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Abstract: With the rapid development of high-throughput sequencing technology, the analysis
of metagenomic sequencing data and the accurate and efficient estimation of relative microbial
abundance have become important ways to explore the microbial composition and function of
microbes. In addition, the accuracy and efficiency of the relative microbial abundance estimation are
closely related to the algorithm and the selection of the reference sequence for sequence alignment.
We introduced the microbial core genome as the reference sequence for potential microbes in
a metagenomic sample, and we constructed a finite mixture and latent Dirichlet models and used
the Gibbs sampling algorithm to estimate the relative abundance of microorganisms. The simulation
results showed that our approach can improve the efficiency while maintaining high accuracy and
is more suitable for high-throughput metagenomic data. The new approach was implemented
in our CoreProbe package which provides a pipeline for an accurate and efficient estimation of
the relative abundance of microbes in a community. This tool is available free of charge from the
CoreProbe’s website: Access the Docker image with the following instruction: sudo docker pull
panhongfei/coreprobe:1.0.

Keywords: core genome; relative abundance estimation; metagenomics; Gibbs sampling;
Dirichlet model

1. Introduction

Microbial organisms are ubiquitous in virtually all the natural environments of the earth’s
biosphere. They play integral and unique roles in ecosystems [1], they are involved in the
biogeochemical cycling of the earth [2], and they have a great impact on human health. There is
a dynamic equilibrium between the intestinal microflora, the host, and the environment. Once the
structure, composition, and function of the microbiota cause alterations in the metabolites of the
intestinal microbiota, there can be host diseases such as obesity [3], malnutrition [4] and diabetes [5];
intestinal flora disorders and irritable bowel syndrome [6], ulcerative colitis and Crohn’s disease [7,8]
and other chronic bowel diseases, colon cancer [9,10] and gastric cancer [11]. Thus, profiling
the taxonomic composition using the microbial abundances of related communities is critical for
understanding the microbial ecology of the environment and for human health.

Recent innovations in metagenomic shotgun sequencing have made it possible to characterize
microbial contents in uncultured samples by yielding billions of short reads from metagenomes.
Many algorithms have been merged to estimate a community’s taxonomic composition by analyzing
the metagenomics sequencing data. These algorithms can be classified into two categories,
alignment-based or composition-based, according to their different resolutions of taxonomic binning.
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The composition-based algorithms classify metagenomic reads mostly according to their k-mer
frequencies. A number of unsupervised methods of this kind have been employed for clustering
the reads generated from similar taxonomies. For example, TETRA [12] clusters reads based on
Pearson’s correlation coefficients of z-scores, which evaluate the divergence between the observed
and expected reads of tetra nucleotide frequencies. CompostBin [13] and SCIMM [14] step up by
using a weighted PCA algorithm and an interpolated Markov model, respectively, to bin the reads.
MetaCluster [15] involves two phases of clustering to guarantee the accuracy of the read binning.
Some supervised methods have also been proposed to consider the available genomic information and
to assign taxonomic labels. Various machine learning methods such as the support vector machine
(SVM) classifier, naive Bayes classifier, and Gaussian kernel function are employed in Phylopythia [16],
NBC [17] and TACOA, respectively [18]. In addition, RAIphy [19] assigns reads taxonomically
according to each read’s k-mer index value sum based on its Relative Abundance Index model. Other
composition-based methods directly explore the k-mer sequences of the reads, such as LMAT [20],
Kraken [21] and CLARK [22], which assigns taxonomic labels using the lowest common ancestor (LCA)
approach based on the matches of the reads’ k-mer sequences with their differently self-built k-mer
databases. PhymmBL [23] and RITA [24] use hybrid information from BLAST results to improve their
accuracy. MetaTopics [25] can efficiently extract the latent microbial communities by using the topic
model, and it reflects the intrinsic relations or interactions among several major microbes.

Old composition-based methods such as TETRA and TACOA show sharply reduced accuracy
during the abundance estimation when the lengths of the reads are less than 800 bp or the community
complexity of the samples is high. Although it is claimed that newly merged composition-based
methods can be applied quickly and accurately to metagenomic datasets from next-generation
sequencing with read lengths of less than 300 bp, these methods still do not appear to be widely
used in real metagenomic analyses because there is currently an open question about how k-mer
compositions are associated with microbial phylogeny. More evidence must be discovered until the
compositional characteristics of DNA sequences become solid phylogenetic signals.

In the alignment-based approaches, alignment and mapping tools, such as BLAST [26], BWA [27]
and Bowtie2 [28], are used to find similarity hits in metagenomic reads to reference sequences and then
assign the mapped reads to the most plausible microbial lineages. Early alignment-based methods
simply estimate the microbial abundances according to the mapped counts. Most of these methods
focus primarily on precisely filtering mapped reads and employing the lowest common ancestor
algorithm. Methods such as MEGAN [29], CARMA [30], PaPaRa [31] and MTR [32] all have different
strict mapping and filtering procedures or preprocessing procedures to achieve an accurate estimation.
Then, the reference length normalization and probabilistic model are introduced into the metagenomic
reads analysis. GAAS [33] also improves the microbial abundance estimates by introducing similarity
weighting based on alignment e-values. GRAMMy [34] accurately estimates the microbial species
abundances based on the mixture model theory and EM algorithm, while Pathoscope [35] presents
a complete framework of the metagenomic composition analysis. GASic [36] and MetaMix [37] add
additional probabilistic procedures such as similarity correction by Least Absolute Shrinkage and
Selection Operator (LASSO) or model comparison by Markov-Chain Monte Carlo (MCMC) to improve
the estimation.

Another way to perform microbial abundance estimations other than introducing the probabilistic
model to alignment-based approaches is to substitute traditional complete genome sequences with
more condensed and informative marker sequences as references. MetaPhlAn [38] and mOTU [39],
which employ clade-specific marker genes as reference sequences, have greatly improved the speed
and accuracy of analyzing extremely large metagenomic datasets. Clade-specific marker genes can
be identified in almost every clade at different microbial taxonomic levels, and thus they are much
more representative than 16S rRNA in metagenomic analysis. The use of marker genes as references
only accounts for approximately 4% of the sequenced microbial genes, which leads to a significant
conservation in alignment time and storage. However, this approach will discard large numbers of
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reads in the meantime, because most reads will hardly be mapped to marker genes, which is a regretful
loss of information from the metagenomic datasets. Moreover, some microbial species may have
a rather small percentage of marker genes because of frequent mutations.

Here, we recommend using core genomes as the reference sequences of potential species
and estimating the microbial abundances in metagenomic analysis by using the probabilistic
model. According to the pan-genome concepts motivated by Tettelin [40], a clade’s core-genome,
which contains genes shared by all the strains within the clade, typically includes the genes responsible
for the major phenotypic traits, which account for nearly 8% of the genetic repertoire. In involving
clade-specific marker genes as a subset, the core-genome generally contains some genes that may be
shared by different clades. The reasons for using core-genomes as references are as follows: First,
the coexistence of different subpopulations of a microbial species may be a general feature in highly
mixed habitats. Evidence has been discovered of both selected cultured isolates and wild uncultured
populations, from marine environments [41] to human body sites [42]. The existence of multiple
subpopulations or strains, the abundances of which are very likely to vary greatly, often brings
extensive genomic diversity and community complexity and leads to inaccurate results when using
only several complete genomes or a small percentage of marker genes as references for a clade.
However, using core-genomes that consist of the genes shared by all the microbial strains that were
studied as references provides us with an opportunity to estimate the relative abundance of a species
with a complex substrain composition quickly and accurately. Second, variational subpopulations of
a microbial species that have never been sequenced before, the strains of one species that may have
high similarity with another species [43], and some mechanisms such as horizontal gene transfer and
lysogeny, which currently tend to be considered to occur more frequently in natural environments
than previously thought [44], are all obstacles to alignment accuracy when using the strains’ complete
reference genomes. Otherwise, using core-genomes as references should include the general new
strains of the species because most currently identified core genes should also be shared by those
strains. Different microbial species with high similarity or exotic sequences would also be addressed
because they would differ significantly in their core-genomes. Third, compared to using marker genes
as clade references, the shared or redundant genes between different clades in the core-genomes form
the basis for introducing probabilistic models, which create a balance between mapping quickly and
precisely to the references and utilizing the information hidden in ambiguous reads.

In this paper, we introduce CoreProbe, a relative abundance estimation framework for microbes
that employs microbial core-genomes as references for metagenomic analysis. In addition, CoreProbe
takes advantage of the mixture model theory and describes the sequencing procedure for metagenomic
reads as a generative model to accurately estimate microbial abundances with the Gibbs sampling
algorithm [45–47]. We first tested CoreProbe both in our own simulated metagenomic read
sets using MetaSim [48] and in third-party synthetic communities [49]. From these experiments,
we can observe that using core-genomes as references in CoreProbe sharply outperforms the use
of ordinary complete microbial genomes, whether the specific strains of the reference genomes
are “in” the metagenomic datasets or not. Compared to other methods including GRAMMy [34],
Pathoscope [35], MetaPhlAn [38] and Kraken [21], CoreProbe also shows improved accuracy in
abundance estimations. We then analyzed 25 real metagenomic read sets from Human Microbiome
Project (HMP) (https://portal.hmpdacc.org/), yielding new insights into microbiomes from different
human body sites. Finally, we implemented CoreProbe in C++, and we accessed the Docker image
with the following instruction: sudo docker pull panhongfei/coreprobe:1.0.

2. Methods

2.1. A Finite Mixture and Latent Dirichlet Model

To estimate the relative abundance of reference species accurately according to a metagenomic
dataset, we describe the sampling and sequencing procedure of metagenomic reads as a generative

https://portal.hmpdacc.org/
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model: First, in using M microbial organisms as the reference species, the metagenome M in
a metagenomic dataset can be denoted as

M =
M

∑
i=1

θigi (1)

where {g1, g2, · · · , gM} , G represents the reference sequences of M known species. These reference

sequences can be contigs, complete genomes, pan-genomes, core-genomes, etc. (θ1, θ2, · · · , θM) ,
→
θ

denotes the mixture parameters of those reference sequences (or reference species). It should be noted that

M

∑
i=1

θi = 1 (2)

and each θi is proportional to its relative species abundance ai and the corresponding reference
sequence’s base length li, i.e., θi ∝ aili according to Xia et al. [33]. Here, those organisms are subject
to a particular discrete distribution (θ1, θ2, · · · , θM) in the metagenomic generative model. Second,
from metagenome M, we randomly chose reference species gi, which is subject to the multinomial
probability θi, because each read must be generated from the biological sequence of a particular species.
Third, given the chosen genome gi, we randomly generated read rk. The generation of reads from the
reference species gi is subject to gi’s read-composition distribution

(ϕr1,gi , ϕr2,gi , · · · , ϕrK ,gi ) ,
→
ϕ i (3)

where ϕrk ,gi denotes the probability of generating a particular read rk from genome gi,
i.e., p{read_k|G = gi}. Here, we assume K, the total number of different reads generated from
metagenome M. We denote the set of the read-composition distributions for all the reference species
as {→ϕ g1

,
→
ϕ g2

, · · · ,
→
ϕ gM
} , Φ.

Based on the assumptions in the metagenomic generative model, we can easily induce the formula
of the relative abundances for reference species when their reference sequence lengths {l1, l2, · · · , lM}

and mixture parameters (θ1, θ2, · · · , θM) are known. Noting that
M
∑

i=1
θi = 1 and θi ∝ aili, the relative

abundance formula of the reference species under the metagenomic generative model is as follows:

ai = θi/li
M

∑
s=1

θs/ls (4)

The procedure in the metagenomic generative model will be repeated N times to obtain N
metagenomic reads. We can then use the obtained reads to infer the mixture parameters and then
the relative abundances of the reference species based on the generative model. As we can observe,
both sampling procedures for the second and third steps are subject to multinomial distributions,

i.e., gi ∼ Mult(
→
θ ) and rk ∼ Mult(

→
ϕ gi

), respectively. For the sake of the calculation, we followed the
suggestion of Pritchard [45] and used the Dirichlet distribution as the prior distribution of species
mixture parameters in the metagenome because of the Dirichlet-multinomial conjugacy. However,
we do not assume prior distributions for the read-composition distributions Φ of those reference
species, because we can approximate their full conditional probabilities during parameter inference
via read-to-reference-sequence alignment results. The above generative model for metagenomic reads
is shown as the pseudo-code in Algorithm 1.
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Algorithm 1 (A finite mixture and latent Dirichlet model for metagenomics).

Require the hyperparameter
→
α , the total number of reads N, the species set G, the read-composition distributions Φ

Ensure
the read dataset R
sample the species mixture parameters

→
θ ∼ Dir(

→
α ) for a metagenome

repeat

1. sample species gi ∼ Mult(
→
θ )

2. sample read rk ∼ Mult(
→
ϕ gi

)

until the total number of metagenomic reads N is reached
return the read dataset {r1, r2, · · · , rN} , R

2.2. Mixture Parameter Inference and Gibbs Sampling

Ideally, we would need exact knowledge about the occurrence counts of the read-origin species

for each read in a metagenomic dataset to estimate the mixture parameters
→
θ accurately. However,

this task is basically impossible to perform through sequence alignment due to the inherent ambiguity
of relatively short NGS reads and the complex microbial communities, which generally consist of
species with similar reference genomes. Hence, we employ a parameter inference procedure involving
Gibbs sampling to infer the mixture parameter.

In this section, we introduce hidden variables (z1, z2, . . . zN) ,
→
z for the first time, where zi is

an index denoting the reference species that generates the corresponding read ri. We develop an
approximate inference algorithm of Gibbs sampling to emulate the probability distribution of zi given
the observations of metagenomic reads R conditioned on prior probability

→
α and the read-composition

distributions Φ of those reference species; i.e., p{→z |R;
→
α , Φ}. We can then statistically estimate the

counts of the reference species using the samples of p{→z |R;
→
α , Φ} after the burn-in period of Gibbs

sampling, and herewith obtain the estimation of parameters
→
θ and then the relative species abundances

→
α . Specifically, Gibbs sampling generates an instance of each dimension zi of

→
z in turn, subject to their

full conditional p{→z |→z ¬i, R;
→
α , Φ}, where

→
z ¬i denotes all other dimensions of

→
z except zi. It can be

shown [50] that under this condition, the sequence of samples {→z 1,
→
z 2, . . .} constitutes a Markov chain

whose stationary distribution is p{→z |R;
→
α , Φ}. During the real application of metagenomic data, we

can extract a certain number of samples of
→
z after the burn-in period, and we can calculate the average

counts of reference species to infer the parameters.
Next, we derive the full conditional p{→z |R;

→
α , Φ} for Gibbs sampling. First, we calculate the

probability p{→z |→α}. Starting with the probability
→
z as conditioned to the species mixture probability

→
θ , and noting that the hidden species indices are generated as multinomial trials, we have

p{→z |
→
θ } =

M

∏
i=1

θ
ni
i (5)

where ni refers to the number of reads whose corresponding species index is i. Noting that we assume

p{
→
θ |→α} is subject to Dirichlet distribution, we have

w
p{
→
θ |→α}d

→
θ =

w 1

4(
→
α )

M

∏
i=1

θ
αi−1
i d

→
θ = 1 (6)

where

4 (
→
α ) =

M
∏

k=1
Γ(αk)

Γ(
M
∑

k=1
αk)

(7)
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Then, by using the above two formulas, and integrating out
→
θ in the following conditional

probability formula, we obtain

p{→z |→α} =
w

p{→z |
→
θ }p{

→
θ |→α}d

→
θ =

w 1

4(
→
α )

M

∏
i=1

θ
ni+αi−1
i d

→
θ =

4(
→
n +

→
α )

4(
→
α )

(8)

Second, we obtain the probability of reads conditioned on the hidden variables
→
z with the

knowledge of read-composition distribution set Φ as

p{→r |→z ; Φ} =
N

∏
i=1

p{ri|zi, Φ} =
N

∏
i=1

φri ,gi =
K

∏
k=1

M

∏
m=1

(φrk ,gm)
n[k,m] (9)

where we assume that the generation of each read is independent of other reads, K is the number of
different reads, M is the number of reference species, and n[k,m] is the count of reads that have the
same sequence as rk and whose corresponding species is gm. In real applications, we can estimate φri ,gi

by finding the ratio of high-quality hits for ri to all the high-quality read hits on the target reference
sequence gi from the alignment result; that is,

φri ,gi ≈
# o f ri that hit gi with high quality

# o f reads that hit gi with high quality
(10)

Thus, we have

p{zi = t|→z ¬i, R;
→
α , Φ} = p{→z ,

→
r }

p{→z ¬i ,
→
r }

= p{→r |→z }p{→z }
p{→r ¬i |

→
z ¬i}p{→z ¬i}p{ri}

∝ p{→r |→z }
p{→r ¬i |

→
z ¬i}

p{→z }
p{→z ¬i}

=

K
∏

k=1

M
∏

m=1
(φrk ,gm )

n[k,m]

K
∏

k=1

M
∏

m=1
(φrk ,gm )

n[k,m],¬i

4(
→
α+
→
n )

4(
→
α+
→
n¬i)

= φri ,gt ·
(nt,¬i+αi)

M
∑

j=1
(nj,¬i+αj)

∝ φri ,gt · (nt,¬i + αi)

(11)

Here, we leave the priors out to simplify the notations. The relation Γ(a + 1) = aΓ(a) is used in
the above formula, and ¬i indicates that the number is counted exclusive of the read ri. n[k,m] is the
count of reads that have the same sequence as rk and whose corresponding species is gm. n[k,m] and

n[k,m],¬i are different only when k = i, m = t in the above formula, and n[i,t] = n[i,t],¬i + 1.
→
n indicates

the occurrence counts of read-origin species in the metagenomic reads, whose element

nj = n[·,j] =
M

∑
s=1

n[s,j] (12)

Similarly,
→
n and

→
n¬i are the same except for their tth element in the above formula,

and nt = nt,¬i + 1. The above formula shows that read ri is more likely to be assigned to reference
species gt if the probability that gt generates ri is large and if there are many reads in the metagenomic
datasets that have been assigned to gt.
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Finally, we can infer the genome mixture parameters
→
θ using the counts vector

→
n . For the

Dirichlet-multinomial conjugacy, we have

p{
→
θ |→z ,

→
α} = Dir(θ|→n +

→
α ) (13)

and we can estimate
→
θ from the expectation of its distribution as follows:

θk =
nk + αk

M
∑

i=1
(ni + αi)

(14)

→
n can be statistically estimated by finding the mean of a certain number of samples after the burn-in
period of Gibbs sampling described above to overcome the ambiguity of the reads. The abundances
can then be estimated. The pseudo-code of Gibbs sampling is shown in Algorithm 2.

Algorithm 2 (Gibbs Sampling Algorithm for the Metagenomic Model).

Require: references species M, metagenomic reads R, hyperparameter
→
α

Global data: count statistics
→
n , read-composition distributions Φ, memory for full conditionals p{zi|

→
z ¬i, R;

→
α , Φ}

Ensure: mixture parameters
→
θ //initialization: obtain read-composition distributions Φ according to alignment results zero all count statistics

→
n

for i = 1 to N do sample the species index zi = m ∼ Mult(M) increment sampled species count nm = nm + 1
end for //Gibbs sampling
while not finished do
for i = 1 to N do decrement target species count nm = nm − 1
sample a new species index zi = m̃ ∼ p{zi|

→
z ¬i, R;

→
α , Φ}

increment sampled species’ count nm̃ = nm̃ + 1
end for
if converged and a given number of samples generated then

return mixture parameter
→
θ according to the equation

end if
end while

3. Results

3.1. The CoreProbe Framework

The primary contents of this article can be summarized as shown in Figure 1.
We then created a brief introduction to the specific CoreProbe process, which can be found in

Figure 2.
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Figure 1. Overview of the overall content of the article. We first downloaded the reference sequence from
the National Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/),
the MetaRef database, and simulated the metagenomic data with MetaSim software [48]. We then used our
CoreProbe to analyze the simulated data to estimate the genome relative abundance, to compare them with
the existing methods to assess the accuracy and efficiency of our method. Last, our method was applied to
the actual data obtained from Human Microbiome Project (HMP), and a preliminary analysis was made to
support the practicability of our method.

https://www.ncbi.nlm.nih.gov/
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Figure 2. The CoreProbe framework. First, the metagenomic reads obtained by shotgun sequencing
method was compared with the core genome reference sequence using BWA [27], and the results of
the alignment were recorded. The results were then combined with our reads set and the reference
sequences applied to the Gibbs sampling algorithm to obtain the relative abundance of the metagenome.
Finally, if the taxonomic information for the input reference genomes was available, we could calculate
a high level of taxonomic abundance combined with the strain level estimates.

3.2. Simulation Result

To evaluate the performance of the CoreProbe framework and compare it with the existing
methods, we generated 90 simulated metagenomic datasets. We chose 40 microbial species as embed
microorganisms in simulated metagenomic datasets. We aimed to estimate the relative abundances of
10 species, leaving the others as “unknown” species, and we compared the precision of the estimations
among the existing methods. We downloaded the current completely sequenced microbial genomes of
those species in which sequences may coexist, representing different strains of one species. We then
employed MetaSim [48] to generate simulated reads of the selected genomes with preset relative
abundances. Specifically, we built an Empirical Error Model based on the study of the Illumina’s
sequencing technology [51–53] to generate metagenomic datasets that contained 1000, 2000, 5000,
10,000, 20,000, 50,000, 100,000, 200,000, and 500,000 single-ended reads with an average length of
approximately 100 bp, and each dataset had 10 replicates.

When applying CoreProbe to those simulated datasets, we first downloaded all the comprehensive
non-redundant reference core gene catalogs, which contained classification information and their
corresponding sequences, and they also included over 2800 microbial species. Second, we selected
certain microbial species as reference species, and we extracted all the core gene sequences for each
reference species in the downloaded core gene catalogue. Third, we concatenated the core gene
sequences of a reference species together into one FASTA file as a reference sequence of the species.
We then used BWA MEM to map the simulated metagenomic reads against the reference core-genome
sequences. All parameters were set as the defaults, and the output consisted of all the alignments in
a SAM file.

The output SAM files were then passed to our program to estimate the relative abundances.
In addition, we applied the three widely used algorithms for an abundance estimation, including
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GRAMMy [34], MetaPhlAn [38] and Kraken [21], and then used the microbial whole genome sequences
as references for the metagenomic analysis to process the above 90 groups of metagenome simulation
data and to estimate the relative abundance of 10 species of microorganisms. In addition, we compared
the results using the CoreProbe algorithm to compare the accuracy and speed, to support the
effectiveness of this algorithm.

It should be noted that when estimating the relative abundance of microorganisms, two types
of whole genome sequenced strains were selected as the reference genome of the above algorithm,
namely, (1) the selected strain used as a reference genome is contained in a sequence of strains used
to generate simulated metagenomic datasets as g1; and (2) the selected strain used as a reference
genome is not included in the strain that is used to generate the simulated metagenomic datasets,
and it is recorded as g2. This classification is because there are often new strains of certain microbial
species in the natural environment, and the sequence has not been effectively sequenced. The use of as
a reference genome is used to simulate these cases.

3.2.1. Comparison of Algorithm Accuracy

We compare the accuracy by using the relative mean square error of the relative abundance of
each algorithm, and the results are shown in Figure 3a,b.

Figure 3. The relative mean square error of the relative abundance of each algorithm. (a) The selected
strain as a reference genome is contained in a sequence of strains used to generate simulated
metagenomic datasets as g1; and (b) the selected strain as a reference genome is contained in a sequence
of strains used to generate simulated metagenomic datasets as g2. The abscissa represents the different
metagenome simulation data set of the reading capacity, and the ordinate is the mean square error of
the algorithm relative abundance between the estimated value and the preset value.

There are some common characteristics of the two graphs. With the increased capacity of the
metagenome reads (i.e., the improvement of the depth of the sequencing), the mean variance of
the relative abundance estimation of each algorithm decreases, indicating that the increase in the
sequencing depth can improve the accuracy of each algorithm. MetaPhlAn [38] is rather special, in
that the mean variance in the relative abundance values obtained here will begin to rise and then
quickly decrease with the increase in the sequencing depth. When the metagenome reading capacity is
less than 10,000, the relative abundance of the estimated variance is even more than 100%, indicating



Genes 2018, 9, 313 11 of 17

that with the increased depth of the sequencing, the accuracy will decrease; and when the reading
capacity continues to increase, its mean square error will decline rapidly. Especially when the capacity
of reads reaches up to 50,000, MetaPhlAn [38] is more accurate than Kraken [21]. Thus, we can observe
that the MetaPhlAn algorithm [38] is not stable from the point of view of the sequencing depth,
though it achieves high accuracy when the sequencing depth is sufficient. Kraken [21] is rarely affected
by sequencing, with a mean square deviation remaining between 60% and 70%, indicating that the
accuracy of the Kraken [21] is not high; there is a certain gap between the calculation results and the
actual value. GRAMMy [34] has the highest accuracy; its variance is below 40%, and decreases occur
with the increasing sequencing depth. The CoreProbe algorithm mentioned in this paper also uses
the whole genome for the reference sequence. Its accuracy is better than that of MetaPhlAn [38] and
Kraken, but there is still a gap with the GRAMMy algorithm [34]. However, when CoreProbe uses the
core-genome sequence as the reference sequence, the accuracy is significantly improved. When the
metagenome reads capacity is increased to 50,000, the accuracy is very close to that of GRAMMy [34],
and the mean square error in the preset value is less than 10%.

However, by comparing Figures 3a and 3b, the accuracy of each algorithm was found to decrease
when the reference genome changes from g1 to g2. Although the difference is not large, the selected
reference genome sequence corresponds to the strains present in the sample environment or not,
and they will have some impact on the algorithm. In this paper, CoreProbe uses the core gene sequence
as the reference sequence, and thus, the variations in the strain in the real environment and the
unknown strain that affect the algorithm are relatively small. Therefore, the relative abundance
estimation is made using the microbial core genome as the reference. When the actual environment
has not yet sequenced new strains, the algorithm estimates of the relative abundance for the accuracy
can be more credible.

3.2.2. Comparison of Algorithm Speeds

The various algorithms mentioned in this paper are used in different algorithms, and during the
process of dealing with data, there are different sequence mapping algorithms; for example, Kraken [21],
MetaPhlAn [38], and GRAMMy [34] correspond to BLAST [26], Bowtie2 [28], and BWA [27]. Thus,
the time spent on the calculation process (the sum of time used by the sequence alignment and the
statistical algorithm) will be different, and we used the line graph to show the efficiency of each
algorithm, as shown in Figure 4a,b.

The overall situation of the two figures is similar. As shown in Figure 4a,b, with the increased
capacity of the metagenome (i.e., the improvement of the depth of the sequencing), the relative
abundance estimation time of each algorithm is increased. However, the Kraken [21] is special,
because the time it consumes does not increase as the depth of the sequencing increases, and the time
was almost maintained at approximately ten seconds. GRAMMy [34] is the most accurate, but it is
time-consuming, and especially when the sequencing depth increases, the growth is faster than it is
in other algorithms. MetaPhlAn [38] is significantly more time-consuming than the other algorithms,
and the computational accuracy is lower than that of other algorithms. When the sequencing depth
increases, its required time starts to increase significantly, and its accuracy also starts to improve
significantly. In addition, our method, CoreProbe, is the least time-consuming, and it only needs more
time than Kraken [21] when the number of reads goes up to 200,000. At the same time, by comparing
Figures 4a and 4b when the reference genome changes from to , the speed of each algorithm is almost
unaffected. This finding shows that each algorithm is relatively stable, and when the amount of data
is equivalent, the calculation process will not change the necessary time. Because the microbial core
genome is the gene that is common to all the strains in the clade, the number is much smaller than that
of the whole genome, and thus the computational time can be dramatically reduced and the relative
abundance can be estimated more efficiently. As shown in the figure, when the core genome was used
as a reference sequence, the time consumption was less than that of the metagenomes g1 and g2.
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Figure 4. The time used for each algorithm. (a) The time used for each algorithm in different reads
capacities with g1 as the reference genome. (b) The time used for each algorithm in different reads
capacities with g2 as the reference genome. The abscissa represents the different metagenome simulation
datasets of the reads capacity, and the vertical coordinate is the time spent on the calculation process of
each method.

3.3. Real Metagenomic Datasets Analysis

As an immediate application, we applied this CoreProbe pipeline to a set of actual data.
These data come from the HMP, and its sub-database HMIWGS contains 764 groups of high-throughput
metagenomic sample data from 16 different human tissues via the Illumina platforms. In this paper,
five different human tissues were selected, including the anterior nares, buccal mucosa, posterior fornix,
right retro-auricular crease, stool, and five different genomic samples that were randomly selected
from each organization. The metagenome data in this paper have passed the quality control (QC) test
of the HMP. We intended to use these data to estimate the relative abundance of microorganisms and
to classify the metagenomic data. Thus, no additional preprocessing of the above metagenome data
was performed.

In this section, 150 common microbes were selected, and the gene sequences belonging to their
core genomes were selected from the MetaRef database. Their core gene sequences were grouped
together to form a FASTA formatted file as the reference genome sequence of the corresponding
microorganism. In this paper, we used the BWA MEM program to compare the sequence of the actual
genome reading with the reference genome. This parameter was used to locate the default value and
output all the matching results. Finally, the CoreProbe algorithm implemented in this paper was used
to estimate the relative abundance of microbes in each sample.

On this basis, the relative abundance of the obtained microbes was analyzed by heat map.
In Figure 5, the buccal mucosa, vaginal dome and stool samples were basically clustered into one
class, indicating that the relative abundance of microbes showed similarities within their respective
tissues and had significant differences from other human tissues, which is similar to the results of
other studies [54]. In addition, the anterior nares and the right retro-auricular crease corresponding
to the metagenomic samples have been doped, and they cannot be clustered well, indicating that
the relative microbial abundance between the two human tissues is of great similarity, which may
result from close contact between the anterior nares and the right retro-auricular crease and the lesser
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secretion of body fluid. In addition, there are more white cells relative to the posterior fornix, indicating
that the microbial species of this tissue is less than that of others; a small number of cells presented
a violet color, and the rest were generally shallow, indicating that the tissue often consists of a small
number of microorganisms as the dominant population, and the remaining microbial content is scant.
Studies have shown that this finding is due to the important position of the female vagina in the human
reproductive system, and its need to inhibit the growth of microbial species. In addition, according to
its dominant microbial species, they can be divided into three types of microbial community types [55].
In the classification tree on the left side of the thermogram, it is also clear that the posterior fornix
sample is divided into three sub-trees.

Figure 5. Thermal graph of microbial species relative abundance data in five different human tissues.
The horizontal axis corresponds to the different microbial species, and the vertical axis corresponds to
the metagenome samples of different human tissues. The white cells indicate that the microorganism
corresponding to its vertical axis does not appear in the corresponding sample on the horizontal
axis. The change in color from light blue to deep purple indicates that the relative abundance of
microorganisms in the corresponding sample varies from low to high. The distance used by the cluster
analysis of different metagenomic samples on the left side of the thermogram is derived from the
Spearman correlation coefficient between the relative microbial abundance vectors (using the difference
between unit 1 and the correlation coefficient as a distance).

Through the above analysis, we can see that the CoreProbe algorithm can accurately and quickly
estimate the relative abundance of microbes and analyze them by heat map, which can distinguish
among the different genomic samples from different tissues, and it can be used to find the differences
from and links in microbial distributions between different tissues. It is of great significance to
understand the relationship between human health and microorganisms.

4. Discussion

We developed the CoreProbe framework to estimate the relative abundance of genomes.
This approach has three unique advantages. First, a complete probability model is established for
the relative abundance of microbes. The distribution and structure of microbes are simulated on
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the basis of this finding; thus, the relative abundance of various microorganisms can be estimated
more accurately.

Second, CoreProbe uses the stochastic algorithm of the Gibbs sampling algorithm as an alternative
to the deterministic algorithm of statistical reasoning (such as the expectation maximization algorithm)
to achieve a better fuzzy allocation of the readings, which makes the method particularly suitable
for short read data sets. The distribution of ambiguous sources may be sequencing errors, genetic
variation, horizontal gene transfer or closely related genomes. The Gibbs sampling algorithm is a good
solution to this series of problems.

Third, due to the changes in microorganisms in the actual environment to adapt to the changes in
the surrounding ecology, an abnormal mutation mechanism is evolved, and the genomic polymorphism
at the strain level is not uncommon. An environment often contains different strains of a certain
microorganism, and the relative abundance of these strains is inconsistent. For the strains that have
never been found and sequenced, these factors have greatly affected the accuracy of the relative
abundance statistics algorithm for the genome sequence of the few sequenced strains as the reference
genome. The core genome is a collection of all the genes of all the strains, which maintain high stability
during microbial variation [56].

In using the microbial core genome as a reference genome, the effect of genomic polymorphism
and strain diversity on the sequence alignment process can be eliminated to a greater extent, and the
accuracy of the relative abundance estimation can be improved. In addition, the core genome can be
used as a common gene set of all the strains, accounting for only approximately 8% of all the gene sets
of the microbial species. Compared with the algorithm that uses the whole genome of the sequenced
strain as a reference gene, the efficiency of the comparison is greatly improved.

In summary, the CoreProbe method we provide is likely to provide a more accurate and
efficient estimate of the relative abundance estimates of microbes and to uncover a new direction for
estimating abundance.
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