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Abstract

With the increasing competitiveness in the vine market, coupled with the increasing need for

sustainable use of resources, strategies for improving farm management are essential. One

such effective strategy is the implementation of precision agriculture techniques. Using pho-

togrammetric techniques, the digitalization of farms based on images acquired from

unmanned aerial vehicles (UAVs) provides information that can assist in the improvement of

farm management and decision-making processes. The objective of the present work is to

quantify the impact of the pest Jacobiasca lybica on vineyards and to develop representative

cartography of the severity of the infestation. To accomplish this work, computational vision

algorithms based on an ANN (artificial neural network) combined with geometric techniques

were applied to geomatic products using consumer-grade cameras in the visible spectra.

The results showed that the combination of geometric and computational vision techniques

with geomatic products generated from conventional RGB (red, green, blue) images

improved image segmentation of the affected vegetation, healthy vegetation and ground.

Thus, the proposed methodology using low-cost cameras is a more cost-effective applica-

tion of UAVs compared with multispectral cameras. Moreover, the proposed method

increases the accuracy of determining the impact of pests by eliminating the soil effects.

Introduction

Viticulture is the cornerstone of many rural regions, and grapevines are one of the most

important crops grown in France, Spain, Australia, South Africa, and parts of the USA, Chile

and Argentina, among other countries. This crop is important not only because of its growth

area but also due to its economic impact in rural areas. Therefore, improving crop manage-

ment is essential for ensuring the sustainability of small holdings as well as the promotion of

large wineries in the international market. In Spain, vineyards cover 931,065 ha, which
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represents 26.6% of the total vineyard surface area in Europe [1]. From 2009 to 2015, wine-

producing vineyards in Spain have increased from 39,259,000 hl to 44,415,000 hl, [2]. The high

amount of land dedicated to this crop and the progressive increase in production during

recent years are the reasons why early detection of agronomic constraints from pests and dis-

eases as well as fertilization and water requirements are some of the main aspects used to

improve viticulture management.

The use of pesticides by crop area in the world from 1990 to 2014 has increased by an aver-

age of 4.47% per year [1]. Agriculture consumes approximately 95 million tons of fertilizer and

97,000 tons of pesticides and herbicides as active ingredients [1]. Efficient use of phytosanitary

products, which occurs when only affected plants are treated, involves not only reducing costs

but also improving sustainable management practices.

Infestation by the leafhopper Jacobiasca lybica is considered dangerous for vineyards.

Adults overwinter on evergreen plants and infest grapevines in spring. Symptomatology

occurs in summer in the form of leaf discoloration and even leaf drying if the attack is severe.

The lack of photosynthetic activity results in an increase in soluble solid concentrations in its

fruits, which in turn spoils the vine production (20% reduction in harvest and lower quality)

[3]. The losses caused in the quantity and quality of the harvest has motivated this research to

determine the optimal time to apply phytosanitary products, to determine the effects of this

pest on current crops, and to identify any impacts on crops in the following season.

Traditional practices to control the potential impacts of this disease are typically based on

field observations for identifying and quantifying infested plants. This work is often tedious

and unaffordable when covering large areas. Instead, the use of precision agriculture tech-

niques using remote sensing for the automation of pest monitoring is now a widely used

approach [4–9].

Strong efforts have already been made in precision agriculture to generate remote sensing

information through the use of satellite-based imagery. Nevertheless, the main constraints of

these platforms are their low spatial and temporal resolution, which often involve a lack of

information about crop health status because the quality of the pixel size or capture frequency

are not high enough. If spatial resolution is low, each pixel collects heterogeneous surfaces

(soil, vegetation, neighboring crops, shadows, etc.), so the analysis of that information must

consider the lack of details about the crop. Low temporal resolution does not take into account

relevant changes in the phenology stages; if the temporal frequency of the image capture does

not consider the phenology stage of the crop, a crop cycle could be incomplete or the digita-

lized data could be useless.

The use of very-high resolution remote sensing by unmanned aerial vehicles (UAVs) is

becoming one of the most promising tools for precision agriculture. Progress in the develop-

ment of hardware and software has led to the widespread use of UAVs and ground sensors to

notably increase temporal and spatial resolution. The image capturing process was planned for

the proposed objective, so the spatial resolution is adequate for collecting sufficient details

about the crop; therefore, this process can be executed precisely when it is needed in the vege-

tal cycle. These aspects are great advantages compared to low-cost satellite-based technologies,

and UAVs are widely accepted as a novel form of technology. Indeed, the UAV market is expo-

nentially increasing worldwide with more than 3,000 operators in the USA, more than 2,000 in

France, and close to 1,500 in the United Kingdom [10]. In Spain, there were more than 3,000

operators in 2017. In addition, sensor miniaturization and the improvement of sensor accu-

racy are allowing this technology to be applied at a relatively low cost with the added benefits

of higher temporal and spatial resolution [11–15]. The main limitation for this platform is the

autonomy of the aircraft to cover a large area in a single flight. Nevertheless, the UAV market

has solutions that can provide flights that cover more than 200 ha per flight, which is sufficient
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for addressing most agricultural problems. Fixed wing vehicles could even cover a larger area;

however, in many countries, their use is limited due to legal issues. For agricultural applica-

tions, UAVs have shown potential as aerial platforms to monitor crops [11,16,17], determine

plant height (growth) [18–22], map weeds among various crop types, such as agave, sunflower,

maize, tomato, vineyards, and wheat [5,12,23–29], and many other applications. Additionally,

some authors have focused their research on mapping alterations in the phytosanitary status of

crops with UAVs [9,20,21,30,31] or other piloted aircraft [32–34]. Regarding pest mapping

with RGB cameras, [35] noted that the use of RGB imagery taken from an UAV is more effi-

cient than conventional visual assessments for estimating the resistance of potato plants to late

blight.

Recently, [20] examined whether spectral, hyperspectral, canopy height and temperature

information could be derived from handheld and UAV-borne sensors to discriminate between

sugar beets cultivars that are susceptible or tolerant to beet cyst nematodes. In conclusion,

these authors determined that the most valuable traits for this task, according to validity, were

canopy height, spectrally inferred chlorophyll content, leaf area or biomass, and canopy

temperature.

The literature on detecting pests with UAVs has focused on the use of planimetric (2D) geo-

matic products (RGB, thermal, multispectral or hyperspectral orthoimages) through vegeta-

tion indices [5,25,36–40] or computational vision processes [12,29,41,42]. However, using

only 2D information could lead to inaccurate estimations of the impacts of pest when the

radiometric response of affected plants is similar to the radiometric response of the soil, weeds,

shadows, or elements near the plants. This problem could be solved if vegetation could be pre-

cisely segmented from the soil using geometric techniques in a 3D (Three-dimensional) point

cloud obtained using photogrammetry techniques. The combination of 3D and 2D treatments

enhanced the accuracy of the generated results. [43] performed ground segmentation on

detailed orthoimages based on the differences in the colors between the vegetation and soil. In

determining the impact of J. lybica, leaves could be miss-classified, i.e., affected green leaves

that are turning brown could be confused with soil. As affected leaves are always located at a

higher level than soil, the combination of computer vision techniques (2D crop information)

and geometric (3D crop information) using a 3D model of the crop would allow for these pix-

els to be segmented.

Thus, the main objective of this paper was to develop a methodology that combined geo-

metric and computer vision techniques for quantifying the impact of J. lybica on a parcel of

vines supported by a trellis using radiometric and tri-dimensional information generated by

RGB cameras mounted on UAVs.

Materials and methods

The case study

An irrigated commercial vineyard was considered in this study: Vitis vinifera L. cv. Sirah. The

owner of the land gave permission to conduct the study on this site. The training system was

comprised of a trellis (four vertical wires). This vineyard was located in Madridejos, Spain (Fig

1), at 39.406834˚, -3.579190˚ (EPSG: 4326, European Petroleum Survey Group). The plot area

was 5.03 ha (4.71 ha wine crop and 0.32 ha olive oil crop) (Fig 1). The crop was affected by the

J. lybica pest around mid-August 2016. Pesticides were not applied immediately after pest

detection. A farmer applied the product on the 2nd of September (one week before flight per-

formance). The farmer’s main interests regarding UAV surveillance focused on 1) quantifying

the affected area for insurance purposes and 2) locating areas where an additional treatment
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could be applied to decrease the impact on the following season. For both goals, an accurate

thematic map that accounts for the effects of pests was required.

Equipment

The UAV used for the photogrammetric flight was a microdrone md4-1000 (Microdrones,

Inc., Kreuztal, Germany). The sensor was a SONY α ILCE-5100L with a E 20 mm F2.8 lens

(SONY Corporation, Tokyo, Japan). The main characteristics of the UAV flight and the sensor

capture mode and setting are listed in Table 1. Fig 2 shows the UAV and camera.

Methodology

The proposed methodology is summarized in Fig 3. A flight was planned based on overlapping

values of 60% (forward) and 40% (side). The crop cover presents a convex shape that can be

described covered by the overlapping values [44]. An orthoimage was obtained using photo-

grammetry techniques. In addition, a dense point cloud was generated and segmented into

vegetation and ground using geometric techniques, as described below. Following this step,

other orthoimages were generated using the dense point cloud that only corresponded to

Fig 1. Location of the case study plot. Source: Spanish National Plan of Aerial Orthophotography.

https://doi.org/10.1371/journal.pone.0215521.g001

Table 1. Main characteristics of the UAV and sensor settings during the flight.

UAV microdrone md4-1000 SONY α ILCE-5100L + E 20 mm F2.8

Vertical speed: 1.0 m s-1

Cruising speed: 5.0 m s-1

Flight length: 2 km

Flight height: 80 m

Flight time: 10 minutes

Weight: 238+69 g

Sensor pixel size: 0.004 x 0.004 mm

Image size: 6,000 x 4,000 pixel

Focal Length: 20 mm

Shutter speed: 1/1600 s

ISO: 100

F-stop: F/3.5

https://doi.org/10.1371/journal.pone.0215521.t001
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vegetation. Both orthoimages were processed with computer vision techniques for segmenting

pest impact pixels from healthy vegetation. The ground truth was obtained from the full

Fig 2. UAV utilizing a mounted SONY α ILCE-5100L sensor + E 20 mm F2.8 lens.

https://doi.org/10.1371/journal.pone.0215521.g002

Fig 3. Flowchart of the proposed methodology. GSD: Ground Sample Distance.

https://doi.org/10.1371/journal.pone.0215521.g003
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orthoimage due to the high resolution of this product. Finally, the percentage of the affected

surface was calculated and compared to determine the improvements in the proposed

methodology.

Data acquisition and photogrammetry process

The flight was performed on September 9th, 2016. At this time, the berries were ripe for harvest.

The healthy vines had not begun to exhibit leaf discoloration (senescence) at this phenological

time. Thus, visual inspection was performed on the final high-resolution orthoimage to confirm

the possible detection and location of the infested plants at that date, as shown in Fig 4.

Flight planning was performed by using Microdrone Photogrammetric Flight Planning

software (MFLIP) [45]. This software assures the correct overlapping values are used (60 and

40%, forward overlap and side overlap, respectively) because it accounts for GPS errors and

camera angle precision among other sources of position errors. Furthermore, this software can

incorporate accurate digital elevation models to fit the flight height to the terrain and, there-

fore, it can maintain a constant ground sample distance (GSD). A public digital elevation

model (DEM) with 5 m spatial resolution that was freely provided by the National Geographic

Institute of Spain was used for this propose. The main purpose of the flight planning process

was to acquire the navigation file, which was then transferred to the UAV. In addition, this

approach generated a database with the theoretical footprints of the images and the overlap-

ping areas, among other data, in vector format to be examined with any GIS (Geographical

Information System) software. The result of the flight planning was 165 images that were

obtained with three strips (Fig 5).

The software Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia), version 1.3.4, was

used to perform the photogrammetric process. The main parameters that were considered to

solve the photogrammetry process are listed in Table 2.

To avoid the location of ground control points (GCPs) before performing the flight, the

internal orientation of the camera was performed through previous calibration flights [46].

Moreover, to georeference the obtained orthoimage, seven natural features (e.g., fixed stones

or path crosses) were used as GCPs. The coordinates of these GCPs were obtained using geo-

matic products that were freely supplied by the National Plan of Aerial Orthophotography

(PNOA) (GSD = 0.5 m) (Spanish National Plan of Aerial Orthophotography 2015). The esti-

mated georeferencing error following this methodology was approximately 0.5 m [46].

Vegetation and ground segmentation were performed for the point cloud using a tool in

the Agisoft PhotoScan interface called Classify Ground Points. The geometric segmentation

was based on two steps. The first step consisted of dividing the dense cloud into cells of a given

size by the user. Next, a triangulation with the lowest points within the cropped cloud was

Fig 4. Appearance of healthy and affected leaves.

https://doi.org/10.1371/journal.pone.0215521.g004

Quantifying the affection of Jacobiasca lybica pest on vineyards with UAVs

PLOS ONE | https://doi.org/10.1371/journal.pone.0215521 April 22, 2019 6 / 20

https://doi.org/10.1371/journal.pone.0215521.g004
https://doi.org/10.1371/journal.pone.0215521


calculated as the first approximation of the terrain model. The second step was an iterative pro-

cess in which new points were included in the triangulation (and classified as ground), which

satisfied the given parameters for the maximum angle and distance from terrain approximation.

The utilized parameters included a maximum angle of 15˚, a maximum distance of 1 m and a

cell size of 6 m when taking into account the crop shape and ground rugosity of this parcel to

segment ground from the vegetation. This geometric filtering performed well on vines attached

to a trellis or isolated trees because changes in slope between the ground and the vegetation

were abrupt. After segmenting the point cloud into vegetation and ground, one orthoimage was

obtained using the classified vegetation points. The final geomatic products that were obtained

were: 1) two orthoimages with a GSD of 0.015 m (full and nonground pixels), and 2) a dense

point cloud with an average of 1,536 points m-2 that was segmented into vegetation and ground.

Quantification of impact with computer vision techniques

The automated identification of affected vegetation was performed using the Leaf Area Index

Calculation software (LAIC) [36]. This software was originally developed to discriminate

green canopy cover from other features (ground, stones, and shadows, among others) in very

high resolution aerial images. This software was also successfully applied to detect hydromor-

phological features in rivers [47,48]. The LAIC software (Fig 6) bases the classification on a

supervised classification technique using Artificial Neural Networks (ANNs) [36]. In brief, the

original orthoimage is loaded into the software, and a small part of the orthoimage is selected.

For this small part of the orthoimage, the RGB color space is transformed into CIE-Lab color

space (Commission Internationale de l’Eclairage–Lab) in which L is lightness, a is the green to

red scale, and b is the blue to yellow scale. With a small part of the orthoimage transformed

into the CIE-Lab color space, a cluster segmentation (k-means) was implemented using only

the a and b components of this color space. Once the cluster segmentation was performed

using clusters defined by the user between 2 and 10, the user should manually relate each clus-

ter to the groups of features that appear in the image (e.g., ground, stones, healthy vegetation,

affected vegetation, or shadows). Once the group of pixels identified by the user as affected

vegetation are selected, these data are used to calibrate an ANN in which the input nodes

Fig 5. Footprint of the images for the flight planning process.

https://doi.org/10.1371/journal.pone.0215521.g005
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correspond to the RGB values of each pixel, and the output node is 1 for affected vegetation

and 0 for healthy vegetation and other features. After the ANN is calibrated with the small,

treated part of the orthoimage, the calibrated ANN is applied to the remaining image. A raster

was then created with assigned values of 1 and 0 for each pixel of the orthoimage in which 1

denoted affected vegetation and 0 indicated unaffected vegetation and other features.

Computer vision techniques using the LAIC software were applied to the original ortho-

image in which the soil, affected and unaffected vegetation features appeared as well as in the

orthoimage obtained after vegetation and soil segmentation.

Final products and analysis of results

To evaluate the two classification methods, the ground truth information was obtained

from the full orthoimage. A mesh of 97 squared polygons (10 m x 10 m) separated by 10 m

was generated (Fig 7), which represents 20.6% of the total area. The detected effects of the

pest inside these polygons were delimited manually by drawing as many irregular polygons

as needed that represent affected pixels. Then, these digitalized areas were rasterized with

the same pixel size and origin than the original orthoimages. This process resulted in a

mask raster layer of the ground truth to be compared to the results of both methodologies

evaluated in this work.

To assess the accuracy of both classification methodologies for the generated ground truth

data, a confusion matrix was computed by considering the information pixel by pixel

(Table 3). Overall accuracy (OA) (Eq 1) and success percentages (SP) (Eqs 2 and 3) were also

computed. The OA indicates how well a certain area was classified by each methodology

because it is the probability of a pixel being correctly detected by each methodology. Success

percentages demonstrate how many pixels were correctly segmented.

OA %ð Þ ¼
TP þ TN

TP þ TN þ FPþ FN
ð1Þ

Table 2. Parameters used in the photogrammetric process.

Point Cloud

Accuracy High

Generic preselection Yes

Key point limit 40,000

Tie point limit 4,000

Adaptive camera model fitting Yes

Dense Point Cloud

Quality High

Depth filtering Mild

DEMa

Source data Dense cloud

Interpolation Enabled

Orthomosaic

Blending mode Mosaic

Surface DEM

Enable color correction No

Enable hole filling Yes

a Digital Elevation Model

https://doi.org/10.1371/journal.pone.0215521.t002
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Fig 6. Flowchart of LAIC software.

https://doi.org/10.1371/journal.pone.0215521.g006
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Fig 7. Orthoimage (left) and impact detected with computer vision techniques (right).

https://doi.org/10.1371/journal.pone.0215521.g007

Table 3. Confusion matrix and equations.

Validation data

Obtained data Affected pixels Non-affected pixels Total pixels

Affected pixels TP: True Positives for affection FP: False Positives for affection Total pixels affected

Unaffected pixels FN: False Negatives for affection TN: True Negatives for affection Total unaffected pixels

https://doi.org/10.1371/journal.pone.0215521.t003
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SPA %ð Þ ¼
TP

TP þ FN
ð2Þ

SPN %ð Þ ¼
TN

TN þ FP
ð3Þ

where OA is overall accuracy, SPA is success percentage of affection, and SPN is success per-

centage for no affection.

Additionally, to compare the results obtained with the use of computer vision and the inte-

gration of geometric and computer vision techniques, a mesh of 1 m2 was generated for the

entire parcel. The average values of pixels with and without impact (1 or 0) were added and

multiplied by 100 to produce a percentage of affected vegetation compared to unaffected vege-

tation. To analyze the results, the average percentage of impact of the entire plot was calcu-

lated. Additionally, thematic maps of impact were generated to evaluate the regions of the

plots that experienced high and low impacts.

Results and discussion

Photogrammetric flight and preliminary geomatic products

All of the discolored leaves with brown tones caused by the aforementioned pest and not by

other causes were detected. The observations that were carried out in the field and the visual

inspection of the final orthoimage (i.e., Fig 4) made this identification possible. As indicated

by Lentini et al. (2000), red grape cultivars affected by this pest change to a red color, but the

level of infestation in this experiment was very high, and the leaves had already gone through

this phase of discoloration. Desiccation was found in the next phase, and the dry leaves of

these plants led to the loss of reddish coloration, which turned them brown.

The geomatic products obtained by photogrammetric techniques had a minimum GSD of

1.50 cm pixel-1. The tie points for the cloud characteristics are shown in Table 4.

Following the recommendations embodied in past experiences [11,16,45,46], the solution

of the photogrammetric process was correctly concluded as expected. The conditions imposed

in the flight plan to meet the geomatic proposed objectives when taking into account all tech-

nical, legal, meteorological factors, etc. factors have been met and even improved. We are con-

fident that this achievement is motivated by technological advances. The quality of the final

Table 4. Detected tie points and generated dense point cloud.

Tie Point Cloud

Points 159,939 of 178,838

RMSa reprojection errorb 0.450277 (1.45519 pix)

Max reprojection error 1.37839 (42.9695 pix)

Mean key point sizec 3.41713 pix

Dense Point Cloud

Points 144,892,166

a Root Mean Squared
b Refers to the distance between the point on the image where a reconstructed 3D point can be projected, and the

original projection of that 3D point detected on the photo and used as a basis for the 3D point reconstruction

procedure.
c Mean tie point scale averaged across all projections.

https://doi.org/10.1371/journal.pone.0215521.t004
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result and the effort that was required to obtain maps of this type less than a decade ago were

not comparable to the current approaches (i.e., [32] where it was necessary to make interpola-

tions for full generation of the cartography).

The volume of data produced by this experience is summarized in Table 5. The orthoimages

covered almost 5 hectares and provided information at a resolution of 1.5 cm GSD.

Some other intermediate products were also generated that required some extra space.

Computer vision approach

The results of affected vegetation segmentation from the entire orthoimage using computa-

tional vision techniques by the LAIC software [36] are shown in Fig 8. It should be noted, how-

ever, that there are several incorrectly detected pixels for affected vegetation over the entire

orthoimage (ground, shadows, etc.). The radiometry of affected leaves is very similar to the

radiometry of some parts of the soil; therefore, the ANN was unable to discriminate between

these features. The problems from other studies revealed similar deficiencies. [30] and

explained the obsolescence of traditional methods for remote sensing (such as satellites and

conventionally piloted aircraft) compared to the response time and high resolution obtained

with UAVs. Although [30] showed that UAVs can solve this problem, we detected a similar

spectral response for the ground and affected vegetation, which indicates there is still a need

for segmentation methodologies. These authors also concluded that it is important to divide

the affection into different grades to perform adequate treatment of the differentiated areas.

We divided the area into four affection grades, as shown in Fig 9 and Fig 10 on the right.

Combination of geometric and computer vision techniques

The dense point cloud generated in the photogrammetric process using the software Agisoft

PhotoScan was classified according to the selected parameters for ground filtering. To this

end, the ground was detected, and the remaining points were classified as medium vegetation

(classification of LAS Specification Version 1.4 from the American Society for Photogramme-

try & Remote Sensing). Dense point cloud results are shown in Fig 11. These results visually

demonstrate good performance of the geometric algorithm for classification. A new ortho-

image was generated by filtering vegetation points (Fig 12). The application of the previously

calibrated ANN on this new orthoimage allowed for more accurate detection of affected vines

(Fig 12). The detection over nonground orthoimage (Fig 12) showed better performance

because of the detection of pixels located only where vegetation was present (not ground).

Other researchers also value the importance of considering full crop geometry with the

third dimension (crop height) in the spatial analysis of crop monitoring because it is directly

related to plant growth, biomass and yield quantification [18–22]. [20,21] used crop height to

assess the pest affection as an indirect effect over biomass, but they did not directly detect the

Table 5. Volume of the biggest generated products.

Geomatic product Size

Collected images 165 files 1.5 GB

Agisoft PhotoScan project 5.21 GB

Full orthoimage 488 MB

Nonground orthoimage 100 MB

Full orthoimage affection binary 26.3 MB

Nonground orthoimage affection binary 12.6 MB

Validation mask layer 7.22 MB

https://doi.org/10.1371/journal.pone.0215521.t005

Quantifying the affection of Jacobiasca lybica pest on vineyards with UAVs

PLOS ONE | https://doi.org/10.1371/journal.pone.0215521 April 22, 2019 12 / 20

https://doi.org/10.1371/journal.pone.0215521.t005
https://doi.org/10.1371/journal.pone.0215521


pest. However, no references have been found that utilize 3D information to better detect

affection of pest in crops.

Fig 8. 3D view of classified point cloud. Brown: ground. Green: medium vegetation. Pink: noise.

https://doi.org/10.1371/journal.pone.0215521.g008

Fig 9. Orthoimage without ground (left) and impact detected in a nonground orthoimage (right).

https://doi.org/10.1371/journal.pone.0215521.g009
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Validation procedure

The analysis of validation comprised a total of 43,110,888 pixels. The confusion matrix, overall

accuracy and success percentage of the pest segmentation following the proposed technique

proposed are shown in Table 6 and Table 7.

The overall accuracy (Eq 1) for the radiometric treatment was 94.0%, and the overall accu-

racy was 99.3% for the combination of radiometric and geometric treatments. Although we

improved the OA through the proposed methodology, which reached almost 100%, if we only

considered the result of this index, both methodologies appeared to detect the pest with high

accuracy. However, it should be considered that only a small region of the area was covered by

the crop (approximately 14% in this case). Thus, a deeper analysis of the performance of the

methodologies over the crop was performed using the ratios described in the methodology

(Table 7).

In comparing radiometric treatment (full orthoimage) to its combination with the geomet-

ric treatment (nonground orthoimage) of the geomatic information, the performance

Fig 10. Maps of independent overall accuracies (up), independent commission error over the total considered pixels (center) and independent

omission error over the total considered pixels (down) committed for both methodologies (full orthoimage left, nonground orthoimage right).

https://doi.org/10.1371/journal.pone.0215521.g010

Fig 11. Percentage and histogram of impact detected on 1 m2 for the full (left) and nonground (right) orthoimages.

https://doi.org/10.1371/journal.pone.0215521.g011
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measured for the detection of affection through SPA (Eq 2) and SPN (Eq 3) improved the

method (SPA 64.9% increased to 82.1% and SPN 94.3% to 99.5%) (Table 7).

The main problem occurred with the pixels that were determined to be affected by the ana-

lyzed approaches that were actually unaffected pixels, which represented 2,414,547 pixels for

the full orthoimage and was reduced to 224,395 pixels (reduction of 91% of error by commis-

sion) after considering geometric and computer vision techniques. This problem was primarily

produced by confusing affected vegetation with soil, which occurred more often in the

approach with the full orthoimage than the approach that used the nonground orthoimage.

The spatial analysis of the committed errors is represented in Fig 7, in which it is possible to

observe the affected areas that were more susceptible to incorrect detection.

As seen in Fig 7, the higher errors are located in the northern region of the crop and gener-

ally over the southwestern subarea as well. This result could have been caused by deficiencies

in the irrigation system, which were communicated by the farmer. These irrigation deficien-

cies caused heterogeneity in plant vigor conditions and, therefore, in the level of affected vege-

tation because the affection was more intense in areas with higher vigor.

Generation of affected area maps

Due to the performance of each methodology, the percentages of affected areas in the whole

crop with both methods were calculated to show the differences between the methodologies in

determining the affected vegetation for the whole parcel. The percentage of impact was calcu-

lated through both methodologies on 1 m2 cells of a vector grid (Fig 9) over the whole area. A

Fig 12. Maps of canopy cover (left) and the percentage of impact with the proposed methodology (right).

https://doi.org/10.1371/journal.pone.0215521.g012

Table 6. Confusion matrix of both proposed approaches.

Validation mask

Affected Unaffected Total

Full

orthoimage

Affected 313,358 2,414,547 2,727,905

Unaffected 169,507 40,213,476 40,382,983

Non-Ground

orthoimage

Affected 396,329 224,395 620,724

Unaffected 86,536 42,403,628 42,490,164

https://doi.org/10.1371/journal.pone.0215521.t006
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color scale was applied to generate maps that allowed for the interpretation of the pest impact.

Additionally, a map of the canopy cover was generated to compared the vegetation vigor to

pest impact.

The affected area calculated for the entire plot was 6.43% with the full orthoimage and com-

puter vision techniques, and it was 1.32% with a combination of the geometric and computer

vision techniques. The average crop canopy cover in the plot was 14.2%, which meant that

with the computer vision technique, the percentage of the affected crop was close to 45%,

whereas the percentage obtained with the proposed methodology was close to 9%. A similar

spectral response in the visible range of the ground and affected vegetation (brown color) pro-

duced an overestimation of impact that was close to four times larger. This overestimation is

more evident for crops that do not have high green canopy cover values, i.e., woody crops.

The histogram in Fig 9 shows that the impact on the crop was dispersed with low frequen-

cies of high-percentage impacts and vice versa. However, the percentage of impact was much

higher in areas with high canopy cover than in areas with low canopy cover, as shown in Fig

10. Higher green canopy cover values in the northern region of the plot could be explained

due to the inappropriate hydraulic design of the irrigation system. A manifold pipe located at

the northern region of the plot was perpendicular to the trellis. Lateral pipes, which were larger

than 120 m, resulted in low pressure, and therefore low discharge occurred at the end of the

lateral pipes. Thus, vegetation growth was less vigorous at this location.

Although information from other spectral bands can add significant information to the

health status of vegetation, the use of these cameras to detect the impact of the pest could lead

to the same limitations of those described for RGB cameras if the soil and affected vegetation

have a similar spectral response. Furthermore, the geometric characterization of the vegetation

using these specific cameras could be less accurate than the characterization performed by

RGB cameras, which was primarily due to its poor geometric resolution. Additionally, the eco-

nomic cost of this equipment was much higher compared with RGB cameras. There is also

more complexity in the algorithms to process that type of information [19,25,44].

In [33], a comparison between aerial hyperspectral and multispectral imaging techniques to

detect citrus greening disease was conducted. The final conclusions were that there were errors

in the geo-referencing, in the spectral purity of the values of the vegetation pixels, and in the

atmospheric corrections as well as the variance and normalization of the illumination that

could have biased the analysis. These effects were minimized when using RGB cameras-

Conclusion

Conventional RGB cameras mounted on UAV platforms can be considered a very useful tool

for pest aerial detection and quantification. Nevertheless, the enormous amount of informa-

tion generated as a result of the photogrammetric workflow, i.e., 3D data, may be underused.

Most users of UAV platforms are largely focused on the exploitation of 2D geomatic products.

However, appropriately processed 3D products, such as accurate and classified points clouds,

may improve the accuracy and utility of final applications, such as thematic maps. Compared

to the 2D products, the 3D products incorporate the third dimension of a crop (height of the

plant and orography), and they demonstrate an improvement in crop health characterization.

Table 7. Success percentage tables for both proposed approaches.

SPA SPN

Full orthoimage 64.9% 94.3%

Non-Ground orthoimage 82.1% 99.5%

https://doi.org/10.1371/journal.pone.0215521.t007
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In addition, incorporating the analysis of 3D information could solve soil distortions derived

from remote-sensing techniques.

This study demonstrates that the combined use of computer vision and geometric tech-

niques can enhance results through a proper clustering of the affected pixels. Furthermore, it

can be concluded that a major source of error comes from similar radiometric responses to

soil and affected vegetation for 2D products. This limitation is shared by consumer-grade cam-

eras and by expensive thermal, multispectral and hyperspectral cameras. Computer vision

techniques applied after soil segmentation will allow for more accurate detection of affected

vegetation with low-cost RGB cameras mounted on UAVs.
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