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and malaria in the highlands of Ethiopia

Alemayehu Midekisa1, Belay Beyene2, Abere Mihretie3, Estifanos Bayabil3 and Michael C. Wimberly1*
Abstract

Background: The impacts of interannual climate fluctuations on vector-borne diseases, especially malaria, have
received considerable attention in the scientific literature. These effects can be significant in semi-arid and high-
elevation areas such as the highlands of East Africa because cooler temperature and seasonally dry conditions
limit malaria transmission. Many previous studies have examined short-term lagged effects of climate on malaria
(weeks to months), but fewer have explored the possibility of longer-term seasonal effects.

Methods: This study assessed the interannual variability of malaria occurrence from 2001 to 2009 in the Amhara
region of Ethiopia. We tested for associations of climate variables summarized during the dry (January–April), early
transition (May–June), and wet (July–September) seasons with malaria incidence in the early peak (May–July) and late
peak (September–December) epidemic seasons using generalized linear models. Climate variables included land
surface temperature (LST), rainfall, actual evapotranspiration (ET), and the enhanced vegetation index (EVI).

Results: We found that both early and late peak malaria incidence had the strongest associations with meteorological
conditions in the preceding dry and early transition seasons. Temperature had the strongest influence in the wetter
western districts, whereas moisture variables had the strongest influence in the drier eastern districts. We also found a
significant correlation between malaria incidence in the early and the subsquent late peak malaria seasons, and the
addition of early peak malaria incidence as a predictor substantially improved models of late peak season malaria in
both of the study sub-regions.

Conclusions: These findings suggest that climatic effects on malaria prior to the main rainy season can carry over
through the rainy season and affect the probability of malaria epidemics during the late malaria peak. The results also
emphasize the value of combining environmental monitoring with epidemiological surveillance to develop forecasts of
malaria outbreaks, as well as the need for spatially stratified approaches that reflect the differential effects of climatic
variations in the different sub-regions.
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Background
The impact of interannual climate fluctuations on
vector-borne diseases, especially malaria, has received
considerable attention in the scientific literature [1–4].
The influences of climatic variations on malaria risk can
be especially pronounced in semi-arid and high-
elevation areas such as the highlands of East Africa
[3, 5]. Cool temperatures and seasonally dry conditions
limit malaria transmission in the highlands, and as a re-
sult population-level immunity is typically low [6].
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However, epidemics can still occur in response to abnor-
mally warm temperatures and wet conditions. Multiple
large-scale epidemics of malaria have been documented
in the East African highlands in recent decades [7–9].
Malaria epidemics in these regions can create a large
disease burden with high rates of mortality and morbid-
ity across all age groups. Because of the devastating na-
ture of these epidemics, understanding the effects of
short-term climate variations on malaria transmission is
an important step toward allowing public health decision
makers to plan intervention strategies more effectively.
Although temporal variations in malaria transmission

are influenced by multiple factors including land use
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change, public health interventions, and other socioeco-
nomic determinants, the role of climate is crucial [10].
For example, an earlier study reported associations of in-
terannual variation in temperature and rainfall with mal-
aria outpatient cases in the East African highlands
including Ethiopia, Kenya, and Uganda [3]. Strong asso-
ciations of temperature and rainfall with malaria cases
were also found in the highlands of Ethiopia [11].
Temperature influences the development and survival
rates of both the anopheline mosquito vectors and the
Plasmodium parasites that cause malaria; as a result,
malaria transmission rates tend to increase with
temperature up to a threshold level [12, 13]. Higher
temperature will increase the feeding frequency of fe-
male adult mosquitoes, which can increase the probabil-
ity of transmitting the malaria parasite to uninfected
human hosts [14]. The duration of the sporogonic cycle,
in which the parasite develops inside the mosquito, also
shortens as temperature increases up to an optimum
level [13, 15]. In addition, the longevity of mosquitoes is
sensitive to temperature, and there are threshold tem-
peratures above which mosquito mortality increases and
minimum temperatures below which mosquitoes be-
come inactive [14]. Anopheline mosquitoes also need
surface water to complete their life cycles. Rainfall influ-
ences malaria transmission by supplying water to create
aquatic habitats, although excessive rainfall may flush
breeding sites and cause mortality of mosquito larvae
[16–19].
Most previous studies that examined the link between

climate and malaria have reported lagged associations of
climate variables such as temperature and rainfall with
malaria cases over time periods ranging from weeks to
months [3, 6, 11, 20]. These associations are based on
the assumption that short term lags reflect the time re-
quired following a climatic anomaly for mosquitoes to
develop to adulthood, acquire and transmit a malarial
infection, and for symptoms to arise in the human host
[11]. However, mosquito populations, mosquito infection
rates, and the resulting risk of malaria in humans may
also respond to longer-term cumulative effects of cli-
matic fluctuations on mosquito populations and malaria
infection levels across multiple seasons. Although mal-
aria transmission during the wet season can be limited by
the cooler temperatures associated with summer rains,
there is also a potential for carryovers of parasites in the
human population to the subsequent epidemic season.
Long-term asymptomatic carriage of Plasmodium para-
sites, especially in regions of seasonal transmission, is
common [21–23]. Therefore, there is a possibility that
lagged effects of climate variables will extend across mul-
tiple seasons. For example, a study in the highlands of
western Kenya found evidence of a “ripple effect” in which
November–January rainfall was correlated with the
number of February–April malaria cases, which was in
turn correlated with the number of cases during the main
malaria season in May–December [1].
Here, we test this conceptual model in the highlands

of the Amhara region of Ethiopia by assessing the effects
of satellite-derived climate variables summarized during
the dry (January–April), early transition (May–June),
and wet (July–September) seasons with malaria inci-
dence in the early (May–July) and late (September–
December) peak transmission seasons. Districts in west-
ern Amhara experience longer and heavier rainy seasons
and higher intra-annual variability in temperature,
whereas districts in eastern Amhara experience shorter
rainy seasons and less intra-annual variability in
temperature. Because different factors may influence
malaria incidence under each of these climate regimes
[9], we analyzed each sub-region separately. We hypoth-
esized that malaria occurrence during the early peak sea-
son would be associated with the cumulative effects of
climatic conditions during the preceding dry and early
transition seasons. We further hypothesized that malaria
cases during the early peak season would be correlated
with malaria cases during the subsequent late peak sea-
son, reflecting the carryover of parasites in the human
population. Because of this linkage, and because cooler
temperatures during the wet season will likely reduce
malaria transmission, malaria during the late peak sea-
son should have stronger associations with dry and early
transition season climatic variables than wet season cli-
matic variables. We also hypothesized that including
early peak malaria incidence as an independent variable
in models of late peak season malaria would improve
their fit compared to models based on climatic variables
alone. Finally, we hypothesized that temperature would
be a more important predictor of malaria incidence in
the cooler and wetter western districts, whereas mois-
ture would be more important in the warmer and drier
eastern districts. We addressed these hypotheses by using
remote sensing products derived from multiple earth ob-
servation satellites and analyzing the seasonal associations
of malaria incidence with climate conditions.

Methods
Study area
The study area, the Amhara region, is located in the
northwestern and north central parts of Ethiopia and lies
within 9 ° and 13 °45 N and 36 ° and 40 °30 E (Fig. 1).
The Amhara region has 11 administrative zones and has
a total area of approximately 170,000 km2. Elevation
ranges from 506 to 4517 m above sea level. Mean annual
rainfall ranges from 770 to 2000 mm while average an-
nual air temperature ranges from 16 °C in the summer
to 27 °C in the dry season. In this highland region, mal-
aria is characterized by unstable transmission, and
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outbreaks of malaria can cause high morbidity and
mortality because the human population lacks immunity
to the pathogen [24, 25]. For example, the most recent
regional malaria epidemics occurred from 2003 to 2005
[25, 26]. Since that time, malaria outbreaks have generally
been smaller and more localized [9]. Anopheles arabiensis
is the principal malaria vector in the Amhara region [27],
and Plasmodium falciparum and Plasmodium vivax are
Fig. 1 Map of the study area in the Amhara region of Ethiopia showing th
the major malaria parasites in the region [28]. Ethiopia
has a national malaria control program, including the
Amhara region, which consists of the distribution of free
long-lasting insecticidal nets (LLINs), targeted indoor re-
sidual spraying (IRS), rapid diagnostic tests (RDTs), and
treatment with artemisinin combination therapy [28].
Malaria transmission is seasonal in the Amhara region fol-
lowing seasonal patterns of climatic factors; the two main
e seven western districts and nine eastern districts used in the analysis



Midekisa et al. Parasites & Vectors  (2015) 8:339 Page 4 of 11
malaria transmission seasons occur in May–July following
the end of the dry season and in September–December
following the end of the wet season. Previous studies have
documented regional spatial synchrony of malaria out-
breaks [9], and others have found lagged associations of
climate variables and malaria in the region with time lags
ranging from 1 to 3 months [20, 29].

Environmental data
We used rainfall estimates from the Tropical Rainfall
Measuring Misssion (TRMM) with a spatial resolution
of 0.25° × 0.25°. The TRMM preciptation (3B42) product
was used to compute seasonal total rainfall (mm) for
each district. We used the 8-day land surface
temperature (LST) product (MOD11A2) from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS)
insrtument, on the Terra satellite, at a 1 km spatial reso-
lution to calculate seasonal mean LST for each district.
We also computed the 8-day enhanced vegetation index
(EVI) using surface reflectance in the blue, red and near-
infrared bands from the MODIS Nadir BRDF-Adjusted
Reflectance (NBAR) product (MCD43B4) at a 1 km
spatial resolution. All these remote sensing data were
processed using the EASTWeb software developed at
the Geospatial Sciences Center of Excellence, South
Dakota State University [30]. In addition, we obtained
satellite-derived 8-day actual evapotranspiration (ET)
based on Simplified Surface Energy Balance Operational
(SSEBop) model [31]. The SSEBop is an operational ET
product that uses MODIS and Global Data Assimilation
System (GDAS) data and is available through the U.S.
Geological Survey. We summarized these satellite-
derived climate variables for each district using the zonal
statistics method over the 2001–2009 periods. We then
calculated seasonal summaries for the dry (day of year
(DOY) 1–120), early transition (DOY 121–180), and wet
(DOY 181–273) seasons. We computed seasonal means
for LST and EVI and seasonal totals for ET and rainfall for
each of the three seasons. We also included the district-
level percent of herbaceous wetlands, which serve as a
natural reservoir for the malaria vector, in each district as
an independent variable in all the models. Wetland cover
was computed from a land cover map for the Amhara re-
gion derived from spectral and topographic indices from
Landsat TM/ETM+ and the Shuttle Radar Topography
Mission (SRTM) respectively [32].

Malaria surveillance data
We used clinically-diagnosed outpatient malaria cases
from 16 districts in the Amhara region. Counts of mal-
aria cases including all age groups and all Plasmodium
species for 2001–2009 were collected from multiple dis-
trict (woreda) health offices and the Federal Ministry of
Health, Public Health Emergency Management office by
the Health, Development and Anti-Malaria Association,
an Ethiopian NGO [9]. Data were reported using the in-
tegrated disease surveillance and response (IDSR) sum-
mary forms that are routinely used for surveillance of
malaria and other infectious diseases [33]. Malaria inci-
dence was calculated by dividing the total number of
clinically-diagnosed outpatient malaria cases by the total
population of each district based on the 2007 national
population census of Ethiopia [34] and multiplying by
1000 to provide malaria incidence per 1000 persons.
Malaria incidence over 2001–2009 was calculated for the
two main malaria transmission seasons: early peak
(May–July) and late peak (September–December). Inter-
annual variability in early and late peak malaria inci-
dence for each district in Fig. 2. We selected the 16
districts for analysis based on availability of the malaria
surveillance data for the entire 2001–2009 study period.
We divided these districts into western districts (seven
districts) and eastern districts (nine districts) based on
observed climatological patterns (Figs. 1, 3a and 4a).
Statistical methods
We conducted exploratory analysis to visualize the sea-
sonal patterns of rainfall and LST in relation to malaria
incidence in order to highlight differences in climatology
and malaria epidemiology between the two regions. We
used a negative binomial generalized linear model
(GLM) to test the seasonal associations of malaria inci-
dence and climatic drivers. Separate models were devel-
oped for the western and eastern districts. Early peak
and late peak season malaria incidence were used as re-
sponse variables, the natural logarithm of total popula-
tion was used to account for spatial variability in
population, and seasonal climatic variables were used as
independent variables. In all the models, we also in-
cluded percent wetlands as an independent variable to
control for the effect of spatial variability in local hydrol-
ogy [32]. We used a square-root transformation of the
percent wetlands to minimize the influences of outlying
values and meet the statistical assumptions of the GLM
model.
We used a multimodel inference approach to deter-

mine the best models for dry, early transition and wet
season climate effects on early and late peak malaria. For
parsimony, we considered seven candidate models that
included all possible combinations of the temperature
variable (LST), and one of the three moisture indicators
(rainfall, ET, and EVI) (Tables 1 and 2). The models were
assessed using Akaike Information Criterion (AIC)
scores, which measure the relative goodness of model
fit. Additionally, we used Akaike weights to evaluate
these models [35]. Akaike weights measure the probabil-
ity that a model is the best model given the data and the



Fig. 2 Interannual variability in early peak (blue dashed lines) and late peak (red solid lines) malaria incidence from 2001 to 2009 for 16 districts in
the Amhara region. Locations of the 16 districts are referenced in Fig. 1
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set of candidate models [35]. Lower AIC statistics and
higher Akaike weights indicated better model fit.
We used Spearman’s rank correlation to test the asso-

ciation between early and late peak season malaria inci-
dence. The correlation analysis was based on malaria
incidence in each of the two sub regions for 2001–2009.
We calculated malaria incidence rates by summing the
annual numbers of early and late peak malaria cases over
the districts in each sub region and dividing by the total
population summed over the districts in each sub region.
A separate Spearman’s rank correlation was also com-
puted for each of the 16 sub-districts. We tested whether
including early peak malaria incidence as an independ-
ent variable improved the fit of the best climatic models
of late peak malaria by comparing model 1 (with early
peak malaria incidence as an independent variable) with
model 2 (without early peak malaria incidence as an in-
dependent variable) using AIC as described previously.
We conducted all statistical modeling in the R environ-
ment for statistical computing [36].

Results
The two sub-regions of the Amhara region showed dif-
ferent climatic conditions. The eastern districts had
shorter summer rains and less intra-annual variation in
temperature, whereas the western districts had longer
summer rains and higher intra-annual variation in
temperature (Figs. 3a and 4a). Moreover, the eastern dis-
tricts experienced an earlier, smaller peak of rainfall
from March–May. Overall, the western districts were
characterized by wetter and colder climates while the
eastern districts had drier and warmer climates. The
malaria incidence data showed two distinct peaks during
the early and late peak malaria transmission periods
(Figs. 3b and 4b); the former matched with the start of
the wet season (summer rains) while the latter followed
the end of the wet season. In the eastern districts the
early peak malaria season began sooner than in the west-
ern districts. The western districts had a higher malaria
incidence overall.
Table 1 summarizes the AIC scores and weights for

the seven models for early peak malaria in the two sub-
regions based on climatic variables from the dry and
early transition seasons. In the dry season models, LST
had a strong influence and adding moisture variables did
not substantially improve model fit in the western dis-
tricts, whereas moisture variables had the strongest in-
fluence and adding LST did not improve model fit in the
eastern districts. In the early transition season models,
LST had the strongest influence and adding moisture
variables did not improve model fit in the western dis-
tricts, whereas both LST and moisture indicators con-
tributed to the fit of the best model in the eastern
districts. Overall, for the models of early peak season
malaria, LST had the strongest influence in the western
districts, whereas moisture variables were more import-
ant in the eastern districts (Table 1). There was no sub-
stantive difference (delta AIC values <2) between the
best models based on dry season climate and early tran-
sition season climate in either region.



Fig. 3 a Seasonal patterns of satellite-derived estimates of rainfall and land surface temperature (LST) averaged over the 2001–2009 period for the
seven western districts in the Amhara region, Ethiopia. b Seasonal pattern of malaria incidence (per 100,000) in the seven western districts. The
vertical bars represent one standard deviation and show variability among districts. The seven western districts are referenced in Fig. 1
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Table 2 summarizes the seven models for late peak
season malaria in the two sub-regions based on climatic
variables from the dry, early transition, and wet seasons.
In the dry and early transition season models, LST had
the strongest influence in the western districts and add-
ing moisture variables did not substantially improve
model fit, whereas both LST and moisture contributed
to model fit in the eastern districts. In the wet season
models, moisture variables had the strongest influence
and adding LST did not substantially improve model fit
in the western districts, whereas both LST and moisture
variables contributed to model fit in the eastern districts.
Overall, the most parsimonious models of late peak sea-
son malaria in the western districts were driven by LST
alone in the dry and early transition season models and
by rainfall alone in the wet season model. In contrast,
the best models of late peak season malaria in the east-
ern districts included a combination of LST and mois-
ture variables in all three seasons (Table 2). In the
western districts, the best model based on early transi-
tion season climate had a better fit than the best models
based on dry and wet season climate as indicated by its
lowest AIC value. In the eastern districts, the best
models based on dry and early transition season climate
both had better fits than the best model based on wet
season climate. There was no substantive difference
(delta AIC values <2) between the best models based on
dry season climate versus early transition season climate
in the eastern districts.
Early peak malaria incidence was strongly associated

with the subsequent late peak malaria incidence.
Spearman’s rank correlation of early and late peak mal-
aria incidence was 0.97 (p-value <0.001) for the western
districts combined and 0.91 (p-value <0.001) for the
eastern districts combined. Spearman rank correlations
of early and late peak malaria incidence in the individual
districts were all positive and were statistically significant
(alpha-level of 0.05) in 12 of the 16 districts (Table 3).



Fig. 4 a Seasonal pattern of satellite-derived estimates of rainfall and land surface temperature (LST) averaged over the 2001–2009 periods for the
nine eastern districts. b Seasonal pattern of malaria incidence (per 100,000) in the nine eastern districts. The vertical bars represent one standard
deviation and show variability among districts. The nine eastern districts are referenced in Fig. 1
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For late peak season malaria, we compared two GLM
models including model 1 (without early peak malaria)
and model 2 (with early peak malaria) based on the best
model for each season in order to evaluate the influence
of early peak malaria incidence on subsequent late peak
season epidemics (Table 4). In the western districts,
model 2 was the best model as compared to model 1
across all the seasons including the dry (Akaike weight
= 1.0), early transition (Akaike weight = 0.99) and wet
(Akaike weight = 1.0) seasons. Similarly, in the eastern
districts, model 2 was the best model as compared to
model 1 across the dry (Akaike weight = 1.0), early tran-
sition (Akaike weight = 1.0) and wet (Akaike weight =
1.0) seasons. Additionally, model comparison based on
root mean square error (RMSE) showed that model 2
was the best model in all the three seasons across the
two regions (Fig. 5). Overall, our results showed that the
addition of early peak malaria incidence as an independ-
ent variable in model 2 substantially improved model fit
in the dry, early transition and wet season models for
both regions.

Discussion
In the Amhara region of Ethiopia, early peak malaria
was associated with climate conditions during the pre-
ceding dry, and early transition seasons. Moreover, early
peak malaria incidence was correlated with malaria inci-
dence during the subsequent late peak season, and mal-
aria incidence during the late peak season had stronger
associations with dry, and early transition climate condi-
tions than wet season climate conditions. These results
supported a conceptual model of cascading seasonal ef-
fects in which the influences of climate on mosquito
population dynamics and parasite development are high
at the end of the dry season and the beginning of the
wet season, and the resulting effects on human disease
are then sustained through the wet season and influence
malaria incidence during the subsequent late peak



Table 2 Late peak season malaria model results in the western and eastern districts

Western districts Eastern districts

Season Model rank Variables AIC Akaike weight Variables AIC Akaike weight

Dry 1 LST 568.1 0.34 LST, EVI 634.0 0.64

2 LST, ET 568.5 0.28 LST, ET 635.2 0.35

3 LST, EVI 569.2 0.19 ET 644.2 0.00

4 LST, Rainfall 569.6 0.16 EVI 648.2 0.00

5 EVI 574.2 0.02 LST, Rainfall 649.5 0.00

6 Rainfall 575.0 0.01 LST 656.3 0.00

7 ET 576.5 0.01 Rainfall 662.0 0.00

Early 1 LST 554.7 0.38 LST, EVI 635.9 0.66

2 LST, ET 555.0 0.33 LST, ET 637.2 0.34

3 LST, Rainfall 556.5 0.15 LST 649.2 0.00

4 LST, EVI 556.7 0.14 LST, Rainfall 650.8 0.00

5 ET 564.1 0.00 ET 653.7 0.00

6 EVI 569.0 0.00 EVI 654.2 0.00

7 Rainfall 576.3 0.00 Rainfall 663.4 0.00

Wet 1 Rainfall 572.1 0.56 LST, ET 639.0 0.79

2 LST, Rainfall 573.6 0.26 LST, EVI 642.4 0.14

3 ET 576.2 0.07 LST, Rainfall 645.1 0.04

4 EVI 577.1 0.05 LST 645.9 0.03

5 LST, ET 578.1 0.03 ET 656.5 0.00

6 LST, EVI 579.1 0.02 EVI 660.0 0.00

7 LST 579.3 0.02 Rainfall 664.4 0.00

LST land surface temperature, EVI enhanced vegetation index, ET actual evapotranspiration

Table 1 Early peak season malaria model results in the western and eastern districts

Western districts Eastern districts

Season Model rank Variables AIC Akaike weight Variables AIC Akaike weight

Dry 1 LST, ET 508.6 0.44 ET 552.8 0.58

2 LST, EVI 509.7 0.26 LST, ET 553.6 0.39

3 LST 510.2 0.20 LST, EVI 559.0 0.03

4 LST, Rainfall 512.1 0.08 EVI 560.9 0.01

5 EVI 514.6 0.02 LST, Rainfall 575.3 0.00

6 ET 517.7 0.00 Rainfall 577.3 0.00

7 Rainfall 521.0 0.00 LST 577.9 0.00

Early 1 LST 509.5 0.43 LST, ET 553.0 0.85

2 LST, Rainfall 510.9 0.22 ET 557.5 0.09

3 LST, ET 511.4 0.17 LST, EVI 558.4 0.06

4 LST, EVI 511.5 0.16 EVI 565.3 0.00

5 EVI 516.3 0.01 LST 573.5 0.00

6 ET 518.4 0.01 LST, Rainfall 574.5 0.00

7 Rainfall 521.1 0.00 Rainfall 578.1 0.00

LST land surface temperature, EVI enhanced vegetation index, ET actual evapotranspiration
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Table 3 Summary of Spearman rank correlation coefficients
between early and late peak malaria incidence for the western
and eastern districts

Sub region District Correlation

Eastern districts Artuma Fursi 0.97**

Bati 0.78**

Berehet 0.46

Guba Lafto 0.85**

Lasta 0.76*

Merhabete 0.37

Minjar Shenkora 0.68*

Sekota 0.87*

Worebabu 0.62*

Western districts South Achefer 0.81**

Ankasha Guangusa 0.63*

Dembecha 0.86**

Fagita Lekoma 0.44

Libokemkem 0.77*

Mecha 0.93**

Tach Armacho 0.56

* 0.01 < = p < 0.05
** p < 0.01

Fig. 5 Comparisons of root mean square error (RMSE) for models
using climate (grey) and climate plus early peak malaria incidence
(black) to predict late peak malaria incidence in (a) Westen districts
and (b) Eastern districts in the Amhara Region of Ethiopia. RMSE is in
units of the natural logarithm of malaria incidence (per 1000)
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season. Further, our results showed that temperature
(LST) was the main climatic driver of malaria incidence
in the western districts while moisture variables (rainfall,
EVI, ET) were important drivers in the eastern districts.
A study in Botswana similarly reported the association

of seasonal rainfall (December–February) with malaria
incidence during the peak malaria transmission periods
(March–April) [37]. The results of our study further
suggest that temperature, as well as precipitation, may
be an important constraint on malaria at the beginning
of the rainy season in highland areas such as the
Amhara region. We would expect carryover of malaria
transmission from the early to late peak seasons because
of long-term asymptomatic carriage of Plasmodium par-
asites in the human population [21–23]. These findings
are consistent with earlier work in the western highlands
of Kenya that reported strong influences of precipitation
on early malaria cases prior to the rainy season, and
Table 4 Best-fitting models predicting late peak season malaria in w

Season Model 1 AIC Model 2 AIC

Western districts Dry 568.11 549.09

Early 554.75 543.27

Wet 572.13 544.18

Eastern districts Dry 633.98 593.61

Early 635.95 592.90

Wet 638.99 600.78

model 1 (without early peak malaria incidence), model 2 (with early peak malaria in
subsequent association of early peak cases with late peak
cases after the rainy season [1]. Our results from the
Ethiopian highlands suggest that this type of “ripple ef-
fect” may be a more generalized phenomenon of malaria
epidemiology in regions characterized by seasonal
climates.
Because of these carryover effects, the addition of early

peak malaria incidence as an independent variable in
estern and eastern districts

Delta AIC Akaike weight model 1 Akaike weight model 2

19.02 0.00 1.00

11.48 0.003 0.99

27.95 0.00 1.00

40.37 0.00 1.00

43.05 0.00 1.00

38.21 0.00 1.00

cidence)
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models of late peak season malaria improved fit compared
with models that used climate variables alone. The associ-
ation between early and late peak malaria was consistent
across models using dry, early transition and wet season
climatic factors in both sub-regions. Previous studies also
confirmed that the addition of monthly lagged malaria
cases to time series models improves prediction of malaria
[20, 29]; however, our analysis used malaria data summa-
rized over multiple seasons rather than weekly or monthly
time series. This finding emphasizes the importance of ac-
counting for both preceding climate condition and recent
trends in malaria indicators in modeling and forecasting
efforts. Earlier work has also highlighted the need for inte-
grating early detection (based on disease surveilance) and
early warning (based on environmental monitoring) ap-
proaches to enhance control and elimination strategies for
malaria [20, 30, 38, 39].
In the colder western districts, temperature may limit

the growth and biting rates of anopheline mosquitoes
and increase the duration of sporogonic cycles of the
Plasmodium parasites. In contrast, in the drier eastern
districts, soil moisture can limit availability of potential
breeding sites and thereby limit the development of
anopheline larvae and decrease mosquito abundance.
These underlying relationships are reflected in the sub-
regional models, in which moisture variables had a
stronger relative importance in the eastern districts than
in the western districts. These results were also consist-
ent with a previous study in Ethiopia that reported mini-
mum temperature was significantly associated with
malaria cases in the cold districts, whereas rainfall was
associated with transmission in the hot districts [11].
More generally, multiple studies across Africa and the
globe have found that the relative importance of climatic
drivers varies geographically depending on the local cli-
mate setting, land cover and land use, and hydrology [3,
40, 41]. Thus, our findings support the importance of
spatial stratification and the development of forecasting
approaches that incorporate spatial heterogeneity in the
underlying relationships with climate [40].
Findings from the current study emphasize the import-

ance of understanding both the spatially heterogenous ef-
fects of preceding seasonal climatic factors on malaria as
well as the potential for carryover of malaria throughout
the transmission periods. However, our study has several
limitations which may have influenced the results of our
analysis. District-level intervention data such as long-
lasting insecticide-treated nets, and indoor residual spray-
ing were not available and were not incorporated in our
models. As a result of a large scale national control strat-
egy by the government of Ethiopia, approximately 20
million long-lasting insecticide-treated nets (LLINs) have
been distributed to all malarious areas all over the country
including the Amhara region. Further, the analysis
examined associations of climate variables and malaria in-
cidence at the relatively coarse spatial scale of districts
ranging from approximately 80 to 2700 km2 in size. Yet
we expect that there are also more localized ecological
and land cover determinants may also influence transmis-
sion, and these relationships could be better represented
at a finer sub-district scale analysis. We suggest that future
studies build on these findings and further assess the asso-
ciations of seasonal climate variation and malaria by in-
cluding public health interventions, socioeconomic
factors, irrigation and population mobility data at finer
spatial scales, including kebele (sub-district administrative
unit) and village levels.

Conclusions
Our study found strong associations of malaria incidence
in the early and late peak transmission seasons with pre-
ceding climate conditions in the dry, and early transition
seasons. Temperature had the strongest influence on
malaria incidence in the western districts, whereas mois-
ture variables were more important in the eastern
districts. Additionally, our results confirmed strong cor-
relations between malaria incidence in the early and sub-
sequent late peak transmission seasons, and the addition
of early peak malaria incidence as an independent varia-
blestrongly improved the fit of the late peak season
malaria models. Overall, our findings suggest that associ-
ations between the preceding seasonal climate condi-
tions and subsequent malaria transmission during the
late peak season may be due to the cumulative effects of
climatic factors as well as the potential for parasite car-
riage across multiple seasons. As a result, forecasting
model predictions could be improved by incorporating
both preceding climate condition and malaria incidence,
which suggests the importance of combining early detec-
tion and early warning approaches for malaria epidemic
forecasting [42]. Additionally, the finding of different cli-
matic effects on malaria in the different sub-regions em-
phasizes the the need for spatial stratification and the
development of localized models for malaria forecasting.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AM and MCW designed the study, processed the remote sensing data,
analyzed the data, and drafted the manuscript. BB, AM, and EB selected the
study areas and developed the epidemiological database. All authors read
and approved the final manuscript.

Acknowledgments
We acknowledge the Amhara National Regional State Health Bureau for their
cooperation. We thank Paulos Semuniguse and Hiwot Teka for their efforts in
collecting the malaria surveillance data. We also thank Christopher Merkord
for reviewing an earlier version of this manuscript. This work was funded by
NASA through the NASA Earth and Space Science Fellowship (NESSF)
program (grant number NNX11AP79H), and by the National Institute of
Allergy and Infectious Diseases (grant number R01AI079411).



Midekisa et al. Parasites & Vectors  (2015) 8:339 Page 11 of 11
Author details
1Geospatial Sciences Center of Excellence (GSCE), South Dakota State
University, Brookings, SD, USA. 2Amhara Regional Health Bureau, Bahir Dar,
Ethiopia. 3Health Development and Anti-Malaria Association, Addis Ababa,
Ethiopia.

Received: 28 November 2014 Accepted: 13 June 2015
References
1. Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K. Shifting patterns:

malaria dynamics and rainfall variability in an African highland. Proc Biol Sci.
2008;275(1631):123–32.

2. Patz JA, Olson SH. Malaria risk and temperature: influences from global
climate change and local land use practices. Proc Natl Acad Sci U S A.
2006;103(15):5635–6.

3. Zhou G, Minakawa N, Githeko AK, Yan GY. Association between climate
variability and malaria epidemics in the East African highlands. Proc Natl
Acad Sci U S A. 2004;101(8):2375–80.

4. Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M. Malaria resurgence
in the East African highlands: temperature trends revisited. Proc Natl Acad
Sci U S A. 2006;103(15):5829–34.

5. Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer
temperatures in recent decades in an East African highland. Proc Biol Sci.
2011;278(1712):1661–9.

6. Abeku TA, de Vlas SJ, Borsboom G, Teklehaimanot A, Kebede A, Olana D,
et al. Forecasting malaria incidence from historical morbidity patterns in
epidemic-prone areas of Ethiopia: a simple seasonal adjustment method
performs best. Trop Med Int Health. 2002;7(10):851–7.

7. Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, et al. Climate
change and the resurgence of malaria in the East African highlands. Nature.
2002;415(6874):905–9.

8. Lindsay SW, Martens WJM. Malaria in the African highlands: past, present
and future. Bull World Health Organ. 1998;76(1):33–45.

9. Wimberly MC, Midekisa A, Semuniguse P, Teka H, Henebry GM, Chuang TW,
et al. Spatial synchrony of malaria outbreaks in a highland region of
Ethiopia. Trop Med Int Health. 2012;17(10):1192–201.

10. Patz JA, Hulme M, Rosenzweig C, Mitchell TD, Goldberg RA, Githeko AK,
et al. Climate change–regional warming and malaria resurgence. Nature.
2002;420(6916):627–8.

11. Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J. Weather-based
prediction of Plasmodium falciparum malaria in epidemic-prone regions of
Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms.
Malaria J. 2004;3:41.

12. Lindsay SW, Birley MH. Climate change and malaria transmission. Ann Trop
Med Parasit. 1996;90(6):573–88.

13. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB,
Bjornstad ON. The effect of temperature on Anopheles mosquito population
dynamics and the potential for malaria transmission. PLoS One. 2013;8(11),
e79276.

14. Martens WJM, Niessen LW, Rotmans J, Jetten TH, Mcmichael AJ. Potential
impact of global climate-change on malaria risk. Environ Health Persp.
1995;103(5):458–64.

15. Beier JC. Malaria parasite development in mosquitoes. Annu Rev Entomol.
1998;43:519–43.

16. Smith MW, Macklin MG, Thomas CJ. Hydrological and geomorphological
controls of malaria transmission. Earth-Sci Rev. 2013;116:109–27.

17. Hardy AJ, Gamarra JGP, Cross DE, Macklin MG, Smith MW, Kihonda J, et al.
Habitat hydrology and geomorphology control the distribution of malaria
vector larvae in rural Africa. PLoS One. 2013;8(12), e81931.

18. Shaman J, Day JF. Reproductive phase locking of mosquito populations in
response to rainfall frequency. PLoS One. 2007;2(3), e331.

19. Paaijmans KP, Wandago MO, Githeko AK, Takken W. Unexpected high losses
of Anopheles gambiae larvae due to rainfall. PLoS One. 2007;2(11), e1146.

20. Midekisa A, Senay G, Henebry GM, Semuniguse P, Wimberly MC. Remote
sensing-based time series models for malaria early warning in the highlands
of Ethiopia. Malaria J. 2012;11:165.

21. Males S, Gaye O, Garcia A. Long-term asymptomatic carriage of Plasmodium
falciparum protects from malaria attacks: a prospective study among
Senegalese children. Clin Infect Dis. 2008;46(4):516–22.
22. Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L, et al. A large
proportion of asymptomatic Plasmodium infections with low and sub-
microscopic parasite densities in the low transmission setting of Temotu
Province, Solomon Islands: challenges for malaria diagnostics in an
elimination setting. Malaria J. 2010;9:54.

23. Cucunuba ZM, Guerra AP, Rivera JA, Nicholls RS. Comparison of
asymptomatic Plasmodium spp. infection in two malaria-endemic
Colombian locations. Trans R Soc Trop Med Hyg.
2013;107(2):129–36.

24. Graves PM, Richards FO, Ngondi J, Emerson PM, Shargie EB, Endeshaw T,
et al. Individual, household and environmental risk factors for malaria
infection in Amhara, Oromia and SNNP regions of Ethiopia. Trans R Soc
Trop Med Hyg. 2009;103(12):1211–20.

25. Jima D, Getachew A, Bilak H, Steketee RW, Emerson PM, Graves PM, et al.
Malaria indicator survey 2007, Ethiopia: coverage and use of major malaria
prevention and control interventions. Malaria J. 2010;9:58.

26. Negash K, Kebede A, Medhin A, Argaw D, Babaniyi O, Guintran JO, et al.
Malaria epidemics in the highlands of Ethiopia. East Afr Med J.
2005;82(4):186–92.

27. Animut A, Balkew M, Lindtjorn B. Impact of housing condition on indoor-
biting and indoor-resting Anopheles arabiensis density in a highland area,
central Ethiopia. Malaria J. 2013;12:393.

28. Emerson PM, Ngondi J, Biru E, Graves PM, Ejigsemahu Y, Gebre T, et al.
Integrating an NTD with one of “The Big Three”: combined malaria and
trachoma survey in Amhara region of Ethiopia. PLoS Neglect Trop D.
2008;2(3), e197.

29. Teklehaimanot HD, Schwartz J, Teklehaimanot A, Lipsitch M. Weather-based
prediction of Plasmodium falciparum malaria in epidemic-prone regions of
Ethiopia II. Weather-based prediction systems perform comparably to early
detection systems in identifying times for interventions. Malaria J. 2004;3:44.

30. Wimberly MC, Chuang T-W, Henebry GM, Liu Y, Midekisa A, Semuniguse P, et al.
A computer system for forecasting malaria epidemic risk using remotelysensed
environmental data. In: International Environmental Modelling and Software
Society (iEMSs) Proceedings of the 6th International Congress on Environmental
Modelling and Software; Leipzig, Germany. 2012.

31. Senay GB, Bohms S, Singh RK, Gowda PH, Velpuri NM, Alemu H, et al.
Operational evapotranspiration mapping using remote sensing and weather
datasets: a new parameterization for the SSEB approach. J Am Water Resour
As. 2013;49(3):577–91.

32. Midekisa A, Senay GB, Wimberly MC. Multisensor earth observations to
characterize wetlands and malaria epidemiology in Ethiopia. Water Resour
Res. 2014;50(11):8791–806.

33. Jima D, Wondabeku M, Alemu A, Teferra A, Awel N, Deressa W, et al.
Analysis of malaria surveillance data in Ethiopia: what can be learned from
the Integrated Disease Surveillance and Response System? Malaria J.
2012;11:330.

34. Central Statistical Agency of Ethiopia. Population and housing census report
2007. Addis Ababa, Ethiopia. 2010.

35. Burnham KP, Anderson DR. Model selection and inference: a practical
information–theoretic approach. New York: Springer; 2002.

36. R Development Core Team. R: a language and environment for statistical
computing. Vienna, Austria. 2014.

37. Thomson MC, Mason SJ, Phindela T, Connor SJ. Use of rainfall and sea
surface temperature monitoring for malaria early warning in Botswana. Am
J Trop Med Hyg. 2005;73(1):214–21.

38. Thomson MC, Connor SJ. The development of malaria early warning
systems for Africa. Trends Parasitol. 2001;17(9):438–45.

39. Abeku TA, Hay SI, Ochola S, Langi P, Beard B, de Vlas SJ, et al. Malaria
epidemic early warning and detection in African highlands. Trends Parasitol.
2004;20(9):400–5.

40. Ceccato P, Ghebremeskel T, Jaiteh M, Graves PM, Levy M, Ghebreselassie S,
et al. Malaria stratification, climate, and epidemic early warning in Eritrea.
Am J Trop Med Hyg. 2007;77(6):61–8.

41. Olson SH, Gangnon R, Elguero E, Durieux L, Guegan JF, Foley JA, et al. Links
between climate, malaria, and wetlands in the Amazon basin. Emerg Infect
Dis. 2009;15(4):659–62.

42. Wimberly MC, Henebry GM, Liu Y, Senay B. EPIDEMIA–an EcoHealth
informatics system for integrated forecasting of malaria epidemics. In:
International Environmental Modelling and Software Society (iEMSs)
Proceedings of the 7th International Congress on Environmental Modelling
and Software; San Diego, CA, USA. 2014.


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study area
	Environmental data
	Malaria surveillance data
	Statistical methods

	Results
	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



