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Abstract: The influence of multi-pass cold drawing on the evolution of microstructure, texture, and
properties of Cu matrix composite, reinforced by in situ grown graphene, has been systematically
investigated. Under continuous and severe plastic deformation, the grains in the composite were
continuously refined to nanoscale. In addition, graphene in the composite could be gradually refined,
exfoliated, and redispersed. Interestingly, dynamic recrystallization of the composite was formed
after 80% drawing reduction and its formation mechanism was discussed. The texture of the as-
drawn composite comprised a mixture of fiber textures with dominated <111> and minor <100>
orientation after 99.7% severe drawing reduction. The tensile properties and electrical conductivity of
the as-drawn composites were also investigated. This work provides a better guideline on the plastic
deformation behavior of the advanced graphene/metal nanocomposite.

Keywords: graphene/Cu composite; cold drawing; microstructure evolution; tensile properties;
electrical conductivity

1. Introduction

Metal matrix composites reinforced by graphene (Gr/MMCs) have recently attracted
considerable attention and researchers strive to improve its structural or functional proper-
ties [1–5]. The dispersion of graphene in metal matrix and the interfacial bonding between
graphene and metal matrix are the two basic challenges for fabricating Gr/MMCs with
high performance [6]. On the one hand, ball milling [4], molecular-level mixing [7,8], semi-
powder metallurgy [9], and in situ grown method [2,10–12] have been exploited to disperse
graphene in metal matrix. Of note, the in situ grown method has attracted significant atten-
tion due to the effective dispersion of graphene in matrix. On the other hand, the rational
design of interfacial microstructure between graphene and metal matrix, aiming at fully
developing the remarkable properties of graphene, has also attracted wide attention [12–14].
Among the Gr/MMCs, graphene/Cu composites are the most widely investigated due to
the variety of their preparation methods [3,5,7–12]. In particular, the in situ grown method
is very suitable for the fabrication of graphene/Cu composites due to the surface-catalyzed
ability of Cu [15]. Additionally, there are various investigations regarding the properties
of graphene/Cu composites. For instance, the mechanical, electrical [16–22], and thermal
properties [23,24] of graphene/Cu composites are most commonly studied.

As a result, the plastic deformation of composites is the next step. In addition, it is cru-
cial to the realization of the transformation from blank materials to semi-manufactured prod-
ucts. Commonly, several plastic deformation methods, such as extrusion [25], rolling [26],
and drawing [27] are used to fabricate the semi-products or products of the composites
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(e.g., rods, sheets, and wires). For instance, hot rolling is often used for the formation
of metal plate materials. In recent years, the hot rolling behavior of graphene or carbon
nanotube reinforced metal composites has been extensively studied [28,29]. As recently
systematically reported by our research group, the hot rolling behavior of Cu nanocom-
posite reinforced by graphene indicates that the hot rolling process has a significant effect
on both the plastic deformation of matrix and graphene, which affects the properties of
composites [30]. Another plastic deformation technique, cold drawing, has recently been
gradually applied to fabricate advanced graphene/metal wires using its severe plastic
deformation [27,31]. For instance, Li et al. [27] studied a graphene/Al composite wire pre-
pared by powder metallurgy and multi-pass cold drawing, and found that the dispersion
of graphene and mechanical properties of the composite could be improved during the
cold drawing. Li et al. [31] obtained Cu/graphene composites with high mechanical and
electrical properties using cold drawing. The authors found that the original agglomerated
graphene could be redispersed, and finally formed a network structure. Zhao et al. [32]
fabricated a graphene/Cu composite wire with a synergistic method that consists of the
growth of graphene on Cu wire, through twisting and drawing of the wires. The au-
thors found that the ampacity of the composite wire could be significantly improved by
introducing graphene. Although the drawing deformation has been successfully used
in Gr/MMCs, the investigation of its drawing behavior is still inadequate [33]. To our
knowledge, graphene has excellent mechanical properties [15]. Therefore, during the plastic
deformation, the microstructure and properties of composite can be markedly influenced by
the incorporated graphene. Additionally, the size, morphology, and dispersion of graphene
can be affected due to the deformation of matrix [30,34]. As a result, it is significant to
systematically investigate the evolution of microstructure and properties of Gr/MMCs
during the drawing process.

Herein, graphene/Cu composite wires were prepared by in situ grown graphene on
Cu powders, spark plasma sintering (SPS), hot-extrusion, and multi-pass cold drawing.
During the process of cold drawing, grains in the composite could be continuously refined
to nanoscale and the homogeneity of microstructure was improved. Moreover, graphene in
the composite was found to be gradually refined, exfoliated, and redispersed. Interestingly,
after severe plastic deformation, the recrystallization of composites was formed. The
underlying deformation mechanism was discussed. As a result, the composites showed an
improvement of mechanical properties and electrical conductivity after cold drawing. This
work provides a deep understanding of the plastic deformation process of Gr/MMCs and
can be a guide for the preparation of Gr/MMCs with high performance.

2. Experimental Section
2.1. Synthesis of Graphene on Cu Particles via an In Situ Method

Commercial flake Cu powders (purity of 99.9%) with a diameter of 30~50 µm and solid
molecular naphthol (analytical reagent (AR)) were used for the raw Cu matrix and carbon
source, respectively. The typical growth process of graphene, which was systematically
studied in our recent investigation [11], can be briefly described as follows: In the first step,
naphthol (0.1 wt%) and Cu powders were added in ethanol (AR) with constant stirring and
the solution was sonicated for 20 min. Then, the ethanol was rapidly removed using a rotary
evaporator at 130 ◦C and naphthol-coated Cu powders were obtained. Second, naphthol-
coated Cu powders were graphitized at 800 ◦C for 10 min using a quartz tube furnace
under H2 (17 mL/min)/Ar (83 mL/min) mixture. Thereafter, in situ grown graphene on
Cu composite powders could be achieved.

2.2. Composite Fabrication

The as-prepared composite powders were first sintered using SPS (SP-250, Germany)
(pressure of 40 MPa, 950 ◦C for 30 min). Then, a rod (Φ9.5 × 40 mm) was cut from the as-
sintered composite. Subsequently, the rod was extruded at 750 ◦C (extrusion ratio of 7.4:1).
The as-extruded composite (diameter of 3.5 mm) was drawn by the multi-pass process
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at room temperature and the reduction of each single pass was less than 10%. Finally,
the as-drawn composites with different diameters were obtained. The area reduction is
calculated as the drawing reduction, and Table 1 presents the drawing reduction of the
composites with different diameters.

Table 1. The diameter and drawing reduction of the composites.

Samples Diameter (mm) Drawing Reduction (%)

As-extruded composite 3.5 0

As-drawn composite

2.8 36.0
2.0 67.3
1.8 73.6
1.5 81.6

1.033 91.3
0.195 99.7

2.3. Characterizations

The microstructure was carried on scanning electron microscopy (SEM, Nanolab-
600i, Hillsboro, OR, USA) and transmission electron microscope (TEM, Talos, F-200X,
Portland, OR, USA). Prior to the SEM investigation of individual graphene in graphene/Cu
composite powders, the composite powders were first etched by HNO3 (5 wt%) to remove
Cu. The composites for TEM analysis were prepared by several steps of mechanical
grinding to obtain a foil (thickness of 50~60 µm), and ion thinning technique. The C content
of graphene in Cu matrix is tested by carbon and sulfur analyzer (CS901B, Zhengzhou,
China). The room temperature tensile properties of block composites were studied by
an Instron-1186 tensile testing machine. In addition, the tensile speed, gauge length, and
gauge width were 0.5 mm/min, 15 and 2 mm, respectively. The tensile properties of as-
drawn composites (length of 20 mm) were measured on a tensile machine (HRJ, WDW-1D,
Dongguan Hongtuo Instrument, Dongguan, China) with a speed of 0.5 mm/min. The
resistance of the samples was tested on a low resistance instrument based on the four-
wire measurement method (CS2512, Allwin Instrument, Nanjing, China). The electron
backscatter diffraction (EBSD, ZEISS-SUPRA55, Oberkochen, Germany) of the composites
was carried to investigate the microstructure of the composite. The EBSD system is HKL
Nordlys (Oxford Instrument, Abingdon, UK), and the data processing software is Channel5.
The samples for EBSD investigation were prepared by the cross section ion polishing
instrument (IB-09020CP, Tokyo, Japan). For SEM and EBSD test, the observation positions
of as-extruded and as-drawn composites were investigated on the transverse direction–
normal direction (TD–ND) plane.

3. Results and Discussion
3.1. Characterizations of As-Grown Graphene on Cu Powders

In Figure 1a, the SEM morphology demonstrates that the size of initial flake Cu
powders is about 30~50 µm. Of note, the main reason for the use of flake Cu powders
rather than granular Cu powders is that flake Cu powders have a larger specific surface
area, which can adsorb more carbon source, and thus grow more graphene compared
with the particles [10,11]. In Figure 1b, it can be seen that the as-grown graphene is highly
transparent, with high surface quality and typical wrinkles. Figure 1c presents a typical
morphology of the as-grown graphene after etching Cu powders, and typical wrinkles
on the graphene can be clearly found. In Figure 1d, Raman spectra reveals the typical D
band (1357 cm−1), G band (1603 cm−1), and 2D band (2300~3000 cm−1) of the graphene.
The ID/IG (intensity ratio of D to G band) of the as-grown graphene is calculated as 0.89,
indicating a low defect density of the graphene [35]. All of the aforementioned analyses
indicate that high quality graphene has been successfully fabricated.
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Figure 1. SEM morphology of (a) initial flake Cu powders, (b) as-grown graphene on Cu powders,
and (c) graphene after etching Cu, (d) Raman curve of as-grown graphene (magnifications for
(a–c) are ×1000, ×60,000, and ×50,000, respectively).

3.2. Microstructure of As-Sintered Composite and As-Extruded Composite

The dispersibility of graphene is one of the most challenging difficulties for the prepa-
ration of composite. Nevertheless, this problem can be easily solved by the graphene in
situ growth method. Therefore, the as-obtained composites can be a model material for
the study of plastic deformation mechanism. As shown in Figure 2a, the typical SEM-BSE
image of the as-sintered composite reveals that graphene sheets, corresponding to the black
strips, can be clearly found to be uniformly dispersed in the composite. Additionally, the
arrangement direction of graphene tends to be perpendicular to the pressure direction
of sintering, which is attributed to the directional alignment of flake Cu powders during
the sintering process. Figure 2b shows the IPF map of the as-sintered composite, and the
arrangement of strip Cu grains is consistent with Figure 2a. Furthermore, Figure 2c presents
the grain size in Figure 2b, and the width (dW) and length (dL) of the grains are counted as
1.88 and 3.9 µm, respectively. Nevertheless, Figure 2d demonstrates that the dispersion of
graphene in as-extruded composite is random. The refinement and exfoliation of graphene,
compared with the as-sintered composite, can be clearly found in the as-extruded com-
posite. On the one hand, the low plasticity of graphene compared with the Cu can lead
to the fracture and refinement of graphene during the extrusion deformation. In addition,
due to the weak van der Waals force in its interlayer, graphene can be easily exfoliated
by the shear stress existing in the hot-extruded process [36]. In Figure 2e, the IPF map of
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the as-extruded composite presents the morphology of grains (diameter of 4.1 µm), which
changes from strip to irregular grains (see Figure 2f).

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 18 
 

 

Figure 3a,b exhibits three types of grains, namely recrystallized, substructured, and 

deformed grains, as well as the distribution in the as-sintered and as-extruded composites, 

respectively. Recrystallized grains (94.6%, see Figure 3c) dominate in the as-sintered com-

posite due to the high temperature and long holding time of sintering. Following the hot 

extrusion, the percentage of the recrystallized grains drops to 75.4%. To further investigate 

the microstructure of the composites, kernel average misorientation (KAM) was carried 

out from EBSD. KAM is often used to analyze the distribution of microstrain in crystals, 

which is related to the degree of microstrain and dislocation density [37,38]. Figure 3d,e 

presents the KAM maps of the as-sintered and as-extruded composites, respectively. It 

can be seen that the microstrain in both composites is relatively small, indicating a low 

dislocation density. Furthermore, Figure 3e shows the KAM values of the composites and 

quantitatively describes the variation of KAM values. Herein, it can be seen that the peak 

KAM values of the two composites are distributed at low orientation angle, indicating a 

low dislocation density in both as-sintered and as-extruded composites. 

 
Figure 2. SEM-BSE images of (a) as-sintered and (d) as-extruded composites. IPF maps of (b) as-

sintered and (e) as-extruded composites, the arrows in (a,b) show the direction of pressure of SPS. 

(c) Grain size of the as-sintered composite. The width and length of grains are expressed as dW and 

dL, respectively. (f) Grain size of the as-extruded composite (magnifications for (a,d) are ×10,000 and 

×20,000, respectively). 

Figure 4 presents the TEM investigation of the as-sintered and as-extruded compo-

sites. In Figure 4a,c, the dislocation density in the two composites is low, corresponding 

to the KAM maps in Figure 3. Graphene sheets are found to be homogeneously distrib-

uted and located at grain boundary in matrix. Additionally, the refinement and exfoliation 

of graphene can be clearly found after hot extrusion, which is consistent with the SEM-

BSE observation in Figure 2. Furthermore, Figure 4b,d exhibits the typical HRTEM micro-

structure of graphene, which is confirmed by the interlayer spacing of about 0.34 nm [39]. 

The microscopic holes or impurity phases cannot be found at the interface of composite, 

indicating a well interfacial bonding. 

Figure 2. SEM-BSE images of (a) as-sintered and (d) as-extruded composites. IPF maps of (b) as-
sintered and (e) as-extruded composites, the arrows in (a,b) show the direction of pressure of SPS.
(c) Grain size of the as-sintered composite. The width and length of grains are expressed as dW and
dL, respectively. (f) Grain size of the as-extruded composite (magnifications for (a,d) are ×10,000 and
×20,000, respectively).

Figure 3a,b exhibits three types of grains, namely recrystallized, substructured, and
deformed grains, as well as the distribution in the as-sintered and as-extruded composites,
respectively. Recrystallized grains (94.6%, see Figure 3c) dominate in the as-sintered com-
posite due to the high temperature and long holding time of sintering. Following the hot
extrusion, the percentage of the recrystallized grains drops to 75.4%. To further investigate
the microstructure of the composites, kernel average misorientation (KAM) was carried
out from EBSD. KAM is often used to analyze the distribution of microstrain in crystals,
which is related to the degree of microstrain and dislocation density [37,38]. Figure 3d,e
presents the KAM maps of the as-sintered and as-extruded composites, respectively. It
can be seen that the microstrain in both composites is relatively small, indicating a low
dislocation density. Furthermore, Figure 3e shows the KAM values of the composites and
quantitatively describes the variation of KAM values. Herein, it can be seen that the peak
KAM values of the two composites are distributed at low orientation angle, indicating a
low dislocation density in both as-sintered and as-extruded composites.

Figure 4 presents the TEM investigation of the as-sintered and as-extruded composites.
In Figure 4a,c, the dislocation density in the two composites is low, corresponding to the
KAM maps in Figure 3. Graphene sheets are found to be homogeneously distributed
and located at grain boundary in matrix. Additionally, the refinement and exfoliation of
graphene can be clearly found after hot extrusion, which is consistent with the SEM-BSE ob-
servation in Figure 2. Furthermore, Figure 4b,d exhibits the typical HRTEM microstructure
of graphene, which is confirmed by the interlayer spacing of about 0.34 nm [39]. The micro-
scopic holes or impurity phases cannot be found at the interface of composite, indicating a
well interfacial bonding.
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3.3. Evolution of Graphene during Cold Drawing

Typical SEM-BSE images of the as-drawn composites are shown in Figure 5a–f. Over-
all, with the drawing reduction increase from 36.0% to 99.7%, it can be found that graphene
is homogeneously dispersed in matrix, which can be first attributed to the in situ graphene
uniformly grown on Cu powders. Additionally, graphene can be redispersed during
the drawing deformation [27]. Furthermore, the refinement and exfoliation of graphene
can be clearly found with the increasing drawing reductions. Similarly, in the aforemen-
tioned discussion regarding the extrusion process, graphene can be easily fractured and
refined during the drawing deformation due to the great discrepancy in plasticity between
graphene and Cu. Therefore, the tensile or compressive stress resulting from drawing can
refine the graphene to small pieces. Thick graphene or graphite can be in situ exfoliated
into thin graphene during the plastic deformation process, which has been reported in
recent investigations [30,36,40]. The shear strain induced by deformation is considered to
be the inducement for the exfoliation of graphene. Similarly, under the shear strain existing
in the drawing [41], graphene can be exfoliated. Of note, only thick graphene can be clearly
observed under the backscattered electron mode, while thin graphene only presents a low
contrast and is difficult to be observed (see Figure 5). XRD patterns of the powders and
composites with different drawing reductions have also been investigated (Figure S1, see
Supporting Information). It can be found that all of the XRD curves present a pure phase of
Cu. In addition, no graphene peak can be found since the content of graphene in Cu matrix
is very low (only 0.3 vol%), which is tested by a carbon and sulfur analyzer.
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3.4. Microstructure Evolution of Cu Matrix during Drawing

EBSD was used to study the microstructure evolution of the composites during the
drawing process, including the evolution of grain size, grain boundaries (GBs), recrystal-
lization, microstrain, and texture. Figure 6a–f presents the IPF maps on the ND–TD plane
of the composites with different drawing reductions. The grain size of the as-drawn com-
posites is continuously found to be 3.73, 2.09, 1.89, 1.55, 0.85, and 0.27 µm, corresponding
to the drawing reductions of 36.0%, 67.3%, 73.6%, 81.6%, 91.3%, and 99.7%, respectively
(see Figure 6g). In addition, it can be found that, with the increasing drawing reductions,
the microstructure homogeneity of the composites can be evidently improved.
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To investigate the characteristics of GBs in the composites, the type and misorentation
angle distribution of GBs are presented in Figure S2 (see Supporting information). It can be
observed that GBs in the as-sintered composites are dominated by high-angle GBs (HAGBs)
and twinning boundaries (TBs) (see Figure S2a), which can be attributed to the condition
of high temperature sintering. Following the deformation by extrusion and drawing, the
fraction of TBs decreases evidently and the GBs are gradually dominated by low-angle GBs
(LAGBs) and HAGBs. Figure 7 shows that the percentage of HAGBs first decreases with
the increasing drawing reductions from 36.0% to 67.3%, and then stabilizes from 67.3% to
81.6%. When the drawing reduction further increases from 81.6% to 99.7%, the percentage
of HAGBs increases rapidly and its proportion exceeds 50% when the drawing reduction
increases to 99.7%. The evolution of GBs of the composite is associated with the formation
of recrystallized and subgrains in the composites [42]. The related mechanism will be
discussed in the following section.
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Furthermore, Figure 8 reveals the microstructure of the composite during the drawing
process. In addition, the recrystallized, substructured, and deformed grains of the com-
posites are marked. According to the algorithm in Channel5 software, the discrimination
of different grain types is based on the internal average misorientation angle (IAMA).
Substructured grains are the grains with IAMA under 1◦ and the misorientation between
the subgrains is above 2◦. Deformed grains are the grains with IAMA above 1◦. The
remaining grains are recrystallized grains. Figure 9 shows the quantitative analysis of
grains fraction, corresponding to Figure 8. It can be found that the variation trend of the
fraction of recrystallized grains is similar to the HAGBs in Figure 7. In particular, the
microstructure is still dominated by recrystallized grains at a small drawing reduction of
36%, which can be attributed to the high fraction recrystallized grains reserved from the
as-extruded composite. Then, with the increasing drawing reductions, the recrystallized
grains first decrease, then stabilize, and finally increase. The fraction of recrystallized grains
is higher than 60% when the drawing reduction is 99.7%, which reveals that the dynamic
recrystallization grains are formed under the condition of severe drawing deformation.

Since the composites are drawn at room temperature, how does the mechanism of
the dynamic recrystallization form? The underlying reasons are discussed as follows:
(i) Initially, for the matrix, the GBs in the initial as-extruded composite are dominated
by HAGBs (see Figure 3c). The reason is that the dislocation movement proceeds easily
at high extrusion temperature, which can promote the formation of LAGBs. Then, the
LAGBs can further absorb dislocations and transform into HAGBs [43,44], leading to the
high percentage of recrystallized grains. With the process of drawing deformation at a
low reduction (~67.3%), the multiplication and movement of dislocations can proceed and
form a substructure. Therefore, the proportion of HAGBs decreases, corresponding to the
decrement of recrystallized grains. With the increase of drawing reductions from 67.3%
to 81.6%, the formation of substructure can also continuously absorb dislocations, and
then gradually transform into HAGBs, leading to a dynamic equilibrium of HAGBs and
recrystallization grains. Finally, the substructured grains can transform into recrystallized
grains by continuously absorbing dislocations [45]. (ii) For the graphene, the uncoordinated
plastic deformation ability between Cu and graphene can contribute to the production of
deformation heterogeneities regions in matrix. These regions have high storage energy
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and can accelerate the formation of recrystallization [46]. Moreover, the homogenization of
deformation substructure (see Figure 8) resulting from the uniform distribution of graphene
can be a preferential point for the formation of recrystallization grains [47]. Additionally,
the introduction of graphene increases the number of interfaces in the composite, which can
accelerate the dislocation annihilation and promote the formation of recrystallization [48].
To summarize, the recrystallization of composites under severe deformation is affected by
a synergistic effect from the matrix and graphene.
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Figure 10 shows the KAM maps of the as-drawn composites with the increasing
drawing reductions. Overall, the microstrain in the as-drawn composites increases first and
then decreases with the increasing drawing reductions. Of note, the microstrain distribution
in composite is uniform and no evident strain concentration can be found, which benefits
from the uniformly distributed graphene. Figure 11 quantificationally evaluates the KAM
values, corresponding to the KAM maps in Figure 8. It can be clearly seen that the variation
trend of the KAM peak values is consistent with the observation from the microstrain in the
composite. It is commonly known that the KAM curve with the high peak value indicates
the high dislocation density [49,50]. Therefore, it can be clearly found that the variation
of dislocation density is consistent with the variation tendency of the recrystallization of
composites. Therefore, the evolution of recrystallization process of the composites can be
confirmed more directly by the aforementioned KAM observation.
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Figure 12 is an illustration scheme for the evolution of graphene and matrix during the
drawing process. As shown in Figure 12a, original thick graphene sheets are distributed at
the interface in the as-sintered composite. Then, the refinement and exfoliation of graphene
can be gradually formed with the increasing drawing reductions. The detail mechanism
is discussed in Section 3.3. As a result, homogeneously distributed graphene sheets with
small pieces and thickness can be obtained in the final composite (see Figure 12d). For
the matrix, the grains morphology change from original strip grains to equiaxed grains,
corresponding to the as-sintered and as-extruded (or as-drawn) composites, respectively.
Additionally, after severe drawing reduction, the recrystallization of composites can be
formed, which is affected by a synergistic effect of matrix and graphene (see the discussion
in Section 3.4).
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(on the ND–TD plane). (a) As-sintered composite, (b) as-extruded composite, (c) as-drawn composite
dominated by substructured grains (SG) and (d) as-drawn composite dominated by recrystallized
grains (RG).

3.5. Evolution of Texture during Drawing

During the drawing deformation of FCC metals, the <100> and <111> orientation will
parallel to the axis direction, and form a mixture of <100> and <111> fiber textures. Among
them, the <111> fiber texture is considered to be a stable texture, while the <100> fiber
texture is a transitional texture. In addition, the <100> fiber texture is mainly attributed
to the recrystallization during deformation [51,52]. As shown in Figure S3, a strong and
single <100> fiber texture is formed in the as-extruded composite, which can be due to the
recrystallization at high extrusion temperature. Figure 13 reveals the inverse pole figures
of the composites with the increasing drawing reductions from 36.0% to 99.7%. It can be
found that the types of fiber textures are <100> (see Figure 13a), <100> and <112> (see
Figure 13c) to <111> and <100> (see Figure 13e), corresponding to the drawing reduction of
36.0%, 73.6%, and 91.3%, respectively. Finally, a mixture of fiber textures with dominated
<111> and minor <100> fiber textures is formed when the drawing reduction is 99.7% (see
Figure 13f). The texture results reveal that the grains with <100> orientation gradually
decrease, while the grains with <111> orientation gradually increase, indicating that the
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orientation of grains gradually rotates from <100> to <111> orientation during the drawing
process. In addition, the final texture induced by the severe drawing reduction is consistent
with these results in the drawing deformation of pure Cu, indicating that the incorporation
of graphene does not change the type of texture of Cu [53,54]. Although the dynamic
recrystallization occurs in the composites after severe plastic deformation, the nucleation
and growth of grains are not formed. Therefore, the texture of the as-drawn composite
can still retain the fiber texture generated from the drawing deformation of Cu. Figure 14
exhibits the pole figures of the composites with different drawing reductions, which is
consistent with the results obtained in Figure 13.
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3.6. Tensile Properties and Electric Conductivity of Composites

Figure 15 presents the tensile properties and electric properties of composites. As
shown in Figure 15a, the ultimate tensile strength (UTS) of the composites increases grad-
ually with the increasing drawing reductions. However, this is contrary to the variation
trend of elongation (See Figure 15b). When the drawing reduction is 99.7%, the UTS of
the composite is up to 581.4 MPa and the elongation is 3.5%. Of note, the composite
can be continuously deformed from a diameter of 3.5 mm (as-extruded composite) to an
ultra-fine wire with a diameter of 0.195 mm. Under the continuous and severe drawing
deformation, a strong and ultra-fine graphene/Cu nanocomposite wire can be achieved,
indicating the excellent plastic deformation performance of the as-obtained composite. The
underlying reasons for the plastic deformation performance are as follows: (i) Graphene
can be uniformly dispersed in the composite due to the in situ grown graphene on Cu
powders. During the plastic deformation, the well-dispersibility of graphene can reduce
the stress concentration caused by the agglomerated graphene. In Figure 10, the KAM maps
reveal that the microstrain distribution in the composite is uniform during the drawing
process. Additionally, the homogeneity of microstructure (see Figure 6f) can also improve
the uniform plastic deformation ability of the composite. (ii) As previously discussed,
graphene can be exfoliated under shear strain during the drawing process, which can
act as a lubricant to relax the stress and coordinate the plastic deformation between the
grains. Similar results, such as some interfacial reaction products with low melting point
can effectively reduce the deforming resistance and improve the deformation ability of
composites [55,56]. (iii) The formation of recrystallization can release deformation storage
energy, relax internal stress, and reduce deformation resistance, and thus can promote
continuous deformation [46]. The improvement of strength of the as-drawn composite wire
can be attributed to the thermal mismatch, grain-size refinement, load transfer, and Orowan
strengthening reported by the commonly used mechanism [11,57,58]. Additionally, the
formation of strong fiber texture can lead to texture strengthening of the composite.
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Figure 15c shows the electrical conductivity (EC) of the composites with different
drawing reductions. It can be found that the EC of composite decreases gradually with the
increasing drawing reductions. The EC of the as-drawn composite wire is 45.9 × 106 S/m
when the drawing reduction is 99.7%, indicating that the as-drawn composite still has
good electrical conductivity. There are complicated factors affecting the EC of the as-drawn
composites. First, the increasing number of interfaces resulting from the refinement of
grain size and graphene lead to the intensification of electron scattering [59], which will
weaken the EC of the composite. Moreover, during the drawing deformation, the formation
of dislocations and vacancies in the composite will also increase electron scattering. Never-
theless, the aligned graphene in axis and as-exfoliated graphene can enhance the EC of the
composites due to the in-plane orientation of graphene. In addition, the thinned graphene
has high EC [60]. Therefore, the EC of composite is a complicated and synergistic effect of
the aforementioned factors. Tensile fracture morphology of the as-drawn composites show
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that no agglomerated graphene can be found on the fracture (see Figure 16). Of note, the
size of graphene observed on the fracture surface decreases gradually with the increasing
drawing reductions, indicating a good agreement with the observation in Figure 5. More-
over, no pull-out graphene can be found on the fracture, indicating a well-bonding interface
of the composites. This can promote a load transfer, which is effective from the matrix to
graphene during the tensile process, and obtain the high strength of the composite.
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