE activity by repeating

experiments in the presence of DMA (1 mmol/L), a NHE inhibitor

(Fig 3A and B). Consistent with the known role of NHE in

regulating pHi in PASMCs, DMA caused a significant reduction

in basal pHi (Fig 3C). When applied in the presence of DMA, the

ET-1-induced increase in basal pHi was greatly reduced, with only

a small, statistically insignificant increase in pHi observed (Fig 3C).

DMA also reduced NHE activity under control conditions

(Fig 3D), although the reduction did not quite reach statistical

significance (P = 0.06), and completely prevented the ET-1-

induced increase in NHE activity.

Role of PKC in Mediating the ET-1-induced Increase in
NHE Activity

PKC activation has been shown to enhance NHE activity in a

variety of cell types, including vascular smooth muscle [38–41]. To

determine whether the increase in PASMC pHi and NHE activity

in response to ET-1 was due to activation of PKC, cells were

pretreated with two different PKC inhibitors: Stauro (50 nmol/L),

a relatively nonselective PKC inhibitor, and GFX (30 nmol/L), a

selective PKC inhibitor with greater affinity for Ca2+-dependent

isoforms [47]. Neither inhibitor had a significant effect on basal

Figure 4. Effect of protein kinase C (PKC) inhibitors on intracellular pH (pHi) and Na+/H+ exchanger (NHE) activity. A and B) Change
(D) in baseline A) pHi and B) NHE activity induced by addition of staurosporine (Stauro; 30 nmol/L; n = 4 each) or GF109203X (GFX; 50 nmol/l; n = 4
each). C and D) Bar graphs show mean 6SEM for C) change in pHi and D) NHE activity in response to ET-1 (10-8 mol/L) in the absence (n = 11) or
presence of Stauro (n = 3) or GFX (n = 4).
doi:10.1371/journal.pone.0046303.g004

ET-1 and NHE Activity in PASMCs
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pHi (Fig 4A) or NHE activity (Fig 4B). Surprisingly, inhibiting

PKC with either Stauro or GFX could not prevent the ET-1-

induced increase in pHi (Fig 4C) or NHE activity (Fig 4D).

Effect of PMA on pHi and NHE Activity
Since PKC inhibition failed to block ET-1-induced changes in

pHi and NHE activity, we tested whether PKC activation could

stimulate NHE activity in PASMCs by challenging cells with PMA

(500 nmol/L) (Fig 5A and B). Although we previously showed this

concentration of PMA to be sufficient to induce Ca2+ influx and

reduce KV currents in PASMCs [37], [48], since this concentra-

tion of PMA appeared to have no observable effect on either

baseline pHi or NHE activity, we increased the concentration of

PMA to 1 mmol/L. Perfusion with 1 mmol/L PMA for 15 min had

no effect on basal pHi (Fig 5C). Moreover, NHE activity was

similar in control and PMA-treated cells (Fig 5D).

Role of ROCK in Mediating ET-1-induced PKC Activation
Since our results appeared to rule out a role for PKC in

mediating the ET-1-induced activation of NHE activity, we next

tested whether ROCK was involved using the ROCK inhibitor,

Y-27632 (10 mmol/L). In order to allow sufficient time for Y-

273632 to enter the cells, cells were pretreated with Y-27632 for

30 min prior to beginning experiments. Incubation with Y-27632

had no effect on basal pHi (Fig 6A). When cells were challenged

with ET-1 (1028 mol/L) in the presence of Y-27632, no significant

increase in pHi was observed (Fig 6B). Consistent with the lack of

effect of Y-27632 on basal pHi, ROCK inhibition did not alter

NHE activity (Fig 6C); however, pretreatment with Y-27632

completely prevented the ET-1-induced increase in NHE activity.

Discussion

In this study, we demonstrated that acute exposure to ET-1

increased NHE activity in PASMCs, leading to a rapid alkaline

Figure 5. Effect of PKC activation on intracellular pH (pHi) and Na+/H+ exchanger (NHE) activity. Representative traces show pHi

measured during ammonium pulse in the A) absence and B) presence of PMA (1 mmol/L). C and D) Bar graphs show mean6SEM for C) the change
(D) in baseline pHi (n = 7) and D) NHE activity (n = 8) in response to PMA.
doi:10.1371/journal.pone.0046303.g005

ET-1 and NHE Activity in PASMCs
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shift in pHi. The enhancement of NHE activity in response to ET-

1 was dependent on ROCK activation, but did not appear to

involve activation of PKC (Fig 7). In contrast to previous results

reported in systemic vascular smooth muscle [39–41], [49], [50],

activation of PKC did not stimulate NHE activity or increase pHi

in PASMCs.

Our results confirm previous observations [10], [11], [13] that

NHE contributes to the regulation of resting pHi in PASMCs,

although our data suggest that NHE activity is low under basal

conditions, since DMA caused only a small reduction (,0.1 unit)

in resting pHi levels. DMA reduced, but did not completely

eliminate, basal NHE activity, perhaps due to incomplete

inhibition; it is possible that higher concentrations of DMA could

have resulted in complete inhibition of NHE activity and a greater

reduction in basal pHi. Nonetheless, our data is consistent with

previously reported results demonstrating a reduction in pHi with

DMA or EIPA [11], [13]. Moreover, we found that neither PKC

nor ROCK inhibition altered resting pHi or NHE activity,

indicating a lack of phosphorylation-dependent activation of NHE

in PASMCs under control conditions.

Application of ET-1 increased both pHi and NHE activity in a

concentration-dependent manner. The ET-1-induced increase in

pHi that we observed in PASMCs is in line with the alkalinizing

effect of ET-1 on basal pHi reported in cultured systemic vascular

smooth muscle cells [32], [51], [52]. Since the current study was

focused on delineating the effects of ET-1 on NHE activity,

experiments were performed in CO2- and bicarbonate-free

solutions, eliminating the effects of the Cl2/HCO3
- exchangers.

Determining whether the activity of these exchangers is also

altered in the presence of ET-1 or contributes to either enhanced

or diminished alkalinization in response to ET-1 will require

further investigation.

In previous studies, the modulation of pHi by ET-1 was

inhibited by EIPA and Stauro [32], [51], indicating that ET-1

increased the activity of the Na+/H+ exchanger through a PKC-

dependent mechanism. Since PKC activation is a well-recognized

consequence of ET receptor activation [53–56], and given

previous reports supporting PKC-dependent enhancement of

NHE activity [38–41], we hypothesized that the effects of ET-1

in PASMCs would also be prevented or reduced with PKC

inhibition. However, somewhat surprisingly, two structurally

unrelated PKC inhibitors failed to block the effects of ET-1 on

pHi and NHE activity in PASMCs. Although it might be argued

that the lack of effect of GFX could be attributed to a role for non-

Figure 6. Effect of ROCK inhibition on intracellular pH (pHi) and
Na+/H+ exchanger (NHE) activity. A) Bar graph showing mean6-
SEM values for basal pHi measured in cells in the absence (n = 4) or
presence (n = 4) of Y-27632 (10 mmol/L; 30 min). B) Bar graph shows
mean6SEM values for the change (D) in baseline pHi in response to ET-
1 (10-8 mol/L) in the absence (n = 5) and presence (n = 3) of Y-27632. C)
Bar graph showing mean6SEM for NHE activity in cells challenged with
ET-1 in the absence (n = 11) and presence (n = 5) of Y-27632. * indicates
significant difference from control; {indicates significant difference from
ET-1 alone.
doi:10.1371/journal.pone.0046303.g006

Figure 7. Schematic illustrating the effect of endothelin-1 (ET-
1) on intracellular pH (pHi) in pulmonary arterial smooth
muscle cells. ET-1 binds to surface receptors, leading to activation of
Rho kinase (ROCK). ROCK activation in turn results in enhanced Na+/H+

exchanger (NHE) activity, increased H+ efflux and an alkaline shift in pHi.
doi:10.1371/journal.pone.0046303.g007

ET-1 and NHE Activity in PASMCs
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Ca2+-dependent isoforms of PKC [47], Stauro is not selective for

specific isoforms of PKC and was also unable to prevent or reduce

the effects of ET-1, further confirming that PKC activation is not

required for stimulation of NHE activity by ET-1. It is unlikely

that the lack of effect of these inhibitors was due to insufficient

inhibition of PKC activity, as we have previously shown that these

concentrations applied for the same duration of time attenuated

the effect of ET-1 on KV currents [48], intracellular Ca2+

mobilization [37] and contraction [45], [46] in pulmonary

vascular smooth muscle. Experiments in which PKC was directly

activated in PASMCs further ruled out a role for PKC, as PMA

altered neither pHi nor Na+-dependent recovery from acid-

loading. These results clearly demonstrate that unlike vascular

smooth muscle from systemic sources, PKC activation does not

lead to enhanced NHE activity in PASMCs. The reason why is

unclear, but it is unlikely that PMA did not activate PKC since the

concentrations of PMA used in this study were 2-fold greater than

those we previously found activated PKC-dependent Ca2+ influx

and reduced KV currents in PASMCs within a similar time-frame

[37], [48].

Since PKC activation did not appear to mediate the effects of

ET-1 on NHE activity in PASMCs, we next focused on the role of

ROCK. Binding of ET-1 to either ETA or ETB receptors leads to

activation of ROCK in a variety of cell types [55], [57], including

PASMCs [58], and ROCK has been implicated as a possible

regulator of NHE activity [59–61]. We found that inhibiting

ROCK prevented both the ET-1-induced increase in NHE

activity and the associated alkaline shift in pHi, indicating that

ROCK activation by ET-1 acutely enhanced NHE activity in

PASMCs, most likely due to phosphorylation of one or more

known phosphorylation-sensitive sites in the cytoplasmic C-

terminal tail region.

It should be noted that the current experiments were performed

in PASMCs isolated from normoxic animals and studied under

normoxic conditions. In PASMCs isolated from chronically

hypoxic rats, we have shown that ET-1-induced activation of

ROCK was downstream of PKC activation [37]. However, this

does not appear to be the case in PASMCs from normoxic animals

since inhibiting PKC and ROCK differentially blocked the effects

of ET-1 on pHi and NHE activity. While these results suggest that

there may be alterations in ET-1 signaling pathways during

chronic hypoxia, whether this is due to activation of different

receptors (i.e., ETA versus ETB), or indicates that the receptors are

coupled to different downstream signaling mechanisms, remains to

be determined. Future experiments are also needed to establish

whether ET-1 still exerts an acute stimulatory effect on NHE

activity in cells from chronically hypoxic animals and, if so,

delineate the signaling pathways involved.

It is well-recognized that ET-1 can play a role in the

pathogenesis of pulmonary hypertension. In addition to its

vasoconstrictive properties, ET-1 also stimulates DNA synthesis

and proliferation in PASMCs [33], [62], [63]. Investigation in

mice [64] and rats [65] showed that hypoxia induces elevated

levels of preproendothelin mRNA as well as ET-1 mRNA in

pulmonary tissue. In addition, mRNA levels of ET receptors are

elevated in pulmonary tissue after 48 h at 10% O2 [66], [67]. The

active role of ET-1 in the development of pulmonary hypertension

is further supported by studies that have shown inhibition and

even reversal of pulmonary hypertension in chronically hypoxic

animals treated with ETA-receptor antagonists [23], [25], [27],

[28], [68], [69]. Clinical studies of pulmonary hypertensive

patients also describe elevated plasma levels of ET-1 when

compared to normotensive individuals and show higher ET-1

levels in the arterial circuit when compared to the venous circuit

pointing to the possibility of a pulmonary origin of ET-1 [70]. Our

current data further confirms a role for ET-1 in modulating NHE

activity in PASMCs and provides an additional link between ET-1

and the development of pulmonary hypertension.

In summary, we demonstrated that acute challenge with

exogenous ET-1 enhances NHE activity in PASMCs via a

mechanism involving ROCK activation. Unlike other cell types,

PKC activation does not appear to be involved in the regulation of

NHE activity and pHi in PASMCs. Since ET-1 can induce

PASMC proliferation and enhanced NHE activity has been shown

to play a central role in cell growth responses, our results may

provide additional insight into the mechanism by which ET-1

modulates PASMCs growth under both physiological and

pathologic conditions.
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