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Hidden Markov modeling for maximum probability
neuron reconstruction
Thomas L. Athey 1,2✉, Daniel J. Tward 3,4✉, Ulrich Mueller5✉, Joshua T. Vogelstein 1,2,6,7✉ &

Michael I. Miller1,2,6,7✉

Recent advances in brain clearing and imaging have made it possible to image entire

mammalian brains at sub-micron resolution. These images offer the potential to assemble

brain-wide atlases of neuron morphology, but manual neuron reconstruction remains a

bottleneck. Several automatic reconstruction algorithms exist, but most focus on single

neuron images. In this paper, we present a probabilistic reconstruction method, ViterBrain,

which combines a hidden Markov state process that encodes neuron geometry with a ran-

dom field appearance model of neuron fluorescence. ViterBrain utilizes dynamic program-

ming to compute the global maximizer of what we call the most probable neuron path. We

applied our algorithm to imperfect image segmentations, and showed that it can follow axons

in the presence of noise or nearby neurons. We also provide an interactive framework

where users can trace neurons by fixing start and endpoints. ViterBrain is available in our

open-source Python package brainlit.
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Neuron morphology has been a central topic in neu-
roscience for over a century, as it is the substrate for
neural connectivity, and serves as a useful basis for neu-

ron classification. Technological advances in brain clearing and
imaging have allowed scientists to probe neurons that extend
throughout the brain, and branch hundreds of times1. It is
becoming feasible to assemble a brainwide atlas of cell types in
the mammalian brain which would serve as a foundation for
understanding how the brain operates as an integrated circuit, or
how it fails in neurological disease. One of the main bottlenecks
in assembling such an atlas is the manual labor involved in
neuron reconstruction.

In an effort to accelerate reconstruction, many automated
reconstruction algorithms have been proposed, especially over the
last decade. In 2010, the DIADEM project brought multiple
institutions together to consolidate existing algorithms, and sti-
mulate further progress by generating open access image datasets,
and organizing a contest for reconstruction algorithms2. Several
years later, the BigNeuron project continued the legacy of DIA-
DEM, this time establishing a common software platform,
Vaa3D, on which many of the state of the art algorithms were
implemented3. Acciai et al.4 offers a review of notable recon-
struction algorithms up to, and through, the BigNeuron project.

Previous approaches to automated neuron reconstruction have
used shortest path/geodesic computation5–7, minimum spanning
trees8, Bayesian estimation9, tracking10,11, and deep learning12–14.
Methods have also been developed to enhance, or extend existing
reconstruction algorithms15–18. Also, some works focus on the
subproblem of resolving different neuronal processes that pass by
closely to each other19–21.

Both DIADEM and BigNeuron initiatives focused on the task
of single neuron reconstruction so most associated algorithms fail
when applied to images with several neurons. However, robust
reconstruction in multiple neuron images is essential in order to
assemble brainwide atlases of neuron morphology.

We propose a probabilistic model-based algorithm, ViterBrain,
that operates on imperfect image segmentations to efficiently
reconstruct neuronal processes. Our estimation method does not
assume that the image outside the reconstruction is background,
and thus allows for the existence of other neurons. Our approach
draws upon two major subfields in Computer Vision, appearance
modeling and hidden Markov models, and generates globally
optimal solutions using dynamic programming. The states of our
model are locally connected segments. We score the state tran-
sitions using appearance models such as exhibited by Kass and
Cohen’s early works22,23 on active shape modeling and their
subsequent application by Wang et al.6 for neuron reconstruction.

For our own approach, we exploit foreground-background
models of image intensity for the data likelihood term in the
hidden-Markov structure. We quantify the image data using and
intensity autocorrelation and kernel density estimates in order to
validate our model assumptions.

Our probabilistic models are hidden Markov random fields,
but we reduce the computational structure to a hidden Markov
model (HMM) since the latent axonal structures have an absolute
ordering. Hidden Markov modeling (HMM) involves two
sequences of variables, one is observed and one is hidden. A
popular application of HMM’s is in speech recognition where the
observed sequence is an audio signal, and the hidden variables a
sequence of words24. In our setting, the observed data is the
image, and the hidden data is the contour representation of the
axon or dendrite’s path.

The key advantages to using HMMs in this context are, first,
that neuronal geometry can be explicitly encoded in the state
transition distribution. We utilize the Frenet representation of
curvature in our transition distribution, which we have studied
previously in Athey et al.25, Khaneja et al.26. Secondly, globally
optimal estimates can be computed efficiently using dynamic
programming in HMMs26,27. The well-known Viterbi algorithm
computes the MAP estimate of the hidden sequence in an HMM.
Our approach, inspired by the Viterbi algorithm, also computes
globally optimal estimates. Thus, our optimization method is not
susceptible to local optima that exist in filtering methods, or
gradient methods in active shape modeling.

In this work, we apply our hidden Markov modeling framework
to the output of low-level image segmentation models. Convolu-
tional neural networks have shown impressive results in image
segmentation28, but it only takes a few false negatives to sever
neuronal processes that are often as thin as one micron (Fig. 1).
Our method strings together the locally connected components of
the binary image masks into a reconstruction with a global
ordering. Thus, our method is modular enough to leverage state of
the art methods in machine learning for image segmentation.

We apply our method to data from the MouseLight project at
Janelia Research Campus1, and focus on the endpoint control
problem in a single neuronal process i.e. start and end points are
fixed. We introduce the use of Frechet distance to quantify the
precision of reconstructions and show that our method has
comparable precision to state of the art, when the algorithms are
successful.

Results
Overview of ViterBrain. Viterbrain takes in an image, and
associated neuron mask produced by some image segmentation

Fig. 1 Image segmentation models sever neuronal processes. a An image subvolume from the MouseLight project containing a single neuron. b The same
image overlaid with a binary image mask in brown. This mask was generated by the random forest based software Ilastik32 and illustrates the typical output
of an image segmentation model. c The same binary image mask, with a different color for each connected component. The variety of colors shows that the
neuron has been severed into several pieces. All panels are maximum intensity projections (MIPs), and the scale bar represents 15 microns.
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model. The algorithm starts by processing the mask into neuron
fragments and estimating fragment endpoints and orientation to
generate the states. Next, both the prior and likelihood terms of
the transition probabilities are computed to construct a directed
graph reminiscent of the trellis from the HMM work in Forney27.
Lastly, the shortest path between states is computed with dynamic
programming. We have proven that the shortest path is the most
probable estimate state sequence formed by a neuronal process
(Statement 1). An overview of our algorithm is shown in Fig. 2
and details are given in the Methods. We validated our algorithm
on subvolumes of one of the MouseLight whole-brain images1.
The image was acquired via serial two-photon tomography at a
resolution of 0.3μm× 0.3μm× 1μm per voxel. Viterbrain is
available in our open source Python package brainlit: http://
brainlit.neurodata.io/.

Modeling image intensity. Figure 3a shows the correlations of
image intensities between voxels at varying distances of
separation. As is typical for natural images, voxels that are close
by each other have positively correlated intensities, and those
farther away are uncorrelated. In the case of foreground voxels,
correlations become weak beyond a distance of about 10
microns, with background voxel correlation decaying rapidly.
This lends support to our assumption that voxel intensities are
conditionally independent processes, conditioned on the fore-
ground/background model (Eq. (3b)). This assumption is one of
the central features of our model because it provides for com-
putational tractability.

Figure 3b shows kernel density estimates (KDEs) of the
foreground and background image intensity distributions. The
distributions vary greatly between the three image subvolumes,
implying that modeling the image process as homogeneous
throughout the whole brain would be inappropriate. Additionally,

the distributions do not appear to be either Gaussian or Poisson.
Indeed, Kolmogorov–Smirnov tests rejected the null hypothesis
for both Gaussian and Poisson goodness of fit in all cases, with all
p-values below 10−16. For that reason, we exploit the independent
increments properties of Poisson emission conditioned on the
underlying intensity model, but do not assume that the marginal
probabilities are Poisson (or Gaussian), instead, we estimate the
intensity distributions from the data itself using KDEs (denoted
α0(⋅), α1(⋅) in Section The Bayesian Appearance Imaging Model).

Maximally probable axon reconstructions. Figure 4 demon-
strates the reconstruction method on both a satellite image of part
of the Great Wall of China, and part of an axon. Different image
segmentation models were used to generate the fragments in the
two cases, but the process of joining fragments into a recon-
struction was the same. The algorithm reconstructs the one
dimensional structure in both cases.

Since the state transition probabilities are modeled with a
Gibbs distribution indexed by the state (giving the Markov
property), reconstructions are driven by relative energies of
different transitions. Thus, our method can still be successful in
the presence of luminance dropout, as long as the neuronal
process is relatively isolated (Fig. 5). Our geometric prior has two
hyperparameters, αd and ακ, which determine the influence of
distance and curvature, respectively, on the probability of
connection between two neuronal fragments.

Figure 6a shows various examples of maximally probable
reconstructions. The algorithm was run with the same hyper-
parameters in all cases: αd= 10 and ακ= 1000.

In some cases, reconstruction accuracy is sensitive to
hyperparameter values (Fig. 6b). Higher values of αd penalize
transitions between fragment states with large gaps; higher values
of ακ penalize state transitions with sharp angles as measured by

Fig. 2 Summary of the ViterBrain algorithm. The algorithm takes in an image and a binary mask that might have severed, or fused neuronal processes.
First, the mask is processed into a set of fragments. For each fragment, the endpoints (x0, x1) and endpoint orientations (τ0, τ1) are estimated and added to
the state space. Next, transition probabilities are computed from both the image and state data to generate a directed graph reminiscent of the trellis graph
in classic hidden Markov modeling. The transition prior depends on spatial distance between fragments, jx0i � x1i�1j, and curvature of the path that connects
them, κ(si−1, si), and these two terms are balanced by the hyperparameters αd, ακ. The transition likelihood depends on the local image intensity α1(Iy).
Finally, a shortest path algorithm is applied to compute the maximally probable state sequence connecting the start to the end state.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03320-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:388 | https://doi.org/10.1038/s42003-022-03320-0 | www.nature.com/commsbio 3

http://brainlit.neurodata.io/
http://brainlit.neurodata.io/
www.nature.com/commsbio
www.nature.com/commsbio


their discrete curvature. It is important to note that the transition
distributions depend on the exact values of αd and ακ, not just, for
example, the ratio between them. We found αd= 10 and
ακ= 1000 to be effective for the reconstructions shown through-
out the paper, but these values should be adjusted according to
the quality of fragments, and the geometry of the neurons being
reconstructed.

Signal dropout causes censored fragment states. Though our
method is robust to fragment dropout in certain contexts, it is less
robust when there is dropout near a parallel neuronal process

(Supplementary Fig. 2). Since the reconstruction is ultimately a
sequence of fragments, missing fragments forces the algorithm
to choose between jumping to a nearby adjacent fragment at the
expense of a penalty due to high curvature or continuing on
course at the expense of a penalty due to high inter-fragment
distance.

The most obvious source of fragment dropout is low image
luminance, leading to false negatives in the initial image
segmentation. However, the reason for fragment dropout depends
on the underlying segmentation model. Empirically, we found
that the reconstruction algorithm fails when the fragment
generation process neglects portions that are greater than ~10 μm
in length.

Comparison to state of the art. We examined the accuracy of
ViterBrain compared to state of the art reconstruction algorithms.
We identified four algorithms that have accompanying publica-
tions, and open-source implementations. The first method is APP2
which starts with an oversegmentation of the neuron using a
shortest path algorithm, then prunes spurious connections19. The
second is Snake which is based on active contour modeling6. The
third is called Advantra, based on the particle filtering approach by
Radojevic and Meijering29. The final reconstruction software we
use is GTree30, which uses the algorithm outlined in Quan et al.21.
This algorithm is similar to APP2 in that it starts with an initial
reconstruction that spans several neurons, then identifies false
connections. APP2, Snake, and Advantra were both used with their
default settings and hyperparameters in Vaa3D 3.2 for Mac. GTree
version 1.0.4 was used on Linux. For GTree, the binarization
threshold was set to 1.0, which was qualitatively identified as a good
threshold to capture the neuron. The default soma radius, 3 μm,
was used in the soma identification step.

Shown in Fig. 7a are the results of the various methods on a
dataset of 35 subvolumes of a MouseLight whole brain image.
Each subvolume contains a cell body, and the initial part of its
axon that is covered by the first ten points of the Janelia
reconstruction. So, the subvolumes vary in size but usually
encompass around 106 cubic microns. The algorithms are
evaluated on how well they can trace the axon between fixed
endpoints (cell body and tenth axon reconstruction point). The
outcomes were classified as either successful (if the axon was fully
traced), partially successful (if more than half of the axon was
reconstructed as evaluated visually), or failures. According to two
proportion z-tests the success rate of ViterBrain (11/35) was
higher than all other methods at α= 0.05. Also, APP2 had a
higher success rate (4/35) than Advantra at α= 0.05. The success
rates for several of the algorithms are discouragingly low, so we

Fig. 3 Characterization of voxel intensity distributions in three different subvolumes of one of the Mouselight whole-brain images. a Correlation of
intensities between voxels at varying distances from each other. The curves show that intensities are only weakly correlated (ρ < 0.4) at a distance of > 10
microns for foreground voxels, or a distance of > 2 microns for background voxels. Error bars represent a single standard deviation of the Fisher
z-transformation of the correlation coefficient. Each curve was generated from all pairs of 5000 randomly sampled voxels. b Kernel density estimates
(KDEs) of foreground and background intensity distributions. A subset of the voxels in each subvolume was manually labeled, then used to train an Ilastik
model to classify the remaining voxels. Each KDE was generated from 5000 voxels, according to the Ilastik classifications. KDEs were computed using
scipy’s Gaussian KDE function with default parameters38.

Fig. 4 Demonstration of maximally probable reconstruction on isolated
linear structures. a A satellite image of part of the Great Wall of China and
b a neuronal process from the MouseLight dataset (MIP). Left panels show
the original images. Middle panels shows the space of fragments, F ,
pictured in color. The green and red arrows indicate the start and end states
of the reconstruction task, respectively. The right panels show the most
probable fragment sequences, where the fragments are colored and
overlaid with a blue line connecting the endpoints of the fragments. The
scale bar in b represents 10 microns.
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discuss the possible reasons for this in the Discussion,
and demonstrate the typical failure modes in Supplementary
Figs. 3, 4 and 5.

For successful reconstructions, we examined the precision of
the reconstructions using spatial distance (SD) and Frechet
distance. We manually upsampled the Janelia reconstructions to
provide the most precise ground truth. All reconstructions were
sampled at every 1 μm before distances were measured. Spatial
distance represents the average distance from a point on one
reconstruction to the closest point on the other reconstruction3.
Frechet distance represents the maximum distance between two
reconstructions, and satisfies the criteria to be a mathematical
metric and is invariant to reparameterization (see Section
Accuracy Metrics for a derivation of Frechet distance). The
spatial distance between ViterBrain and manual reconstructions
are typically between 1 and 3 microns which is roughly the
resolution of the image. Successful reconstructions by the other
algorithms are also in this range. Frechet distances are larger,
since they indicate maximal distance, not average distance,
between curves. We observe that the ~ 5 micron deviations occur
most often near the axon hillock where the axon broadens to
merge with the soma.

Proof of concept graphical user interface. Since our method is
formulated as an optimal control problem conditioned on the
start and states it is most suited for semi-automatic neuron
reconstruction where a tracer could click on two different frag-
ments along a neuronal process, and the algorithm would fill in
the gap. The user could proceed to trace several neuronal pro-
cesses until the full neuron is reconstructed. We designed a proof
of concept graphical user interface based on this workflow and
show an example set of reconstructions made using our GUI in
Fig. 8. The GUI relies on the visualization software napari31.

Discussion
This paper presents a hidden Markov model based reconstruction
algorithm that connects fragments generated by appearance

modeling. Our method converts an image mask into a set of
fragments and thus can be applied to the output of an image
segmentation model. We chose Ilastik to generate image masks
because of its convenient graphical user interface, and high per-
formance on a small number of samples32. However, masks could
also be generated using a deep learning based model such as Liu
et al.33, Li and Shen34 or Wang et al.35.

These fragments are assembled based on the associated
appearance model score of the observed image and the discrete
numerical curvature and distance of adjacent fragments. In the
Methods, we derive the Bayes posterior distribution of the hidden
state sequence encoding the axon reconstruction. We also show
that applying the polynomial time Viterbi algorithm is not pos-
sible for maximum a-posteriori estimation since the state space
has to grow to account for possible cycles in the unordered image
domain. We address the problem with cycles with a modified
procedure for defining the path probabilities making it feasible to
efficiently calculate the globally optimal neuron path. The solu-
tion for efficiently generating the globally optimal path implies
that the local minimum associated to gradient and active
appearance models solutions is resolved in this setting.

We apply the algorithm to the fixed endpoint problem in two-
photon images of mouse neurons. In a dataset of 35 partial axons,
our algorithm successfully reconstructs more axons than the
existing state of the art algorithms (Fig. 7). We observed that
the most common failure mode in this dataset was when there are
extended (>~10 micron) stretches of the putative axonal path
where there is significant loss of luminance signals leading to
highly censored fragment generation. This implies that the
maximally probable HMM procedure is only effective if paired
with effective voxel classification tools. The algorithm can also fail
in areas densely populated with neuronal processes. We
demonstrate that proper selection of the hyperparameters to
reflect the density of the fragments and the geometry of the
underlying neurons can resolve these issues. Our algorithm is
specifically adapted for reconstructing axons in projection neu-
rons in datasets such as MouseLight in two ways. First, the high
image quality as indicated by large KL-divergence values (Fig. 3a),

Fig. 5 ViterBrain is robust to image intensity and fragment dropout when axons are relatively isolated. a An image subvolume from the MouseLight
project containing an axon. The scale bar represents 20 microns. b The same image, overlaid with the fragments which are depicted in different colors.
c The image intensity was censored periodically along an axon path (red arrows). d The fragments associated with the censored regions were removed
from the fragment space (red arrows). e Nonetheless, our algorithm was able to jump over the censored regions to reconstruct this axon. All images
are MIPs.
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makes it straightforward to build an effective foreground-
background classifier which is an essential part of our HMM
state generation. Secondly, our algorithm encodes the geometric
properties of axons such as curvature, which allows our solutions
to adapt to the occasional sharp turns in projection axons.

The success rates of the other algorithms on our dataset is quite
low, considering the performances that they achieved in their
accompanying publications. There are two likely reasons for this,
dataset differences, and sub-optimal algorithm settings.

When an algorithm is validated on one type of data, the results
do not necessarily hold for datasets of a different type. Since none
of the existing algorithms had been designed for the MouseLight
data, the unique details of our dataset could lead to reduced
performance. For example, several subvolumes in our dataset
contain multiple neurons, while two of the algorithms, APP2 and
Advantra, were explicitly designed for images containing single
neurons. Snake is designed to handle multiple neurons, but is
largely validated on DIADEM, a single neuron dataset2. Other
dataset differences include different image resolutions (or levels of

anisoptropy), different image encodings (8 bit vs. 16 bit), and
different signal to noise ratios. Lastly, the existing algorithms are
designed to reconstruct all dendrites and axons simultaneously
while our task of reconstructing a single section of the axon does
not give the algorithms credit for successfully reconstructing
other parts of the neuron.

It is also important to note that reconstruction algorithms can
be sensitive to hyperparameter settings. All algorithms had dif-
ferent hyperparameter options except for Snake. While we tried
various hyperparameter settings for all algorithms, the only non-
default setting that clearly improved reconstruction performance
was the binarization threshold setting in GTree, all other settings
we left to default. It is likely that these settings were not optimal
for our dataset, but it is quite time intensive for a typical user to
quantitatively determine the optimal settings. Detailed and
accessible software documentation makes the process of choosing
effective algorithm settings more efficient.

Figures showing the common failure modes for some of the
algorithms are shown in Supplementary Figures. Advantra and

Fig. 6 Demonstration of ViterBrain. a Successful axon reconstructions; the ViterBrain reconstructions are shown by the blue line; the manual
reconstructions are shown by the red line. The algorithm was run with the same hyperparameters in each case: αd= 10 and ακ= 1000. b Different
hyperparameter values lead to different results. Panel i shows the neuron of interest. Panels ii–iv are close-up views of reconstructions with different
hyperparameter values that weigh transition distance (αd) and transition curvature (ακ). The red circle in Panel ii indicates where the reconstruction
deviated from the true path by jumping ~ 10μm to connect the gray fragment to the light blue fragment. Panel iii shows how a higher αd value avoids the
jump in panel ii, but takes a sharp turn to deviate from the true path (red circle). Finally, in panel iv), the reconstruction avoids both the jump from panel ii)
and the sharp turn from panel iii) and follows the true path of the axon back to the cell body. All images are MIPs, and all scale bars represent 10 microns.
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Snake produced incoherent reconstructions on the dataset, and the
common failure modes for GTree were early termination of
reconstruction, or severing an axon into multiple components.
Despite the possible reasons for sub-optimal performance of the
other algorithms, we provide evidence that our algorithm is com-
petitive with state-of-the-art methods for reconstructing neuronal
processes. Future benchmark comparisons could include reinfor-
cement learning, or recurrent neural network approaches, which
have become prevalent in sequential decision processes. However,
there is not much scientific literature on these approaches to
neuron reconstruction with accompanying functional code.

We have scaled up the ViterBrain pipeline to process images
of 3332 × 3332 × 1000 voxels, representing one cubic millimeter
of tissue (Supplementary Fig. 6), and we will continue to
improve the pipeline until it can be run on whole brain images.
The traces generated by our pipeline could also be paired
with tools like the one presented in Li et al.36 which can turn
traces into full neuron segmentations complete with axon and
dendrite thickness measurements.

The code used in this work is available in our open-source
Python package brainlit: http://brainlit.neurodata.io/, and a
tutorial on how to use the code is located at: http://brainlit.
neurodata.io/viterbrain.html.

Methods
The Bayesian appearance imaging model. Our Bayes model is comprised of a
prior which models the axons as geometric objects and a likelihood which models
the image formation process.

We model the axons as simply connected curves in R3 written as a function of
arclength

cð‘Þ; ‘≥ 0 ; cð‘Þ 2 R3 :

We denote the entire axon curve in space as c(⋅):= {c(ℓ), ℓ ≥ 0}. To interface the
geometric object with the imaging volume we represent the underlying curve c(⋅) as
a delta-dirac impulse train in space. We view the imaging process as the

convolution of the delta-dirac impulse train with the point-spread kernel of the
imaging platform. We take the point-spread function of the system to be roughly
one micron in diameter, implying that the axons are well resolved. The
fluorescence process given the axon contour is taken as a relatively narrow path
through the imaging domain (~1 μm diameter) with relatively uniform luminance.

We take the image to be defined over the voxel lattice D ¼ ∪
i2Zm3 Δyi � R3

with centers yi∈ Δyi. We model the image as a random field fIyi ; Δyi 2 Dg whose
elements are independent when conditioned on the underlying axon geometry,
similar to an inhomogeneous Poisson process as described in37. We denote the
image random field associated to any subset of sites Y⊂D, with joint probability
conditioned on the axon:

IY ¼ fIyi : Δyi 2 Yg ; ð1aÞ

PðIY jcð‘Þ; ‘≥ 0Þ ¼
Y
y2Y

pðIyjcð‘Þ; ‘≥ 0Þ : ð1bÞ

Because of the conditional independence, the marginal distribution determines
the global joint probabilities. Of course, while the conditional probabilities factor and
are conditionally independent, the axon geometry is unknown and the measured
image random field is completely connected if the latent axon process is removed.We
adopt a two hypothesis formulation {f, b} corresponding to a foreground-background
model for the images where the marginal probability of a voxel intensity is:

PðIyÞ ¼ α1ðIyÞ; y 2 foreground ð2aÞ

PðIyÞ ¼ α0ðIyÞ; y 2 background ð2bÞ
Our conditional independence assumption implies that the joint distribution of

group of foreground or group of background voxels can be decomposed into the
corresponding marginal distributions over the foreground-background models
(2a),(2b); defining the foreground and background sets Y= Yf ∪ Yb, then

PðIY Þ ¼
Y
y2Yf

α1ðIyÞ
Y
y2Yb

α0ðIyÞ : ð3aÞ

We define the notations for the joint probability of the set in the foreground for
example (or background)

α1ðIYf
Þ :¼

Y
y2Yf

α1ðIyÞ; Yf � foreground: ð3bÞ

Despite the Poisson nature of the image acquisition process, simple scaling or
shifting of the imaging data would mean the image intensities are no longer

Fig. 7 Results of reconstruction algorithms on a dataset of 35 subvolumes of a MouseLight whole brain image. (Snake was only applied to
10 subvolumes due to incoherent results and excessively slow runtimes, see Fig. S4). Each subvolume contained a soma and part of its axon. The task was
to reconstruct the portion of the axon that was contained in the image (no branching). First, the algorithms were evaluated visually and classified as
successful, partially successful (over half, but not all, of the axon reconstructed), or failed. The table in panel a shows these results, along with markers
showing statistical significance in a two proportion z-test comparing success rates of the algorithms at α= 0.05. For each successful reconstruction, we
measured the Frechet distance and spatial distance from the manual ground truth in order to evaluate the precision of the reconstructions. These distances
are shown as blue points in b, overlaid with standard box and whisker plots (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers).
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Poisson. To accommodate this effect, we estimate the foreground-background
intensity distributions (α1(⋅) and α0(⋅) respectively) nonparametrically. The
simplest nonparametric density estimation technique is using histograms.
However, it can be difficult to choose the origin and bin width of histograms, so we
opt for a kernel density estimate (KDE) approach. We estimate α0(⋅), α1(⋅) by
labeling a subset of the data as foreground/background then fitting Gaussian KDEs
to the labeled data (see Fig. 3b). We use the scipy implementation of Gaussian
KDEs38, with Scott’s rule to determine the bandwidth parameter39. Under some
assumptions on the derivatives of the underlying density, our approach converges
to the true density as the number of samples increases (Theorem 6.1 in39). Further,
the Scott’s rule choice for bandwidth is (approximately) optimal with respect to
mean integrated square error.

Our approach allows us to empirically estimate the intensity distributions while
maintaining the independent increments property of a spatial Poisson process,
which is consistent with the autocorrelation curves depicted in Fig. 3a. This is the
key property that allows us to factor joint probabilities into products of marginals
for sets of voxels.

We note that the foreground-background imaging model allows us to estimate
the error rate of classifying a voxel as either foreground or background. In the
Neyman-Pearson framework, foreground-background classification is a simple two
hypothesis testing problem and the most powerful test at a given type 1 error rate is
the log likelihood ratio test. The Kullback–Leibler (KL) divergence between the
foreground and background distributions gives the exponential rate at which error
rates converge to zero as the number of independent, identically distributed
samples increases40. In the case of using Gaussians to model the foreground-
background distributions, the KL divergence reduces to the squared signal to noise
ratio. In the absence of normality, the KL Divergence is the general information
theoretic measure of image quality for arbitrary distributions. We propose KL
Divergence as an important statistic in evaluating the quality of fluorescent neuron
images.

The prior distribution via Markov state representation on the axons frag-
ments. Our representation of the observed image is as a hidden Markov random
field with the axon as the hidden latent structure. Given the complexity of sub-
micron resolution images, we build an intermediate data structure at the micron

scale that we call fragments F⊂D defined as collections of voxels without any
assumed global ordering between them. Each fragment represents a portion of a
neuronal process, with a natural orientation given by one end that is closer to the
soma. Depicted in Fig. 1 are the fragments shown via different colors. The frag-
ments are a coarser scale voxel and can be viewed analogously as higher order
features.

The axon reconstruction problem becomes the reassembly of the fragments
along with the imputation of the censored fragments. In the image examples
presented in this work, the complexity of the space of fragments is approximately
jF j ¼ 100,000 for a cubic millimeter of projection neuron image data.

We exploit the computational structures of hidden Markov models (HMMs)
when the underlying latent structure is absolutely ordered so that dynamic
programming can efficiently compute globally optimal state sequence estimates.
From the set of fragments we compute a set of states for the HMM. The states are a
simplified, abstract representation of the fragments that contain the minimum
information required to specify the HMM. Each state includes endpoints x0; x1 2 R3

in order to compute “gap” or “censored” probabilities, and unit length tangents
τ0; τ1 2 R3 associated with the endpoints in order to compute curvature. Each
fragment generates two states, one for each orientation. The two states are identical
except their endpoints are swapped, and their tangents are swapped and reversed. We
denote the natural mapping from state to fragment by F : s 2 S 7!FðsÞ 2 F .

The collection of states S ¼ fsg is the finite state space of the HMM, and our
goal is to estimate the state sequence (s1, . . . , sn) that follows the neuronal process.

Our algorithms exploit two splitting properties, the Markov nature of the state
sequence and the splitting of the random field image conditioned on the state
sequence. We use the notation si:j:= (si, si+1, …, sj) for partial state sequences. We
model the state sequence s1, …, sn as Markov with splitting property:

pðsiþ1:n; s1:i�1jsiÞ ¼ pðsiþ1:njsiÞpðs1:i�1jsiÞ ; i ¼ 2; ¼ ; n� 1 ;

which implies the 1-order Markov property p(si∣si−1, s1:i−2)= p(si∣si−1).
We define the transition probabilities with a Boltzmann distribution with

energy U:

pðsijsi�1Þ ¼
e�Uðsi�1 ;siÞ

Zðsi�1Þ
; with Zðsi�1Þ ¼ ∑

si2S
e�Uðsi�1 ;siÞ ;

Fig. 8 Proof of concept graphical user interface. a Image subvolume presented to the user. b Neuron fragments also shown in different colors. The user
can then click on two fragments and generate the most probable curve between them. c Three partial reconstructions (red, green and blue) of different
neurons using the GUI. The scale bars represent 20 microns.
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with energy given by

Uðsi�1; siÞ ¼ αdjx0i � x1i�1j2 þ ακκðsi�1; siÞ2 ;
where ∣⋅∣ is the standard Euclidean norm. The two hyperparameters αd and ακ,
determine the influence of distance and curvature, respectively, on the probability
of connection between two neuronal fragments. The term κ(si−1, si) approximates
the curvature of the path connecting si−1 to si as follows:

Define τc :¼ x0i �x1i�1

jjx0i �x1i�1 jj
which is the normalized vector connecting si−1 to si. Then

we can approximate the squared curvature at x1i�1 and x0i with κ1ðsi�1; siÞ2 ¼
1� τ1i�1 � τc and κ2ðsi�1; siÞ2 ¼ 1� τc � �τ0i

� �
respectively. These formulas are

derived in Supplementary Method 2 and they approximate curvature as modeled in
Athey et al.25. Finally, we approximate average squared curvature with the
arithmetic mean:

κðsi�1; siÞ2 ¼
κ1ðsi�1; siÞ2 þ κ2ðsi�1; siÞ2

2
We control the computational complexity associated to computing prior

probabilities for all jSj2 states by restricting the possible state transitions. We set to
0 probability any transitions where the distance between endpoints is greater than
15 μm or the angle between states is greater than 150∘. We also set the probability
that a state transitions to itself to zero.

Global maximally probable solutions via OðnjSj2Þ calculation. The maximum
a-posteriori (MAP) state sequence is defined as the maximizer of the posterior
probability (MAP) over the state sequences s1:n 2 Sn , with jSj finite:

ŝ1:n :¼ arg max
s1:n2Sn

log pðs1:njIDÞ : ð4Þ
The solution space has cardinality jSjn so it is infeasible to compute the global

maximizer by exhaustive search. Our approach is to rewrite the probability
recursively in order to use the Viterbi algorithm and dynamic programming with
OðnjSj2Þ time complexity. We rewrite the MAP estimator in terms of the joint
probability:

ŝ1:n ¼ arg max
s1:n2Sn

pðs1:njIDÞ ¼ arg max
s1:n2Sn

pðs1:n; IDÞ :

The image random field is split or conditionally independent conditioned on the
fragment states:

pðIFðsiÞ; IDnFðsiÞjsi; Þ ¼ pðIFðsiÞjsiÞpðIDnFðsiÞjsiÞ ;
which implies pðIFðsiÞjsi; IDnFðsiÞÞ ¼ pðIFðsiÞjsiÞ.

Define the indicator function δA(x)= 1 for x∈A, 0 otherwise.

Lemma 1. Defining the shorthand notation identifying fragment sequences with
the state sequence:

F1:n :¼ ðFðs1Þ; ¼ ; FðsnÞÞ ;
then for n > 1 we have the joint probability:

pðs1:n; IDÞ ¼
Yn
i¼2

α1ðIFi
Þ

α0ðIFi
Þ

 !δDnF1:i�1
ðFiÞ

pðsijsi�1Þ pðs1; IDÞ : ð5Þ

See Supplementary Method 3 for the proof which rewrites the probability
recursively giving the factorization. The proof is similar to the classic HMM
decomposition in how it uses the two splitting properties, but there are two
differences. The first is that the probability needs to account for the full image,
including areas outside of the axon estimate, which explains the presence of both α1
and α0 in Eq. (5). The second difference is that if the state sequence s1:n contains
repeated states, then the corresponding image data should not be double counted
in the probability. This is enforced by the delta function δ(⋅).

It is natural to take the negative logarithm of Eq. (5) to obtain a sum that
represents and the cost of a path through a directed trellis graph27. Several
algorithms exist that solve the shortest path problem in OðnjSj2Þ complexity.
However, we cannot use these algorithms directly because the cost function is not
sequentially-additive due to the dependence of the indicator function on previous
states in the sequence. In Supplementary Method 4, we offer a example
demonstrating that directly applying the Viterbi algorithm to this problem does not
generate the MAP estimate.

We adjust our probabilistic representation on the jSjn paths in order to utilize
shortest path algorithms such as Bellman-Ford or Dijkstra’s41,42. For this we note

that the
α1 ðIFi Þ
α0 ðIFi Þ

term in Eq. (5) may often be greater than 1. In the directed graph

formulation (negative logarithm transformation), this can lead to negative cycles in
the graph of states. When negative cycles exist, the shortest path problem is ill-
posed. To avoid this phenomena we remove the background component of the

image from the joint probability, which converts
α1 ðIFi Þ
α0 ðIFi Þ

to α1ðIFi Þ, and converts our

global posterior probability to our path probability formulation.

Statement 1. Define the most probable solution s1:n 2 Sn by the joint probability
argmaxs1:n2Sn pðs1:n; IF1:n

Þ. Then we have

max
s1:n2Sn

pðs1:n; IF1:n Þ ¼ max
s1:n2Sn

Yn
i¼2

α1ðIFi
Þ

� �δDnF1:i�1
ðFiÞ

pðsijsi�1Þ pðs1; IF1
Þ : ð6Þ

Further, if α1(Iy) ≤ 1 for all y, then the globally optimal solution to the fixed start
and end point problem is a nonrepeating state sequence and can be obtained by
computing the shortest path in a directed graph where the vertices are the states, and
the edge weight from state si−1 to si is given by:

eðsi�1; siÞ ¼ � log α1ðIFi Þ � log pðsijsi�1Þ ð7Þ
See Supplementary Method 3 for proof. Our reconstruction problem has now

become a shortest path problem, and can be solved using one of the several
dynamic programming algorithms.

We note that since the path (s1:n) defines the subset of the image in the joint
probability (IF1:n

) we can define the probability as a function of only the state
sequence �pðs1:nÞ :¼ pðs1:n; IF1:n

Þ emphasizing that we are solving the most probable
path problem.

Implementation
Fragment generation. Fragments are collections of voxels, or supervoxels, and
can be viewed analogously as higher order features such as edgelets or corners.
As described in Section The Prior Distribution via Markov State Representation
on the Axons Fragments, identifying the subset of fragments that compose the
axon, then ordering them becomes equivalent to reconstructing the axon
contour model.

The first step of fragment generation is obtaining a foreground-background
mask, which could be obtained, for example, from a neural network, or by simple
thresholding. In this work, we use an Ilastik model that was trained on three image
subvolumes, each of which has three slices that were labeled32. During prediction,
the probability predictions from Ilastik are thresholded at 0.9, a conservative
threshold that keeps the number of false positives low.

The connected components of the thresholded image are split into fragments
of similar size by identifying the voxel v with the largest predicted foreground
probability and placing a ball Bv with radius 7 μm on that voxel. The voxels
within Bv are removed and the process is repeated until the component is
covered. The component is then split up into pieces by assigning each voxel to
the center point from the previous step, v, that is closest to it. This procedure
ensures that each fragment is no larger than a ball with radius 7 μm. At this size,
it is reasonable to assume that each fragment is associated with only one
axon branch since no fragment is large enough to extensively cover multiple
branches.

Next, the endpoints x0, x1 and tangents τ0, τ1 are computed as described in
Supplementary Method 1. Each fragment is simplified to the line segment between
its endpoints which is rasterized using the Bresenham algorithm43. Briefly, the
Bresenham algorithm identifies the image axis along which the line segment has
the largest range and samples the line once every voxel unit along that axis. Then,
the other coordinates are chosen to minimize the distance from the continuous
representation line segment.

Imputing fragment deletions. In practice the imaging data may exhibit significant
dropouts leading to significant fragment deletions. While computing the like-
lihood of the image data, we augment the gaps between any pair of connected
fragments in F1, F2, … by augmenting the sequence with imputed fragments
F1; �F1; F2; �F2; ¼ :, with �Fi � D the imputed line of voxels which forms the
connection between the pair Fi, Fi+1. For this define the start and endpoint
of each fragment as x0ðFÞ 2 R3; x1ðFÞ 2 R3 with line segment connecting
each pair:

Li;iþ1 ¼ fy : y ¼ ax1ðFiÞ þ ð1� aÞx0ðFiþ1Þ; a 2 ½0; 1�g :
The imputed fragment �Fi � D for each pair (Fi, Fi+1) is computed by rasterizing

Li,i+1 with the Bresenham algorithm.
The likelihood of the sequence of fragments augmented by the imputations

becomes

pðs1:n; IF1:n Þ ¼
Yn
i¼2

α1ðIFi Þ
δDnF1:i�1

ðFiÞα1ðI �Fi Þpðsijsi�1Þpðs1; IF1
Þ

Initial and endpoint conditions. We take the initial conditions to represent

pðs1; IF1
Þ ¼ πðs1ÞpðIF1

js1Þ ;
with π the prior on initial state. For all of our axon reconstructions we specify an
axonal fragment as the start state sstart and set πðs1Þ :¼ δsstart ðs1Þ.

The endpoint conditions are defined via a user specified terminal state sterm
where the path ends giving the maximization:

max
s1:n2Sn

pðs1:n; IF1:n jsn ¼ stermÞ :
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The marginal probability on the terminal state always transitions to itself, so that
pðsn ¼ stermÞ ¼ δsterm ðsnÞ. Thus, a state sequence solution of length n may end in
multiple repetitions of sterm, such as

s1:n ¼ fs1; s2; :::; sn0 ; sterm; sterm; :::; stermg:

Accuracy metrics. We applied several state of the art reconstruction algorithms to
several neurons in the brain samples from the MouseLight Project from HHMI
Janelia1. In this dataset, projection neurons were sparsely labeled then imaged with
a two-photon microscope at a voxel resolution of 0.3 × 0.3 × 1μm. Each axon
reconstruction is generated semi-automatically by two independent annotators.
The MouseLight reconstructions are sampled roughly every 10μm, so in some cases
we retraced the axons at a higher sampling frequency in order to obtain more
precise accuracy metrics.

We quantified reconstruction accuracy using two metrics, the first of which is
Frechet distance. Frechet distance is commonly described in the setting of dog
walking, where both the dog and owner are following their own predetermined paths.
The Frechet distance between the two paths then is the minimum length dog leash
needed to complete the walk, where both dog and owner are free to vary their walking
speeds but are not allowed to backtrack. In our setting we compute the Frechet
distance between two discrete paths P : f1; :::; Lpg ! R3, Q : f1; :::; Lqg ! R3 as
defined in Eiter and Mannila44. In this definition, a coupling between P and Q is
defined as a sequence of ordered pairs:

ðP½a1�;Q½b1�Þ; ðP½a2�;Q½b2�Þ; :::; ðP½aK �;Q½bK �Þ

where the following conditions are put on {ak}, {bk} to ensure that they enumerate
through the whole sequences P and Q:

● a1, b1= 1
● aN= Lp, bN= Lq
● ak= ak−1 or ak= ak−1+ 1
● bk= bk−1 or bk= bk−1+ 1

Then the discrete Frechet distance is defined as:

δdF ðP;QÞ ¼ min
coupling fakg;fbkg

max
k2f1;:::;Kg

P ak
� �� Q bk

� ��� ��
We use the standard Euclidean norm for ∣⋅∣. The discrete Frechet distance is an

upper bound to the continuous Frechet distance between polygonal curves, and it
can be computed more efficiently. Further, if we take a discrete Frechet distance of
zero to be an equivalence relation, then δdF is a metric on this set of equivalence
classes and thus is a natural way to compare non-branching neuronal
reconstructions. In this work, all reconstruction are sampled at at least one point
per micron.

Various other performance metrics have been proposed, including an arc-
length based precision and recall6, a critical node matching based Miss-Extra-
Scores (MES)45 and a vertex matching based spatial distance (SD)3. We chose to
compute SD since it gives a picture of the average spatial distance between two
reconstructions. This complements the Frechet distance described earlier, which
computes the maximum spatial distance between two reconstructions.

The first step in computing the SD from reconstruction P to reconstruction Q
is, for each point in P, finding the distance to the closest point in Q. Directed
divergence (DDIV) of P from Q is then defined as the average of all these distances.
Then, SD is computed by averaging the DDIV from P to Q and the DDIV from Q
to P.

Statistics and reproducibility. The first statistical analysis in this work pertains to
foreground/background intensity distributions, and is encapsulated in Fig. 3. The
figure uses data from three image subvolumes, which are provided in the Supple-
mental Data. In panel a, each curve is computed from 5000 randomly selected
voxels in the image subvolume, and each error bar represents a single standard
deviation of the Fisher z-transformation of the correlation coefficient. In panel b,
each curve depicts a Gaussian kernel estimator that was fit to 5000 random voxels.
The scipy implementation of Gaussian kernel density estimator was used, with
Scott’s rule to determine the bandwidth38,39. We provide the code to reproduce this
figure in brainlit. Note that since the voxels are randomly chosen, the note-
book may not reproduce the exact curves in the figure, but the trends, and our
conclusions, are robust to different random samples.

The second statistical analysis in this work pertains to the reconstruction
outcomes of the different algorithms, as shown in Fig. 7. A reconstruction is
considered a Failure if the trace follows the axon for less than half its length. A
reconstruction is considered a Partial Success if it follows the axon for at least half
its length, but clearly deviates onto another structure at some point.
Reconstructions that follow the axon from the start point to the soma are
considered Successes. We compared success rates between algorithms using a
two proportion z-test with a significance threshold of 0.05. We also documented
the accuracy metrics (Frechet distance, spatial distance) of the successful traces.
The outcome counts, the metrics, and the code to produce the plots are provided
in the software package. Further, we provide the code that was used to run the
ViterBrain reconstructions, and measure the accuracy metrics.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets analyzed for this study are available in the Open Neurodata AWS account,
https://registry.opendata.aws/open-neurodata/. Our package, brainlit provides
examples of accessing this data.

Code availability
The code used in this work is available in our open-source Python package brainlit:
http://brainlit.neurodata.io/, and a tutorial on how to use the code is located at: http://
brainlit.neurodata.io/viterbrain.html. The version associated with this paper is https://
doi.org/10.5281/zenodo.6323454.
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