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A Bayesian machine learning approach for drug
target identification using diverse data types
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Martin Stogniew6, Joshua E. Allen6*, Paraskevi Giannakakou3,5* & Olivier Elemento1,2,3,4,7*

Drug target identification is a crucial step in development, yet is also among the most

complex. To address this, we develop BANDIT, a Bayesian machine-learning approach that

integrates multiple data types to predict drug binding targets. Integrating public data,

BANDIT benchmarked a ~90% accuracy on 2000+ small molecules. Applied to 14,000+
compounds without known targets, BANDIT generated ~4,000 previously unknown

molecule-target predictions. From this set we validate 14 novel microtubule inhibitors,

including 3 with activity on resistant cancer cells. We applied BANDIT to ONC201—an anti-

cancer compound in clinical development whose target had remained elusive. We identified

and validated DRD2 as ONC201’s target, and this information is now being used for precise

clinical trial design. Finally, BANDIT identifies connections between different drug classes,

elucidating previously unexplained clinical observations and suggesting new drug reposi-

tioning opportunities. Overall, BANDIT represents an efficient and accurate platform to

accelerate drug discovery and direct clinical application.
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I t typically takes 15 years and 2.6 billion dollars to go from a
small molecule in the lab to an approved drug1–3, and for
natural products and phenotypic screen derived small mole-

cules, one of the greatest bottlenecks is identifying the targets of
any candidate molecules2,4. Proper understanding of binding
targets can position drugs for ideal indications and patients, allow
for better analog design, and explain observed adverse events.
There exist a number of experimental approaches for target
identification ranging from affinity pull-downs to genome-wide
knockdown screens4,5, but these approaches are labor, resource,
and time intensive, not to mention failure prone.

Computational approaches have the potential to substantially
reduce the work and resources needed for drug target identifi-
cation. Traditionally, ligand-based approaches take known
binding targets for a given drug and attempt to find other drugs
or proteins that are sufficiently similar6. However, to achieve high
predictive power they require a large input of known binding
partners for each tested drug, and therefore can only be used on
drugs which have prior comprehensive target information6,7.
Molecular docking, another commonly used approach, uses
simulations of small molecules interacting with proteins to model
if and how a drug may bind a given protein8,9. However, this
approach requires significant computational power and complex
3D structures for each queried protein—data that is often
unavailable.

Past work has used posttreatment gene expression changes and
side effects to predict drugs new mechanisms for a given com-
pound10–14. However, the majority of approaches rely on struc-
tural similarity between a queried compound and a database of
drugs with known targets to predict new targets for the queried
compound15–17. Yet, by relying on only a single data type these
methods are more susceptible to data-specific noise and suffer
from limited utility and accuracy. In addition, as new data types
become more accessible and available, we expect single data-type
methods to become less utilized by researchers.

Recently we have seen more methods emerging that attempt to
integrate multiple different data types within a similarity based or
data-driven framework18–21. However these approaches still
suffer from a few limitations:

1. They use known targets of a given candidate compound as
an input, which limits their applicability to orphan
compounds with no known targets.

2. They often use gene-based similarity features, a method
inherently biased against the discovery of diverse types of
targets; favoring instead, the discovery of genes of the same
class as the known drug-targets.

3. Most models only integrate one or two additional data
types in addition to compound structure.

4. Many rely complex integration algorithms that are not
easily able to accommodate new sources of information as
they become available

5. Most have only evaluated their approach on a small
number of drugs (<500) without thorough experimental
validation.

To overcome these limitations, we introduce BANDIT, a drug-
target prediction platform. BANDIT uses a Bayesian approach to
integrate a number of diverse data types in an unbiased manner
and provides a platform that allows for simple integration of new
datatypes as they become available. Additionally, by integrating
multiple different data types BANDIT is not reliant on any one
experiment for its predictions and can achieve greater predictive
power compared to single data type methods. Tested on ~2000
different compounds, BANDIT achieves a high accuracy at
identifying shared target interactions, uncovers novel targets for
the treatment of cancer, and can be used to quickly pinpoint

potential therapeutics with novel mechanisms of action to
accelerate drug development.

Results
An integrative approach leads to an increase in accuracy. In the
age of Big Data there has been an explosion of techniques that
permit genomic, chemical, clinical, and pharmacological mea-
surements to characterize a small molecule’s mechanism. Many
such measurements are either already published or are reasonably
straightforward to perform. We hypothesized that integrating the
multiple pieces of evidence provided by each data type into a
cohesive prediction framework would dramatically improve tar-
get predictions. To test this hypothesis, we developed BANDIT: a
Bayesian ANalysis to determine Drug Interaction Targets.
BANDIT integrates over 20,000,000 data points from six distinct
data types—drug efficacies22, post-treatment transcriptional
responses10,11, drug structures23,24, reported adverse effects25,
bioassay results23,24, and known targets26,27—to predict
drug–target interactions. This underlying database contains
information on approximately 2000 different drugs with 1670
different known targets and over 100,000 unique orphan com-
pounds (compounds with no known targets).

For each data type we calculate a similarity score for all drug
pairs with known targets. Since each dataset uses a distinct
reporting metric, the similarity calculation was specific to the data
type being considered (Supplementary Fig. 1; “Methods”).
Previous approaches have argued that high similarity in one
feature indicates high similarity in others, implying that only one
or two data types are sufficient for target prediction since others
can be inferred28. However, using our expanded database, we
found little overall correlation across different similarity scores
(Fig. 1a; Supplementary Fig. 2). These results suggest that each
data type is measuring a distinct aspect of a molecule’s activity
and further supported our hypothesis that integrating multiple
data types could significantly improve target prediction accuracy.

We next separated drug pairs into those that shared at least one
known target (~3% of all pairs) and pairs with no known shared
targets. We applied a Kolmogorov–Smirnov test to each similarity
score and used the associated D statistic to calculate the degree a
given data type could separate out drug pairs that shared targets
(Fig. 1b). We found that all features were able to significantly
separate the two classes (P < 2e−16), and structural similarity was
found to be the most discriminative among all features evaluated
(DStructure= 0.39). In addition, we discovered that similarity
across an unbiased set of bioassays and the relatively simple NCI-
60 growth inhibition screen could strongly differentiate shared
target drug pairs (DBioassay= 0.327 and DGI50= 331), while,
surprisingly13,14,29, transcriptional responses (DTResponse= 0.1)
and reported adverse effects (DSideEffect= 0.14) were much weaker
differentiators. This information not only identifies the strengths
of each data type, but will also allow researchers to efficiently
prioritize experiments when faced with limited resources.

For every drug pair, BANDIT converts each individual
similarity score into a distinct likelihood ratio. These individual
likelihood ratios are then combined to obtain a total likelihood
ratio (TLR) that is proportional to the odds of two drugs sharing
a target given all available evidence (Fig. 1c; “Methods”). We
chose to use a likelihood ratio approach because the ability to
integrate available data (including newly generated data types)
without a drastic change in protocol and the underlying
interpretability in identifying how individual features contribute
to a given prediction. We calculated TLRs for all possible drug
pairs with known targets and the output was evaluated using 5-
fold cross validation. We observed an Area Under the Receiver
Operating Curve (AUROC) of 0.89 demonstrating that
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BANDIT’s integrative approach can accurately identify drugs that
share targets. To further test this, we compared the ROC curve
and Precision-Recall curve of BANDIT to one where we
randomly shuffled the likelihood values (representing what you
would expect if BANDIT’s TLR had no predictive power), and
saw an improvement compared to random in both tests
(Supplementary Figs. 3, 4). We then recomputed the AUROC
while varying the number of included data types and observed an
overall increase in predictive power as we added new data types,
regardless of the addition order (Fig. 2a, Supplementary Table 1).

As expected, we observed that the variables that had the greatest
increase in AUROC were the same variables that showed the
greatest separation in the KS tests. This result verified the power
of BANDIT’s Big Data approach and demonstrated how separate
information sources can be combined to yield predictions more
powerful than those obtained from any individual source
(Supplementary Fig. 5). This was confirmed using the KS test
where we saw that the TLR output could better separate shared
target drug pairs than any individual similarity score with a
drastic increase in performance when focusing on drug pairs with
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all 5 data types (DTLR= 0.69, Supplementary Fig. 6). Further-
more, we observed that BANDIT’s ratio of true to false positives
continually increased as we raised the cutoff value, indicating that
BANDIT can effectively pick out high quality shared-target
predictions (Fig. 2b, Supplementary Fig. 7). In addition we found
that BANDIT could pinpoint known shared target drugs better
than many existing shared target prediction methods
(“Methods”).

BANDIT accurately predicts specific target interactions. We
next investigated how we could use BANDIT to replicate results
from published experimental screens. Peterson et al.30 tested 178
known protein kinase inhibitors against a panel of 300 different
kinases and measured the level of inhibition (in terms of percent
remaining kinase activity) for each inhibitor–kinase pair. We
examined all orphan molecules—molecules with no known tar-
gets—in both the Peterson kinase database and BANDIT’s, and,
used BANDIT to predict potential kinases targets for each orphan
molecule (“Methods”). We observed that the kinase targets
BANDIT predicted for each orphan molecule had higher levels of
reported inhibition in the Peterson dataset than non-predictions
(p < 1e−5; Supplementary Fig. 8). This result highlights how we
could use BANDIT to guide experimental screens while mini-
mizing operational costs.

Moving forward from shared-target predictions, we examined
whether for a given drug BANDIT could be used to predict a
specific binding target. We hypothesized that if a protein
appeared as a known target in a large number of shared target
predictions, then it is likely a target for the tested orphan
molecule. To test this hypothesis, we developed a voting
algorithm to predict specific targets for each orphan small
molecule by identifying recurring targets (Fig. 2c, “Methods”).
We applied our voting method to all drugs in our database with
known targets and observed the accuracy level—measured by
whether BANDIT correctly identified a known drug target—
steadily increased as we raised the TLR cutoff for a shared target
prediction before reaching an overall accuracy of ~90% (Fig. 2d).
This demonstrated that BANDIT could be used to accurately
identify specific targets for a diverse set of small molecules.

We then used BANDIT to predict novel targets for 14,000+
small molecules with no known targets or mechanisms of action
in our database. Each of these molecules had data available in at
least three of the five data types considered by BANDIT. We
confidently predicted targets for 4167 unique small molecules
(30% of our original set), with predictions spanning over 560
distinct protein targets. By setting a higher TLR cutoff for
predictions and requiring a higher number of votes for any
predicted targets, we further narrowed this list to 720 high
confidence target predictions. Based on this, we envisioned two
main operating scenarios for BANDIT: (1) Using BANDIT in
combination with a library of orphan small molecules to identify
new small molecules targeting a specific protein and (2) to
integrate BANDIT directly into the drug development pipeline to
predict targets and guide experiments for drugs currently in
development (Fig. 2e).

Discovery of novel microtubule-targeting compounds. Begin-
ning with the first operating scenario, we used BANDIT to
identify novel ways to target microtubules. Antimicrotubule drugs
make up one of the largest and most widely used classes of cancer
chemotherapeutics, with tubulin being one of the most validated
anticancer targets to date31–34. Interestingly, and unlike
most classes of chemotherapy drugs or targeted-therapies in
oncology, microtubule inhibitors are further sub-categorized as
microtubule-stabilizing (e.g. taxanes) and microtubule-

depolymerizing drugs (e.g. vinca alkaloids). Each class shifts the
cellular equilibrium that normally exists between soluble tubulin
dimers and microtubule polymers, towards microtubules (tax-
anes) or soluble tubulin (vinca alkaloids). Despite the clinical
success of the entire class of microtubule inhibitors, the devel-
opment of drug resistance—which is the number one cause of
cancer mortality in metastatic patients—limits their clinical
applicability35. Hence, the discovery of novel microtubule-
targeting small molecules could significantly improve cancer
therapy by identifying compounds with activity on refractory
tumors. To this aim, we further focused our list of high con-
fidence orphan-target predictions to small molecules predicted to
target microtubules. To see how our novel predictions related to
known microtubule-targeting therapeutics, we created a network
of all known and predicted antimicrotubule small molecules with
edges representing a predicted shared target interaction (Sup-
plementary Fig. 9). Interestingly we found that the known
microtubule-targeting agents tended to cluster together based on
their distinct mechanism of action. For instance, we observed
Paclitaxel clustering with Cabazitaxel and Docetaxel—all known
microtubule-stabilizing drugs—while Colchicine clustered with
other known microtubule-destabilizing drugs such as Podo-
phyllotoxin. This is especially exciting since it demonstrates the
potential for BANDIT to be used not only to identify a specific
target for an orphan molecule but to differentiate between dif-
ferent modes of action on the same target.

From our list of top antimicrotubule drug predictions (TLR
> 100) we obtained a set of 24 compounds with varying
structures for experimental testing (“Methods”, Supplementary
Table 2). We chose human breast cancer MDA-MB-231 cells
for the validation experiments as microtubule-inhibitors (both
stabilizing and destabilizing) are commonly used in the
treatment of breast cancer patients. Cells were treated for 6 h
with 1 and 10 μM of each small molecule, and the integrity of
the microtubule cytoskeleton (assessed by confocal microscopy
following tubulin immunofluorescence) was used as the bio-
assay endpoint. Additionally, to identify any compounds that
may have poor cellular permeability, we performed a crude-
tubulin assay in which cell were lysed in the presence of 10 μM
of each compound for 30 min before separating polymerized
from soluble tubulin by centrifugation. Our results showed that
14 of the 24 orphan small molecules exhibited significant effects
on microtubules (Fig. 3a–f, Supplementary Figs. 10–15,
Supplementary Table 2), with 13 compounds showing success
in both the cell-based and crude-tubulin assays, and one
compound (#3) showing activity only in the crude-tubulin
assay. Overall, this represents a much higher success rate (58%)
than one would expect by chance (p < 2e−16, “Methods”). In
addition, we found that only nine out of these confirmed 14 hits
would have been predicted to bind microtubules by drug target
prediction methods that relied only on compound
structure16,17. To more accurately quantify the extent of
drug–target engagement, we employed a second biochemical
assay quantifying the effect that each small molecule exerted on
the equilibrium between microtubule polymers and soluble
tubulin, following 6 h of treatment (Supplementary Fig. 16).
Our results confirmed and corroborated the microscopy results,
further revealing that while several small molecules had
maximal microtubule-inhibitory activity at the lowest dose
(1⌠M) (Fig. 3c–f), others exhibited a dose-dependent effect on
microtubule depolymerization (e.g. compounds #12, #13),
further establishing microtubules as their bona-fide target
(Fig. 3g–i). Taken together, these experiments confirmed the
predicted targets and mechanism of action for the majority of
the newly identified microtubule inhibitors. While further
testing will be needed before these small molecules can be used
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clinically, these results do demonstrate how BANDIT can be
used on compound libraries to identify small molecules acting
on specific targets.

To inform future clinical development for these newly
identified microtubule inhibitors, we next tested their activity
against resistance models. In the case of microtubule inhibitors,
overcoming drug resistance is especially challenging as the
mechanisms are often multifactorial. As previously demonstrated,
BANDIT can accurately identify a set of structurally diverse small
molecules that all bind a common target (in this case
microtubules), therefore we next investigated whether any of
our newly identified microtubule-depolymerizing small molecules
could successfully act on tumors resistant to other known
antimicrotubule drugs. Using the 1A9 human ovarian carcinoma
cell line—which has previously been used successfully in selecting
microtubule-inhibitor resistant clones and for high throughput

small molecule screening,36–40—we created clones resistant to
Eribulin mesylate, a microtubule depolymerizing drug that is
FDA approved for the treatment of docetaxel-refractory breast
cancer patients41,42 (Fig. 4a). Interestingly, recent clinical data
demonstrated that fewer than 50% of breast cancer patients
showed any detectable response after treatment with Eribulin,
further highlighting the importance of finding new molecules that
share the same validated target but are active against the large
population of refractory patients43. Using 72-h growth inhibition
assays we observed that the Eribulin-resistant 1A9 cells (1A9-
ERB) were more than 7000 fold more resistant to Eribulin than
the parental cells and exhibited cross-resistance to all classes of
clinically used microtubule-depolymerizing drugs (Supplemen-
tary Table 3). To test whether the drug-resistance phenotype was
due to impaired drug–target engagement, we treated parental and
resistant cells for 6 h with 1 μM of Eribulin or each of the FDA-
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approved depolymerizing drugs. Consistent with their drug
resistance phenotypes, our results showed lack of drug-induced
microtubule depolymerization in 1A9-ERB cells in contrast to the
complete depolymerization observed in the microtubule network
of drug-sensitive 1A9 parental cells (Fig. 4b, c, Supplementary
Figs. 17, 18). These on-target drug efficacy results are in
agreement with the lack of anticancer activity revealed by the
growth inhibition data, further highlighting the importance of
discovering novel small molecules that could act on these
refractory tumors. We tested the top four performing small
molecules (#15, 16, 24, and 2) on the 1A9-ERB cells and found
that three out of four compounds tested, were active against the
1A9-ERB cells and effectively depolymerized microtubules, as
evidenced by the diffuse soluble tubulin staining following drug
treatment (Fig. 4d–f, Supplementary Figs. 17, 18), in contrast to
the fine and intricate microtubule network observed in untreated
cells (Fig. 4). Compound #15, which was the most active of the
four compounds, was tested using growth inhibition assays and
was found to almost completely circumvent drug-resistance from
7050-fold observed with Eribulin down to 4-fold (Supplementary
Table 3). While further in vitro and in vivo studies are required
for the clinical development of these compounds, these results
clearly demonstrate BANDIT’s utility in identifying lead small
molecules with potential activity against drug resistance tumor
models without the labor- and cost-intensive physical screening
of thousands of small molecules. Compounds such as these could
represent the next generation of clinically developed drugs
reducing the need for extensive medicinal chemistry and
structure–activity studies.

BANDIT uncovers ONC201’s selective antagonism of DRD2.
Given BANDIT’s demonstrated capability to accurately identify
specific targets for orphan small molecules, we next investigated
how we could integrate BANDIT directly into the drug devel-
opment pipeline and test its ability to predict targets for small
molecules with promising clinical activity but without a specific
target. Therefore we applied BANDIT to ONC201—an orphan
small molecule discovered through a phenotypic screen for p53-

independent inducers of TRAIL-mediated apoptosis—currently
in multiple phase II clinical trials for select advanced cancers.
Despite its promising preclinical and early clinical anticancer
activity and its reported effects on a few signaling pathways,
including Akt/ERK pathway44–46, a bona-fide target for this
compound remained elusive.

To identify direct binding targets for ONC201, we used
BANDIT to compute likelihood ratios between ONC201 and all
drugs with known targets in BANDIT’s database. BANDIT’s top
shared target prediction were between ONC201 and Oxiperomide
and Thioridazine, both dopaminergic antagonists previously used
the treatment of dyskinesias and schizophrenia respectively47–50.
Interestingly, our voting analysis indicated that the most likely
targets of ONC201 were dopamine receptors—specifically DRD2
—and adrenergic receptor alpha (Fig. 5a), both of which are
members of the G-protein coupled receptor (GPCR) superfamily.
Further highlighting the novelty of these predictions, we found
that DRD2 was not predicted as a target of ONC201 by other
commonly used target prediction algorithms (such as SEA and
SuperPred)15,16.

To test these predicted targets we performed in vitro profiling
of GPCR activity using a hetereologous reporter assay for arrestin
recruitment, which is a hallmark of GPCR activation51. Our
results indicated that ONC201 selectively antagonized the D2-like
(DRD2/3/4), but not D1-like (DRD1/5), subfamily of dopamine
receptors (Fig. 5b; Supplementary Fig. 19A), with no observed
antagonism of other GPCRs under the evaluated conditions.
Among the DRD2 family, ONC201 antagonized both short and
long isoforms of DRD2 and DRD3, with weaker potency for
DRD4. Further characterization of ONC201-mediated antagon-
ism of arrestin recruitment to DRD2L was assessed by a Gaddam/
Schild EC50 shift analysis, which determined a dissociation
constant of 2.9 μM for ONC201 that is equivalent to its effective
dose in many human cancer cells (Fig. 5c). Confirmatory results
were obtained for cAMP modulation in response to ONC201,
which is another measure of DRD2L activation (Fig. 5d). The
ability of dopamine to completely reverse the dose-dependent
antagonism of up to 100 μMONC201 suggests direct, competitive

1A9–ERB + DMSOa 1A9–ERB + Vinblastinec1A9–ERB + Eribulinb

1A9–ERB + Compound #15d 1A9–ERB + Compound #16e 1A9–ERB + Compound #24f

5 μm

Fig. 4 BANDIT predicted small molecules can act on resistant cells. Effect of various compounds on the microtubule integrity of 1A9-ERB cells after 6 h
of treatment: a Control with DMSO (Scale bar: 5 μm), 100 nM of b Eribulin and c Vinblastine, and 1 μM of d Compound #15, e Compound #16 and
f Compound #24
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antagonism of DRD2L (Supplementary Fig. 19B, C). In agree-
ment with the specificity of ONC201 for the target predicted by
BANDIT, no significant interactions were identified between
ONC201 and nuclear hormone receptors or the kinome
(Supplementary Fig. 19D, E). Interestingly, a biologically inactive
constitutional isomer of ONC20152 did not inhibit DRD2L,
suggesting that antagonism of this receptor could be linked to its
biological activity (Supplementary Fig. 19F). Additionally, since
this discovery (first published in a preprint of this work)53 follow-
up publications have further elucidated the role of DRD2 in the
anticancer activity of ONC201 through knockout, efficacy based,
and clinical studies54,55. In summary, these results showed that
ONC201 selectively antagonizes the D2-like subfamily of
dopamine receptors, which is an unconventional target for
oncology drugs and further demonstrate BANDIT’s ability to act
as a tool to advance drug development.

This unexpected discovery on the DRD2 being a direct-binding
target for ONC201, has also led to the design and launch of a
clinical trial of ONC201 in pheochromocytomas, owing to high
levels of DRD2 expression in this rare tumor type (trial identifier:
NCT03034200). Taken together, these results demonstrate the
extreme potential of BANDIT to expedite drug development by
using global, novel drug-target engagement predictions in
combination with gene expression studies to enable the
identification of select patient and indications groups more likely
to benefit from a particular drug treatment.

BANDIT can identify specific drug mechanisms. Following
validation that BANDIT could accurately determine the specific
targets for small molecules, we then examined how it could also

be used to understand the target binding mechanism, otherwise
known as its mechanism of action (MoA). First we used BANDIT
to test all known microtubule-targeting drugs, and created a
hierarchical cluster based on their TLR outputs (“Methods”). We
observed a clean separation between known microtubule depo-
lymerizing and polymerizing agents (Fig. 6a). A similar MoA-
based clustering was observed when we tested all known protein
kinase inhibitors, which showed a clear separation between
receptor tyrosine kinase inhibitors, serine/threonine kinase inhi-
bitors, and nucleoside analogs (Fig. 6b). Overall these results
demonstrate that BANDIT can be used to differentiate small
molecules based on their specific MoA without additional model
training. Combined with the earlier voting algorithm, this
demonstrates an efficient pipeline for small molecule target and
mechanism identification: first using BANDIT to predict targets
for an orphan small molecule, followed by clustering with other
drugs known to act on the same target to discern MoA.

Identifying connections within the drug universe. We next used
BANDIT to get an overview of how different classes of drugs,
spanning the entire clinical landscape, may be related to one
another. Based on the TLR between each drug pair, we con-
structed a network representative of the drug universe, or all
known drugs with at least one predicted shared target interaction
(Fig. 6c). Each drug was classified according to its 1st order
Anatomical Therapeutic Chemical (ATC) classification—char-
acteristic of the type and intended use of each drug. As expected,
drugs of a similar ATC code cluster together, however we
also observed many unexpected clusters indicative of drug
mechanisms or effect. Interestingly, among all classes of
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Fig. 5 ONC201 is a selective DRD2 antagonist. a BANDIT target predictions for ONC201. Connections between ONC201 and known drugs are weighted
based on the likelihood ratio and predicted targets are sized based on the prediction strength. b Antagonism of ligand-stimulated dopamine receptors by
ONC201. c Schild analysis of DRD2L antagonism by ONC201 using arrestin recruitment or d cAMP modulation reporters. Error bars represent 1 standard
deviation
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Fig. 6 BANDIT can predict specific mechanisms of action and connections between drug classes. a Hierarchical clustering of drugs known to target
microtubules and b drugs known to target protein kinases. c Network of drugs based on shared target interactions. Drugs are colored based on their most
prevalent ATC code. Three specific clusters corresponding to beta-blockers and Parkinson’s medications, anti-retrovirals and statins, and opioids and
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chemotherapeutics, microtubule inhibitors clustered together
with camptothecin analogs, for which a dual role as topoisome-
rase I and tubulin polymerization inhibitors has been previously
reported56, but which is not widely acknowledged in clinical
oncology. Conversely, we unexpectedly found opioids closely
interconnected with microtubule targeting agents; this unantici-
pated observation is in line with previous reports showing how
exposure to microtubule targeting drugs can increase the levels of
the opioid receptor in rat cerebellums and that treatment of
cardiac myocytes with opioids induces microtubule
alterations57,58. This unexploited finding could reveal novel
biology linking the opioid receptor signaling pathway with the
microtubule cytoskeleton, as well as potentially represent an
example of drug repurposing, suggesting novel clinical indications
for drugs already FDA-approved. As further proof of the clinical
value of the broad universe clustering information revealed by
BANDIT, we detected close clustering of known beta-blockers
with many Parkinson’s medications, which was especially inter-
esting given that one of the most controversial clinical applica-
tions of beta-blockers was to reduce tremors in Parkinson’s
patients59. Drug clustering was also strongly indicative of
potential side effects, as suggested by the link between anti-
retroviral medications, which often cause metabolic side effects
like hypercholesterolemia, and statins, FDA-approved cholesterol
lowering drugs60. Overall we believe this broad universe cluster-
ing approach could greatly advance future drug development by
indicating novel potentially synergistic drug combinations,
potentially cumulative side effects, and by assisting in drug
repositioning.

Discussion
We have developed BANDIT, an integrative Big-Data approach
that combines a set of individually weak features into a single
reliable and robust predictor of shared-target drug relationships
and individual drug binding targets. Our predictions replicated
shared-target relationships, individual drug–target relationships,
and known mechanisms of action within our test set and repli-
cated results of large-scale experimental screens. Moreover, we
experimentally confirmed several of our novel predictions using
different bioassays and model systems and demonstrated BAN-
DIT’s capability to efficiently discover novel small molecules,
which could be used in refractory tumors. Finally, BANDIT can
be used on a broader scale to discern mechanisms of approved
drugs, characterize the global drug universe landscape, explain
existing, yet puzzling, clinical phenotypes, and repurpose drugs
for new indications.

In addition, as BANDIT can be continually augmented with
new and diverse datasets, we expect its predictive power to
increase as new data becomes available. This is due to one of the
key strengths of the Bayesian framework, as it can easily
accommodate new features and quickly evaluate their individual
predictive power by computing direct probabilities. However, as
more information becomes available there are many aspects of
the current implementation that can be improved. For instance,
we can better understand the dependencies between distinct data
types and model those within our Bayesian network, and as more
information on binding kinetics becomes available, BANDIT
could be adapted to better predict on versus off-target effects. As
drug development often stops in early clinical studies due to
unanticipated toxic side effects, BANDIT could help overcome
these roadblocks by identifying side effects due to unknown off-
target bindings.

In summary, we show herein the potential of BANDIT in
expediting drug development, as it spans the entire space ranging
from new target identification and validation to clinical candidate

development and drug repurposing. By allowing researchers to
quickly obtain target predictions it could streamline all sub-
sequent development efforts and save scientists both time and
resources. Furthermore, BANDIT could be used to rapidly screen
a large database of compounds and efficiently identify any pro-
mising therapeutics that could be further evaluated. Overall our
results demonstrate that BANDIT is a novel and effective
screening and target-prediction platform for drug development
and is poised to positively impact current efforts.

Methods
Datasets. Growth inhibition data: We used publicly available growth inhibition
data from the National Cancer Institute’s Development Therapeutics Program
(NCI-DTP). Each of the NCI60 cell lines were treated with a small molecule and
the concentration that caused a 50% decrease in cell growth was measured. When
there were multiple high quality experiments done for the same compound, we
averaged the values to obtain a single GI50 value for each small molecule—cell line
pair. Contains data on 20,000+ unique compounds. Version 1.6.2 was downloaded
from cellminer.com.

Gene expression data: All post-treatment gene expression data was downloaded
from the Broad Connectivity Map (CMap) project. Fold change data across all cell
lines were averaged to obtain a single gene expression signature for each
compound. Contains data on 1309 different compounds. Build 02 was downloaded
from the Broad CMap Portal.

Adverse effects: Side effects (mined from drug package inserts and public
information) were downloaded from the SIDER database. Each side effect was
classified using the MedDRA (version 16.1) dictionary.

Bioassays/Chemical structures: All bioassay results and chemical structures
were downloaded from PubChem and organized based on each small molecule’s
PubChem Compound Identification (CID).

Known Drug Targets: All known drug targets were extracted from the
DrugBank database (Version 4.1).

Calculating similarity scores. Growth Inhibition Data: For each pair of drugs we
calculated a pearson correlation value across the 60 data points (Supplementary
Fig. 1).

Gene expression and Chemogenomic Fitness Scores: A pearson correlation was
used to measure the degree of similarity for the profiles of two drugs

Bioassays: All bioassays were classified as either positive or negative based on
the data available in Pubchem. A jaccard index was calculated based on the number
of shared “positive” assays between two drugs. We required that each drug pair
have been tested in at least one similar assay for a similarity score to be calculated.

Chemical Structures: For each drug we extracted the isomeric SMILES and used
the atom-pair method61 to calculate the DICE coefficient based structural similarity
between two compounds (Supplementary Fig. 1). Other structural similarity
methods (such as ECFP with Tanimoto coefficients) were evaluated as well,
however all had a lower overall predictive power—measured by the D-statistic from
a KS test—therefore the DICE similarity was ultimately chosen.

Adverse Effects: Using the SIDER2 database25 we extracted the “preferred term”
side effects for each drug. A jaccard index was then calculated for the shared side
effects for each drug pair.

Calculating correlations between similarity types. To combine data from dif-
ferent databases, we mapped information from each drug back to a PubChem
compound identifier (CID) that was used for all subsequent integration. For each
pair of similarity scores we separated out drug pairs where both similarity types
were measured and plotted the different similarity scores against one another
(Fig. 1a, Supplementary Fig. 2). We computed the Pearson correlation coefficient
(PCC) and the coefficient of determination (R2) between each pair of similarity
scores. Across all pairs, we observed a low correlation—measured by both the PCC
and R2. This finding demonstrated that high similarity of one type does not
necessarily implied high similarity in another.

Calculating the total likelihood ratio. For each data type BANDIT calculates a
likelihood ratio L(sn) is defined as the fraction of drug pairs with a shared target
(ST pairs) having a given similarity score sn, divided by the fraction of the non-ST
pairs with the same similarity score:

L sið Þ ¼ PrðsijSTÞ
Prðsijnon-STÞ

ð1Þ

For each data type we binned similarity scores into 20 evenly spaced intervals
and calculated the likelihood value for all similarity scores in each bin. We then fit
an exponential function (using the R “predict” and “exp” methods) to each data
type, and this was used to calculate likelihood values for new cases.

Our previous analysis highlighted the minimal correlation between the
similarity types and how data types could be modeled using a Naïve Bayes
framework. This implies that the joint probability of two drugs sharing a target
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given a set of similarity scores can be modeled as the product involving individual
similarity scores. Overall we decided to use this Bayesian framework for multiple
reasons, such as the readily interpretable nature of a likelihood ratio compared to
other more complicated machine learning scores and the ability to easily add in
new data types as they become available.

Therefore the total likelihood ratio L(s) can be expressed as the product of the
individual likelihood ratios:

TLR ¼ L sð Þ ¼ Q

n
Lðs1�nÞ ¼ Lðs1ÞLðs2Þ:::LðsnÞ

n ¼ maximum # of included datasets
ð2Þ

The total likelihood ratio (TLR) is then proportional to the odds of two drugs
sharing a given target n given sources of information. If a data type was not
available for a given compound then the median value of all similarity scores for
that data type was used to calculate the likelihood value. This imputation was done
after the similarity to likelihood conversion was established (Eq. 1) so as not to
skew likelihood values.

Testing against drugs with known targets. Drug targets were extracted from
DrugBank and drug pairs were classified as a “shared-target” pair if they had at
least one target in common. We used fivefold cross validation to split our set of
drug pairs into a test and training set containing 20% and 80% of the drug pairs
respectively. We sub-sampled the two classes (ST and non-ST drug pairs) and
required the ratio of true positives (ST pairs) to true negatives (non-ST pairs) to
remain the same as the total set. For each fold we computed TLRs for each drug
pair in the test set based on the background probabilities within the training set.
Each of the five test folds combined at the end to produce an ROC Curve and
calculate the AUROC value. We calculated the AUROC value for each individual
likelihood ratio from a single data type (Supplementary Fig. 5).

We performed this analysis with the TLR output while varying the number of
data types being considered and found a significant increase in the predictive
power, measured by the AUROC, as we increased the number of included datasets
(Fig. 2a). We computed two sets of ROC curves—one where we required drugs
have available data in each included data type (our preferred method) and another
where we imputed the data type median for each missing data type. We varied the
order in which datasets were added and observed a positive relationship between
AUROC value and the number of included data types regardless of the addition
order. We tested this by selecting each possible combination of the five data types
and computing the AUROC using five-fold cross validation and observed an
increase in the average AUROC as the total number of included data types
increased (Supplementary Table 1). Furthermore, we used a KS test to measure
how our TLR value could separate out ST and non-ST pairs and saw that in each
case our TLR value outperformed any individual variable (Supplementary Fig. 6).
We repeated this analysis increasing the minimum number of data types we
required a pair of compounds to have and saw the separation steadily improve
(D= 0.44–0.69).

Comparison to existing drug target prediction methods. Campillos et al.13: In
their paper “Drug Target Identification Using Side-Effect Similarity,” Campillos
et al. report that they used their method to test 246,051 drug pairs (in which 6681
were known to share targets) to predict shared target relationships13. In compar-
ison to BANDIT, this method relied on only side effect similarities to identify
shared target drugs. They report that out of their top 409 predictions (representing
the top 166% of all predictions), 192 were known to share targets (representing an
accuracy of 47%). When we performed a similar test on our top 166% of predic-
tions (2160 drugs pairs out of 1,301,691 total), we found that 1649 were known to
share targets. This represents a 76% accuracy for top predictions—a significant
improvement from the 47% reported by Campillos et al. To further evaluate our
comparative accuracy, we also looked deeper to the top 1.2% of predictions. In their
paper, Campillos et al. report that out of their top 2903 predictions (representing
the top 1.2%), 956 were known to share targets (representing a 33% accuracy).
When we evaluated our top 1.2% of predictions (15,620 drug pairs) we found that
6,884 were known to share at least one target (44% accuracy), once again high-
lighting BANDIT’s increased accuracy to established methods (Supplementary
Table 4).

Wang et al.14: In their paper “Prediction of Drug–Target Interactions for Drug
Repositioning Only Based on Genomic Expression Similarity” Wang et al. report
an AUC of 0.66 when predicting shared target relationship of compounds in the
CMap database using the BAES method, which integrates batch corrected gene
expression information. Using BANDIT we observed a higher AUC when
evaluated on all compounds in our database that were tested by CMap
(Supplementary Table 4).

Caniza et al.62: In their paper “Mining the biomedical literature to predict
shared drug targets in DrugBank” Caniza et al. compared multiple similarity driven
approaches based on prior biomedical literature to identify how well they could
identify drugs which share at least one target (AUC= 0.51–0.69). Each of these
methods uses semantic similarity approaches to find shared target drugs, but only
integrate drug MESH terms or chemical structures. We found that BANDIT
outperformed each of these methods when tested on all drugs (Supplementary
Table 4).

Replicating kinase experimental screen. We first separated out the kinases in the
Peterson et al. database30 that were classified as BANDIT orphan small molecules
—molecules that were in at least two of the considered BANDIT databases and had
no known targets (11 unique compounds). For each orphan kinase inhibitor we
used BANDIT to predict shared target drugs. Each known kinase target of the
shared target drugs was classified as a potential kinase target of the orphan inhi-
bitor. We then observed that the “percent remaining kinase activity” was sig-
nificantly lower between the orphan kinase inhibitors and the BANDIT predicted
kinases than between the orphan inhibitors and any non-predicted kinases (Wil-
coxon Rank Sum Test P= 3.62e−06) (Supplementary Fig. 8).

Specific target voting. For each orphan small molecule, we identified all shared
target drug predictions, or any drugs with known targets that exceeded a given
BANDIT likelihood ratio. For each shared target drug prediction, we compiled all
known targets of that given drug and ranked specific protein targets based on how
often it appeared as known target in shared drug target predictions. Votes for
particular protein targets were weighted based on the likelihood ratio of the shared
target prediction they originated from. The top voted target for each orphan small
molecule that we tested was then predicted to be a novel specific target (Fig. 2e).

To test the accuracy, we used leave-one-out cross validation on our test set of
drugs with known targets. For each drug we used BANDIT to compare it to all
other drugs with known targets and identify the top ranked target for the tested
drug. This was repeated for every drug in our test set and we calculated how often
the top ranked target was a known target of the drug being tested. We recomputed
these accuracies while varying the likelihood ratio cutoff for a drug pair to be
considered a shared-target prediction. As expected we observed a steady increase in
accuracy as we increased the cutoff value, with the accuracy plateauing at an
accuracy level of ~90%—revealing that BANDIT’s voting protocol could accurately
identify specific targets (Fig. 2f). We also redid this test using fivefold cross
validation and observed little difference in overall accuracy (plateauing at ~87%
accuracy).

Identification of novel antimicrotubule small molecules. For each orphan small
molecule in BANDIT (defined as a molecule tested in any of the individual
databases but without any known targets in DrugBank) we used the BANDIT
voting protocol to predict specific protein targets. We required that each orphan
small molecule be in at least three of BANDIT’s databases, leaving us with a set of
~15,000 small molecules. To refine our initial list of predictions into a high con-
fidence set, we required a TLR cutoff of 500, that each predicted target appear in
the majority of shared target predictions, and that the highest ranked target appear
in the top shared target prediction for each orphan molecule. From this list of high
confidence predictions, we identified a set of small molecules predicted to bind to
microtubules.

For each predicted microtubule inhibitor (MTI) we examined how it related to
known MTIs using a network approach (Supplementary Fig. 9). We required that
each predicted MTI have a TLR greater than 500 with at least two known MTIs.
Each edge in our network represents a predicted shared target interaction with the
length and width of each corresponding to the strength of the prediction (measured
by the TLR value). We used the Fruchterman Reingold projection within the R
igraph package. We observed a distinct clustering of known MTIs based on their
mechanism of action.

Most of the novel MTIs we predicted were not easily obtained, thus we
specifically focused on the subset that we could obtain from the National Cancer
Institute’s Developmental Therapeutics Program (Supplementary Table 2).

Microtubule imaging/testing. Human breast MDA-MB-231 cells were obtained
from the American Type Culture Collection (ATCC, Manassas, VA) and cultured
in DMEM (obtained from Corning Cellgro) with 10% fetal bovine serum and 1%
penicillin and streptomycin. Cells were plated at the density of 90,000 cells/ml onto
12 mm round cover slips in 48 well plates for 24 h and then treated for 6 h with
small molecules at the given concentrations. Small molecules (obtained from the
NCI Drug Bank) were dissolved in DMSO and stored at −20 °C. Control experi-
ments were done using DMSO and it was <0.5% of total media volume. After 6 h
drug treatment media was removed and cells were permeabilized with 0.5% Triton
X-100 and fixed with PHEMO Buffer (3.7% formaldehyde, 0.05% glutaraldehyde,
0.068 M Pipes, 0.025M HEPES, 0.015 M EGTANa2, 0.003 M MgCl26H2O and 10%
DMSO and adjust pH= 6.8) for 10 min. Fixed cells were washed three times with
PBS buffer. Cells were blocked with 10% goat serum at room temperature for 10
min. Cells were incubated with monoclonal α-tubulin antibody (1:1000 dilution,
clone YL 1/2, obtained from EMD Millipore, cat#MAB1864), for 1 h and washed
three times with PBS buffer before incubation with a secondary Alexa Fluor 488
goat anti-mouse antibody (1:500 dilution, obtained from Invitrogen, cat# A-11006).
Cell chromatin was stained with DAPI for 5 min and washed with water three
times. Cover slips were mounted and photographed in a RSM 700 microscope for
microtubule visualization. DNA was counterstained with DAPI. Images were
acquired with Zeiss LSM 700 confocal microscope under a 63×/1.4NA objective
(Zeiss, Germany) (Fig. 3a–h, Supplementary Figs. 10–15).

A Fisher’s exact test was used to determine whether the number of observed
successes—defined as a predicted microtubule inhibitor showing an effect against
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microtubules in imaging—was greater than what would be expected by random
chance. To determine the background probability we used the number of drugs
with known targets in our database that were known to target microtubules (~1%).

Microtubule effect quantification. Following 6 h treatment, cells (12 well plate)
were washed once with warm phosphate-buffered saline. Each well was incubated
with 150 μL either with low salts or high salt buffer at 37 °C for 10 min. Cell were
then scraped and were either lysed in low salt buffer to test for the degree of tubulin
polymerization (20 mM Tris–HCl pH 6.8, 1 mMMgCl2, 2 mM EGTA, 0.5% NP-40,
1× protease inhibitor cocktail and 0.5% NP-40) or high salt buffer to test for the
degree of tubulin depolymerization (0.1 M Pipes, 1 mM EGTA, 1 mM MgSO4, 30%
glycerol, 5% DMSO, 1 mM DTT, 0.02% NAAzide, 0.125% NP-40, 1 mM DTT and
1× protease inhibitor cocktail). Samples were spun at max speed in a tabletop
centrifuge for 30 min at room temperature. The supernatant (S) was separated
from the pellet (P). The pellet was resuspended in 150 μL 1 × Laemmli buffer and
sonicated. Equal volumes of supernatant and pellet samples were loaded onto a
12% gel for a western blot. Tubulin bands were visualized with a DM1 monoclonal
antibody (1:5000 dilution obtained from Sigma-Aldrich, cat# T9026). % Tubulin in
pellet levels were calculated as the densitometric value of the pellet band divided by
the total densitometric value of the pellet and supernatant bands times 100. Three
biological repeats were performed (Supplementary Fig. 16).

Treatment against resistant cell lines. The 1A9 is a clone of the human ovarian
carcinoma cell line, A2780. 1A9-ERB is a clone of the 1A9 human ovarian carci-
noma cell line resistant to the effects of Eribulin mesylate. It was prepared by
exposing 1A9 cells to 1 ng/ml Eribulin (obtained from Eisai pharmaceuticals) in the
presence of 10 μg/ml verapamil (obtained from Acros Organics), a Pgp antagonist.
The cells were maintained in the 0.5 ng/ml eribulin and 10 μg/ml verapamil con-
centrations. Cells were removed from this drug solution 3 days prior to any future
experimentation. Additional treatment and imaging was done using the same
protocols as described earlier (Supplementary Figs. 17–19).

Growth inhibition activity was determined using 96 well plates. Cells were
seeded at density of 4000 cells/well for 24 h. Cell were exposed to 1 ml serial
dilution (0.014–8100 nM) of different drugs for 72 h. An SRB assay was performed
to determine the cell viability. GI50 was determined as drug concentration that
causes a 50% decrease in cell growth. Experiments were repeated at least three
times to obtain the mean and standard deviation for each experiment.

Characterization of ONC201-DRD2 interaction. ONC201 dihydrochloride was
obtained from Oncoceutics. GPCR arrestin recruitment and cAMP modulation
reporter assays were performed using PathHunterTM (DiscoveRx) beta-arrestin
cells expressing one of several GPCR targets and HitHunter cAMP cells, respec-
tively63. For arrestin recruitment, cells were plated onto 384-well white solid bot-
tom assay plates (Corning 3570) at 5000 cells per well in a 20 µL volume in the
appropriate cell plating reagent. Cells were incubated at 37 °C, 5% CO2 for 18–24 h.
Samples were prepared in buffer containing 0.05% fatty-acid free BSA (Sigma). For
agonist mode tests, samples (5 µL) were added to pre-plated cells and incubated for
90 min at 37 °C, 5% CO2. For antagonist mode tests, samples (5 µL) were added to
pre-plated cells and incubated for 30 min at 37 °C, 5% CO2 followed by addition of
EC80 agonist (5 µL) for 90 min at 37 °C, 5% CO2. For Schild analysis, samples
(5 µL) were added to pre-plated cells and incubated for 30 min at 37 °C, 5% CO2

followed by addition of serially diluted agonist (5 µL) for 90 min at 37 °C, 5% CO2.
Control wells defining the maximal and minimal response for each assay mode
were tested in parallel. Arrestin recruitment was measured by addition of 15 µL
PathHunter Detection reagent and incubated for 1–2 h at room temperature and
read on a Perkin Elmer Envision Plate Reader. For agonist and antagonist tests,
data was normalized for percent efficacy using the appropriate controls and fitted
to a sigmoidal dose–response (variable slope), Y= Bottom+ (Top-Bottom)/(1+
10^((LogEC50-X)*HillSlope)), where X is the log concentration of compound. For
cAMP modulation, a method similar to that for arrestin recruitment was used with
the DiscoveRx HitHunter cAMP XS+ assay and measured by incubation with
cAMP XS+Ab reagent and cAMP XS+ ED/CL lysis cocktail for 1 h followed by
incubation with cAMP XS+ EA reagent for 3 h at room temperature.

For Schild analysis, data was normalized for percent efficacy using the
appropriate controls and fitted to a Gaddum/Schild EC50 shift using global fitting,
where Y= Bottom+ (Top-Bottom)/(1+ 10^((LogEC-X)*HillSlope)), Antag= 1
+ (B/(10^(−1*pA2)))^SchildSlope and LogEC= Log(EC50*Antag). EC50/IC50
analysis was performed in CBIS data analysis suite (Cheminnovation) and Schild
analysis performed in GraphPad Prism 6.0.5.

Kinase inhibition assays for the kinome were performed by Reaction Biology
Corp30. In vitro kinase panel profiling was performed using the “HotSpot” assay
platform. Briefly, kinase, substrate, cofactors were prepared in reaction buffer at
room temperature. Compound, ATP and 33P ATP was added to a final
concentration of 10 μM. Spotting of the reactions was done with ion exchange filter
paper. Unbound phosphate was removed in phosphoric acid. Kinase activity data
was expressed as % remaining kinase activity in test samples compared to vehicle.
IC50 values and curve fits were obtained.

The nuclear hormone receptor profiling (S16) was performed by DiscoverX64–66.
In this system, a CHO cell expressing a portion of betagalactosidase in the nucleus is

stably transfected with a nuclear hormone receptor construct fused to a
complementary portion of beta-galactosidase prolabel. Upon ligand binding, the
fusion protein translocates to the nucleus, allowing chemiluminescent detection.
Cells at a range of densities were resuspended in assay buffer into white-tissue
culture-treated multi-well plates and increasing concentrations of control
compounds were dispensed. The plate was incubated for 3 h at 37 °C and 5% CO2.
PathHunter detection reagent was added to each well prior to incubation for 1 h at
room temperature and reading relative luminescence. Dose response curves were
plotted using Prism.

Drug mechanism clustering. For each drug pair we converted the TLR between
them into a distance metric used to estimate closeness between any two drugs:

BANDIT Distance Score ¼ 1
TLR

ð3Þ

We next separated all drugs know to target microtubules that were in at least three
of BANDIT’s dataset. With the BANDIT distance metric as an input we created a
hierarchical cluster of all known MTIs using the hclust R method with an average
based clustering method. Known MTIs were labeled based on whether they were
known to polymerize or depolymerize microtubules, and we observed a distinct
separation based on the mechanism of action (MoA). We repeated this clustering
while removing drug structures from our likelihood calculations and continued to
see a MoA-based separation (Supplementary Fig. 20). This revealed that BANDIT’s
clustering approach is not dependent on any single data type, and that observed
results are due to BANDIT’s integrative approach. This analysis was then repeated
using similar conditions for known protein kinases.

Drug universe clustering. Using the same protocol as was used to create the MTI
network, we created a network of all drugs with known targets with each edge
representing a predicted shared target interaction and the edge weight corre-
sponding to the strength of the interaction. Using the KEGG drug database67 and
DrugBank27 we annotated each drug based on its most prevalent ATC code and
colored each drug accordingly. We specifically isolated out three clusters repre-
senting: (1) beta-blockers with Parkinson’s medications, (2) antiretrovirals and
statins and (3) opioids and microtubule inhibitors.

To get a better understanding of how orphan small molecules fit into this drug
universe we computed the distance between every pair of small molecules and used
multi-dimensional scaling to visualize the overall structure (Supplementary
Fig. 21). We used the same distance metric as described in the mechanism of action
clustering section to create a distance matrix between all small molecules (known
drugs and orphan) and used the R cmdscale package for the multi-dimensional
scaling. We noticed a definite structure with known drugs tightly clustering around
each other, while orphan molecules had a more diffuse organization. One
explanation for this structure is that drugs with known targets are more likely to be
used to treat patients and thus may have similar effects due to safety precautions,
whereas orphan molecules which have not gone through clinical trials and FDA
approval are more likely to have a wide variety of effects and characteristics.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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