
Contents lists available at ScienceDirect

Bone Reports

journal homepage: www.elsevier.com/locate/bonr

Soy protein improves tibial whole-bone and tissue-level biomechanical
properties in ovariectomized and ovary-intact, low-fit female rats

Pamela S. Hintona,⁎, Laura C. Ortinaua, Rebecca K. Dirkesa, Emily L. Shawa,
Matthew W. Richarda, Terese Z. Zidona, Steven L. Brittonb, Lauren G. Kochb,
Victoria J. Vieira-Pottera

a Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
bDepartment of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA

A R T I C L E I N F O

Keywords:
Osteoporosis
Menopause
Soy protein
Ovariectomy
Bone

A B S T R A C T

Background: Osteoporosis and related fractures, decreased physical activity, and metabolic dysfunction are
serious health concerns for postmenopausal women. Soy protein might counter the negative effects of meno-
pause on bone and metabolic health due to the additive or synergistic effects of its bioactive components.
Objective: To evaluate the effects of ovariectomy (OVX) and a soy-protein diet (SOY) on bone outcomes in
female, low-capacity running (LCR) rats selectively bred for low aerobic fitness as a model of menopause.
Methods: At 27weeks of age, LCR rats (N=40) underwent OVX or sham (SHAM) surgery and were randomized
to one of two isocaloric and isonitrogenous plant-protein-based dietary treatments: 1) soy-protein (SOY; soybean
meal); or, 2) control (CON, corn-gluten meal), resulting in four treatment groups. During the 30-week dietary
intervention, animals were provided ad libitum access to food and water; body weight and food intake were
measured weekly. At completion of the 30-week intervention, body composition was measured using EchoMRI;
animals were fasted overnight, euthanized, and blood and hindlimbs collected. Plasma markers of bone for-
mation (osteocalcin, OC; N-terminal propeptide of type I procollagen, P1NP) and resorption (tartrate-resistant
acid phosphatase, TRAP5b; C-terminal telopeptide of type I collagen, CTx) were measured using ELISA. Tibial
trabecular microarchitecture and cortical geometry were evaluated using μCT; and torsional loading to failure
was used to assess cortical biomechanical properties. Advanced glycation end-product (AGE) content of the
femur was measured using a fluorimetric assay, and was expressed relative to collagen content measured by a
colorimetric OH-proline assay. Two-factor ANOVA or ANOVCA was used to test for significant main and in-
teractive effects of ovarian status (OV STAT: OVX vs. SHAM) and DIET (SOY vs. CON); final body weight was
included as a covariate for body-weight-dependent cortical geometry and biomechanical properties.
Results: OVX had significantly greater CTx than SHAM; SOY did not affect bone turnover markers. OVX ad-
versely affected trabecular microarchitecture as evidenced by reduced BV/TV, trabecular thickness (Tb.Th),
trabecular number (Tb.N), and connectivity density (Conn.D), and by increased trabecular separation (Tb.Sp)
and structural model index (SMI). SOY increased BV/TV only in ovary-intact animals. There was no effect of
OVX or SOY on tibial cortical geometry. In SHAM and OVX rats, SOY significantly improved whole-bone strength
and stiffness; SOY also increased tissue-level stiffness and tended to increase tissue-level strength (p=0.067).
There was no effect of OVX or SOY on AGE content.
Conclusion: Soy protein improved cortical bone biomechanical properties in female low-fit rats, regardless of
ovarian hormone status.
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1. Introduction

1.1. Postmenopausal bone loss

The cessation of ovarian hormone production that defines meno-
pause predisposes women to osteoporosis and the metabolic syndrome
(Spritzer and Oppermann, 2013). Ovarian hormone loss has many
consequences, and the loss of estrogen is especially detrimental to bone
(Seeman, 2004; Frost, 1999). Postmenopausal osteoporosis affects 30%
of women (Foundation, I.O, 2015), and a woman aged 50 years has a
40–50% chance of suffering an osteoporotic fracture in her remaining
lifetime (Johnell and Kanis, 2005; van Staa et al., 2001). While total
body bone mineral density (BMD) declines during menopause, the loss
of endogenous estrogen appears to have a greater negative impact on
cancellous bone than on cortical bone (Berning et al., 1996; Seeman,
2013). The hip, vertebrae and epiphysis and metaphysis of long bones
are largely cancellous bone, which in part explains why fragility frac-
tures most frequently occur at these sites (Reeve et al., 1999; Kanis,
1994).

Postmenopausal bone loss has been attributed to increased re-
modeling rate with a disproportionate increase in bone resorption re-
lative to formation (Teitelbaum, 2000), resulting in net bone loss and
increased resorptive bone area, which increase fracture risk (Bala and
Seeman, 2015). Estrogen promotes bone formation by stimulating os-
teoblast differentiation and function and attenuates bone resorption by
reducing osteoclastogenesis and osteoclast activity (Kameda et al.,
1997; Eastell et al., 2016). The effects of estrogen loss on osteoblasts
and osteoclasts are mediated by increased RANK and decreased Wnt
signaling (Eastell et al., 2016; Fujiwara et al., 2016; Dong et al., 2016;
Liang et al., 2014; Zhang et al., 2016).

1.2. Postmenopausal metabolic dysfunction

Menopause often results in weight gain, physiologically unfavorable
changes in body composition, and increased risk of the metabolic
syndrome (Stefanska et al., 2015). Compared with premenopausal
women, postmenopausal women have an increased risk of metabolic
syndrome characteristics (Kwasniewska et al., 2012), including pre-
ferential expansion of intra-abdominal adiposity and the consequent
increased risk of insulin resistance and dyslipidemia (reviewed in
(Stefanska et al., 2015)). Abdominal obesity (Cohen et al., 2013), in-
sulin resistance (Arikan et al., 2012), hyperglycemia (Terzi et al., 2015)
and dyslipidemia (Mandal, 2015) might contribute to the detrimental
changes in bone's structural and material properties (Yamauchi et al.,
2015; Ramos-Junior et al., 2017; Pelton et al., 2012; You et al., 2011)
that result in increased fracture risk postmenopause (Tanaka et al.,
2013; Felson et al., 1993; Zhao et al., 2007). In addition, following
menopause, many women significantly reduce their physical activity
level (Hunter et al., 2001; Duval et al., 2014), which further accelerates
bone loss (Dallanezi et al., 2016) and the onset of metabolic dysfunction
(Duval et al., 2014).

1.3. Soybean consumption and health benefits

According to a survey conducted by the United Soybean Board,
current soy protein consumption in the US is at its highest level, with
78% of US adults reporting consumption of soy foods or beverages
(Board, U.S, 2015) and 38% consuming soy at least once per week
(Board, U.S, 2015). Soy protein has received considerable interest for its
potential ability to improve both bone and metabolic health in post-
menopausal women (Bawa, 2010; Messina, 2016). Epidemiological
evidence suggests that dietary soy intake is positively associated with
bone mineral content (BMC) and BMD (Greendale et al., 2002; Messina,
2010). Consumption of whole soy foods is associated with lower frac-
ture risk (Zhang et al., 2005; Koh et al., 2009) and attenuated rates of
bone loss in prospective, cohort-studies in Asian populations (Ikeda

et al., 2006; Ho et al., 2003) with the greatest beneficial effect in
postmenopausal women (Ikeda et al., 2006). Soy also improves meta-
bolic health outcomes in postmenopausal women (Messina, 2016). In
experimental animals, dietary soy protein intake is associated with re-
duced adiposity, blood glucose and insulin, and with improvements in
lipid profile and insulin sensitivity (Chen et al., 2013; Torre-Villalvazo
et al., 2008; Lavigne et al., 2000). Thus, in addition to its direct effects
on bone, soy protein might also indirectly affect bone by improving
metabolic health risk factors. In particular, because soy improves gly-
cemic control, it might reduce accumulation of AGE in bone and, thus,
enhance bone's material properties. While the effects of soy protein on
bone and on metabolic health indicators have been examined in-
dependently (Messina, 2016), the indirect skeletal benefits of soy pro-
tein ingestion due to improved metabolic health have not been in-
vestigated.

1.4. Reductionist versus whole food approach to soy health research

To date, the trend in soy research has been reductionist, with the
end goal of identifying the bioactive component with health-promoting
effects (Reinwald et al., 2010; Reinwald and Weaver, 2010). However,
soy is a complex food with a multitude of bioactive components that
might have additive, synergistic, or even antagonistic effects (Reinwald
et al., 2010; Reinwald and Weaver, 2010). Studies that investigate soy
as it is regularly consumed as part of a well-balanced Western diet are
needed (Klein et al., 2010). The purpose of the present study was not to
identify the bioactive molecule responsible for the beneficial effects of
soy, nor to isolate the effects of soy isoflavones. Rather, the purpose of
the present study was to compare the effects of soybean meal to those of
corn-gluten meal on bone outcomes in ovariectomized and ovary-intact
LCR rats.

1.5. Study purpose and animal model

Here, we compared the effects of a soybean-meal (SOY) versus a
control corn-gluten-meal diet (CON) on bone outcomes in female,
ovariectomized (OVX) low-capacity-running (LCR) rats, as a rodent
model of human menopause. Specifically, we examined the effects of
SOY on tibial trabecular microarchitecture, cortical geometry and bio-
mechanical properties, plasma markers of bone formation and resorp-
tion, and AGE content. We hypothesized that SOY would improve bone
outcomes relative to CON and that the benefits of SOY would be greater
in OVX animals due to their greater potential to respond.

2. Materials and methods

2.1. Experimental design and animal protocol

A two-by-two factorial experimental design (ovarian status: OVX vs.
SHAM; and diet: SOY vs. CON) was used to test the main and interactive
effects of ovarian status and diet on bone outcomes in skeletally mature
LCR rats as a model of human menopause. Human postmenopausal
bone loss occurs after skeletal maturity, so animal models of menopause
should be in skeletally mature animals. To isolate effects of OVX or
dietary treatments on skeletal outcomes, animals should be at a de-
velopmental stage during which skeletal mass is stable (Kalu, 1984),
which occurs at an age of 6–24months in female rats (Kalu et al.,
1989). LCR rats selectively bred and tested for running capacity at the
University of Michigan as previously described (Koch and Britton,
2007) were received at 25 weeks of age and immediately placed on a
soy-maintenance diet (Harlan Inc., Madison, WI, USA) for two weeks
prior to surgery and group randomization. This paper reports bone
outcomes from a parent longitudinal study investigating the effects of
OVX and SOY on inflammation and adipose tissue (Cross et al., 2017),
in which female LCR rats underwent ovariectomy (OVX) or sham sur-
gery (SHAM) at 27 weeks of age, prior to being fed either a soybean
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meal (SOY) or corn-gluten meal control (CON) diet for 28–30weeks.
Animals were pair-housed in a temperature-controlled environment
(~22 °C) with a 12 h–12 h light/dark cycle maintained throughout the
experimental period. The animal protocol was approved by the In-
stitutional Animal Care and Use Committee at the University of Mis-
souri and the National Institutes of Health animal care guidelines were
strictly followed.

2.2. Animal surgeries

Rats were anesthetized using inhaled isofluorane (2%) and then
bilateral OVX, or SHAM surgery was performed. For OVX, the whole
ovary was removed. For SHAM, the ovary was externalized before being
replaced back inside the body cavity. A single 2.5-cm midline incision
along the dorsal surface was made followed by two bilateral incisions
through the muscle layer to expose the ovaries. Upon completion of
surgery, wound clips were used to close the incision and acetaminophen
(500mg/kg) was administered.

2.3. Animal diets

Following surgery, OVX and SHAM LCR rats were randomly as-
signed to either the SOY or CON diet (Table 1), resulting in four ex-
perimental groups (n=10 per group): SHAM:CON, SHAM:SOY,
OVX:CON, or OVX:SOY. All animals were allowed ad libitum access to
the SOY or CON diet and to water. The SOY and CON diets were iso-
caloric and isonitrogenous with carbohydrate, protein and fat providing
63, 25 and 12% of energy, respectively (Table 1). The protein sources in
the SOY and CON diets were soybean meal (48% protein) and corn-
gluten meal (60% protein), respectively. Soybean meal is produced by
grinding dehulled, oil-extracted whole soybeans (INFOcenter, S.M,
n.d.). In addition to high-quality protein, soybean meal contains
bioactive components (e.g., isoflavones, and soyasaponins). Corn-
gluten meal is a by-product of corn wet milling process and corn starch
production.

2.4. Animal sacrifice and tissue collection

Rats were euthanized between 55 and 57weeks of age. Rats were
euthanized over a span of two weeks due to the time required to per-
form time-consuming assessments (e.g., EchoMRI) the day of sacrifice.

Equivalent numbers of animals from each group were sacrificed each
day so that there were no difference among groups in age at sacrifice.
Prior to sacrifice, body composition was assessed by EchoMRI. After a
5-h fast, animals were euthanized via carbon dioxide and then ex-
sanguinated via cardiac puncture. Blood was collected into a tube
containing K3EDTA, mixed, placed on ice, and then centrifuged at
7000g for 10min at 4 °C to obtain plasma. Plasma was aliquoted and
stored at −80 °C for subsequent analysis of metabolic health outcomes
(glucose and insulin) and markers of bone formation (N-terminal pro-
peptide of type I procollagen, P1NP; and osteoclacin, OC), and bone
resorption (tartrate resistant acid phosphatase isoform 5b, TRAP5b;
and, C-terminal telopeptide of type 1 collagen, CTx). Left tibiae were
collected, cleaned of soft tissue, wrapped in 1× phosphate-buffer saline
(PBS)-soaked gauze, and frozen at −80 °C for subsequent biomecha-
nical testing and determination of trabecular microarchitecture and
cortical geometry. Left femora were similarly removed and frozen for
determination of hydroxyl-proline (OH-proline) and AGE content.

2.5. Plasma glucose, insulin and bone formation and resorption markers

Fasting glucose and insulin concentrations were measured by a
clinical diagnostic service at the University of Missouri (Clinical
Pathology Services, LLC) with an Olympus AU680 automated chemistry
analyzer (Beckman-Coulter, Brea CA). The bone formation markers OC
and P1NP, and the resorption markers CTx and TRAP5b were measured
in plasma using commercially available, rodent-specific ELISA kits
(ImmunoDiagnostic Systems, Fountain Hills, AZ; kit #s: OC (AC-12F1),
P1NP (AC-33F1), CTx (AC-06F1), TRAP5b (SB-TR102)). All assays were
run on the same day to avoid inter-assay variation; all samples were run
in duplicate. The intra-assay CVs were: OC=3.14%, P1NP=6.23%,
CTx=1.79%, and TRAP5b=3.88%. The resorptive index was calcu-
lated as the ratio of CTx to TRAP5b and is an indicator of osteoclast
activity per cell (Rissanen et al., 2008).

2.6. Tibia trabecular microarchitecture and cortical geometry

Micro-computed tomographic (μCT) imaging of the tibia was per-
formed using a high-resolution (32-μm slice increment) imaging system
(Siemens INVEON Micro SPECT/CT (Siemens Medical, Malvern, PA).
The methods used were in accordance with guidelines for the use of
μCT in rodents (Bouxsein et al., 2010). Scans were acquired using an
isotropic voxel size of 31.6 μm and a peak X-ray tube potential of
80 KvP and 500 uA, 600ms exposure at a medium-high magnification
using a bin of 2. In a single rotation, 360 projections were collected at
one-degree increments and calibration images were collected prior to
data acquisition. Images were reconstructed in real-time using a Feld-
kamp cone beam filtered back projection algorithm (2D-FDP). Trabe-
cular bone microarchitecture was evaluated in a region of interest that
began 1mm from the point at which the growth cartilage begins to
transition into the proximal tibia metaphysis and extended 1mm dis-
tally (Supplementary Fig. 1A). Cortical bone cross-sectional geometry
was evaluated in the tibia mid-diaphysis between the crest of the tibia
and the distal edge of the tibiofibular joint in a 0.5-mm region of in-
terest 0.25mm proximal and 0.25mm distal to the mid-slice (Supple-
mentary Fig. 1B). The optimize threshold function was used to delineate
mineralized bone from soft tissue. Segmentation thresholds of 214mg/
cm3 and 570mg/cm3 were used for evaluation of trabecular and cor-
tical bone, respectively. Scans were analyzed using BoneJ software
(Doube et al., 2010), a subset of ImageJ (ver. 1.50d) (NIH public do-
main). The following 3D outcomes for trabecular microarchitecture
were measured: total volume (TV, volume of region of interest), bone
volume (BV, volume of region segmented as bone), bone volume frac-
tion (BV/TV), connectivity density (Conn.D, degree of trabeculae con-
nectivity normalized to TV), structural model index (SMI, indicator of
trabecular structure 0 for parallel plates and 3 for cylindrical rods
(Hildebrand and Ruegsegger, 1997), trabecular number (Tb.N, average

Table 1
Diet ingredients for the soybean meal (SOY) and corn-gluten meal (CON) diets.

Diet ingredients (g/kg diet)a SOYb CONc

Soybean meal (48% protein) 260.0 0
Corn gluten meal (60% protein) 0 188.0
Corn 357.5 388.0
Wheat, soft 230.25 230.5
Wheat, middlings 46.0 73.0
D,L-methionine 1.0 1.0
L-lysine HCl 1.0 8.0
Soybean oil 20.0 16.0
Cellulose 50.60 58.93
Mineral mix 5.0 5.0
Calcium phosphate dibasic 8.0 10.0
Calcium carbonate 13.0 13.0
Sodium chloride, iodized 2.5 2.5
Magnesium oxide 0.5 0.5
Vitamin mix 4.0 4.0
Chloride 0.40 1.57
Red food color 0.25 0

a Diets prepared by Harlan Laboratories (Madison, WI) using food-grade
ingredients.

b SOY diet provided ~590mg genistein+ daidzein (aglycone equivalents)/
kg diet.

c CON diet provided< 15 ppm isoflavones.
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number of trabeculae per unit length calculated as 1/(Tb.Th+Tb.Sp)
(Bruker, n.d.), trabecular thickness (Tb.Th, mean trabecular thickness),
trabecular separation (Tb.Sp, distance between trabeculae), degree of
anisotropy (DA, 1= isotropic and>1= anisotropic). Cortical mor-
phometric outcomes included: tibia length, total cross-sectional area
inside the periosteal envelope (Tt.Ar), marrow area (Ma.Ar), cortical
bone area (Ct.Ar), cortical area fraction (Ct.Ar/Tt.Ar, percent), average
cortical thickness (Ct.Th), and minimum, maximum and polar moments
of inertia (Imin, Imax, K, respectively) were determined.

2.7. Tibial biomechanical properties

Torsional loading to failure was used to assess whole-bone and
tissue-level biomechanical properties of the tibia. The distal and prox-
imal ends of the left tibia were embedded in a steel cylindrical holder
that was then placed in a test fixture of the analyzer (TA-HDi, Stable
Micro Systems, Surrey, UK). A cross-bar was used to prevent the
proximal end of the holder/tibia from rotating about its long axis while
the distal end was rotated about its long axis at a speed of 10mm/s with
a load cell of 5 kg. The machine's control software (Stable Micro
Systems, Surrey, UK) measured cable force (F) in grams and applied
torque (T). The load displacement curve from this analysis is analogous
to the torque-twist curve, which is used along with geometrical prop-
erties determined from μCT (i.e. length of specimen and polar moment
of inertia) to calculate: maximal torque at fracture (Tmax), torsional
stiffness (Ks), the shear modulus of elasticity (G), and the ultimate
tensile strength or maximal shear stress (Su), as previously described
(Hinton et al., 2015).

2.8. Advanced glycation end-product and collagen content

Advanced glycation end-product content of the femur diaphysis was
measured using a fluorimetric assay, and was expressed relative to
hydroxy-proline (OH-proline) content measured by a colorimetric OH-
proline assay. Femurs were flushed of marrow, acid-hydrolyzed for 3 h
at 124 °C with 6 N HCL (Fisher Scientific), dried overnight and recon-
stituted with 0.001 N HCL. The hydrolysate was used for determination
of OH-proline and AGE content. For OH-proline, an OH-proline (Sigma-
Aldrich) standard curve was prepared. Chloramine T and Erlich's re-
agent (Sigma-Aldrich) were used for the colorimetric assay; standards
and samples were read at 558 nm using disposable cuvettes. For AGE
content, a quinine (Fisher) standard curve was prepared; and, fluores-
cence was measured at an excitation wavelength of 360 nm and an
emission wavelength of 460 nm (Tang et al., 2007).

2.9. Statistical analysis

Two-way ANCOVA was used to test for significant main effects
between ovarian status (OVX vs. SHM) and diet (CON vs. SOY), as well
as for interactions between ovarian status and diet. In the case of a
significant interaction, post-hoc comparisons were made using the Least
Significant Difference test to locate the interaction. Because bone size,
BMD, and strength tend to increase with body weight, analyses for
cortical bone outcomes included final body weight as a covariate
(Jepsen et al., 2015). Data are means ± SEM or body-weight-adjusted
means± SEM; and a P-value ≤0.05 was considered statistically sig-
nificant. All analyses were performed by using SPSS software (SPSS/
15.0, SPSS, Chicago, IL, USA).

3. Results

3.1. Animal characteristics

Final body mass, body fat, lean body mass and fasting insulin were
significantly greater in OVX vs. SHM (these data will be published as a
part of the parent study, but are also included in Table 2 to provide
context for the bone outcomes reported here). Uterine mass relative to
body mass was significantly reduced in OVX compared with SHM
(Table 2). SOY significantly reduced body fat (%) and increased lean
mass (%) compared with CON (Table 2). There was a significant main
effect of ovarian status on body mass (OVX=353 ± 10 g;
SHM=308 ± 9 g, p= 0.002, body fat (OVX=24.8 ± 1.4%;
SHM=15.3 ± 1.3%, p < 0.0001, lean body mass (69.8 ± 1.3%;
SHM=78.3 ± 1.2%, p < 0.0001), uterine mass (OVX=0.05 ±
0.05 g/kg BW; SHM=0.36 ± 0.05 g/kg BW, p < 0.0001), and in-
sulin (OVX=2.43 ± 0.34 ng/mL; SHM=1.31 ± 0.33 ng/mL,
p=0.025). There was a significant DIET main effect for body fat
(SOY=16.5 ± 1.3%; CON 23.6±1.4%, p < 0.0001), and lean body
mass (SOY=77.4 ± 1.2%; CON=70.8± 1.3%, p < 0.0001).

3.2. Plasma markers of bone formation and resorption

As shown in Fig. 1, CTx was significantly greater in OVX rats compared
with SHM (OVX=7.5 ± 0.4 ng/mL; SHM=5.4 ± 0.4 ng/mL,
p < 0.0001) and TRAP5b trended lower in OVX (OVX=3.2 ± 0.5 ng/
mL vs. SHM=4.4 ± 0.5 ng/mL, p=0.09). Consequently, the resorptive
index, which reflects osteoclast activity relative to osteoclast number was
also increased by OVX (OVX=2.88 ± 0.28 vs. SHM=1.56 ± 0.28,
p=0.002). OC trended higher in OVX vs. SHM (OVX=136.5 ±
11.0 ng/mL; SHM=110.7 ± 10.4 ng/mL, p=0.09); OVX had no effect
on P1NP (Fig. 1). There was no effect of SOY on markers of plasma bone
formation or resorption (Fig. 1).

Table 2
Characteristics of LCR rats fed a soybean (SOY) or corn gluten meal (CON) diet for 30 weeks following ovariectomy (OVX) or sham (SHAM) surgery.

Outcome SHAM OVX 2-factor ANOVA p-values

CON SOY CON SOY OV STAT DIET INT

Food intake (g/d) 16.2 ± 0.3 16.8 ± 0.3 16.1 ± 0.4 16.7 ± 0.3 0.846 0.810 0.942
Body mass (g) 325 ± 13 291 ± 13 359 ± 15 348 ± 13 0.002 0.101 0.399
Body fat (%) 19.6 ± 1.8 11.0 ± 1.8 27.6 ± 2.1 22.1 ± 1.8 < 0.0001 0.001 0.425
LBM (%) 74.6 ± 1.8 82.1 ± 1.8 67.0 ± 2.0 72.7 ± 1.8 < 0.0001 0.001 0.611
Uterine mass (g/kgBW) 0.29 ± 0.07 0.43 ± 0.07 0.05 ± 0.08 0.06 ± 0.07 < 0.0001 0.298 0.356
Glucose (mg/dL) 190 ± 18 175 ± 18 217 ± 21 182 ± 18 0.373 0.199 0.594
Insulin (ng/mL) 1.46 ± 0.48 1.17 ± 0.45 2.57 ± 0.51 2.28 ± 0.45 0.025 0.539 1.000

Data are means ± SE. SHAM, sham surgery. OVX, ovariectomy. CON, control corn gluten meal diet. SOY, soybean meal diet. OV STAT, ovarian status: OVX vs.
SHAM. DIET, dietary treatment: SOY vs. CON. INT, ovarian status× diet interaction. There was a significant main effect for OV STAT for body mass [(g):
OVX=353 ± 10; SHAM=308 ± 9, p= 0.002], body fat [(%): OVX=24.8 ± 1.4; SHAM=15.3 ± 1.3, p < 0.0001], lean body mass [(%): 69.8 ± 1.3;
SHAM=78.3 ± 1.2, p < 0.0001], uterine mass [(g/kg BW): OVX=0.05 ± 0.05; SHAM=0.36 ± 0.05, p < 0.0001], and insulin [(ng/mL):
OVX=2.43 ± 0.34; SHM=1.31 ± 0.33, p=0.025]. There was a significant DIET main effect for body fat [(%): SOY=16.5 ± 1.3; CON 23.6 ± 1.4,
p < 0.0001], and lean body mass [(%): SOY=77.4 ± 1.2; CON=70.8 ± 1.3, p < 0.0001].
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3.3. Tibial trabecular microarchitecture

OVX adversely affected trabecular microarchitecture (Fig. 2). OVX sig-
nificantly decreased BV/TV, Tb.Th, Tb.N and Conn.D, and significantly
increased Tb.Sp and SMI relative to SHM. There was a significant main
effect of OV STAT on BV/TV (OVX=10.2 ± 2.8%; SHM=44.0 ± 2.6%,
p < 0.0001, Tb.Th (OVX=0.125 ± 0.012mm; SHM=0.200 ±
0.011mm, p < 0.0001), Tb.Sp (OVX=0.622 ± 0.028mm;
SHM=0.297 ± 0.025mm, p < 0.0001), Tb.N (OVX=0.812 ± 0.113
1/mm; SHM=2.076 ± 0.100 1/mm, p < 0.0001), Conn.D
(OVX=13.33 ± 2.23 1/mm3; SHM=35.93 ± 1.98 1/mm3,
p < 0.0001), SMI (OVX=2.43 ± 0.18; SHM=1.24 ± 0.16,
p < 0.0001). There was a significant interaction between DIET and OV-
STAT for BV/TV (p=0.020), such that SOY increased BV/TV only in SHM
rats (Fig. 2).

3.4. Tibial cortical geometry

There was no effect of OVX or SOY on tibia length or cortical geo-
metry (Table 3).

3.5. Tibial biomechanical properties

OVX had no effect on whole-bone or tissue-level biomechanical
properties of cortical bone (Fig. 3). SOY significantly increased whole-
bone strength (SOY=310.0 ± 10.8; CON=275.8 ± 11.9 Nmm,
p=0.050) and stiffness (SOY=645.3 ± 22.9; CON=552.1 ± 25.2
Nmm/rad, p= 0.014). Tissue-level strength (i.e., ultimate tensile
strength, Su) and stiffness (i.e., shear modulus of elasticity, G) were also
increased with SOY: G (SOY=1363 ± 68; CON=1124 ± 75N/
mm2, p=0.031), and Su (SOY=75.7 ± 3.1; CON=66.4 ± 3.5 N/
mm2, p= 0.067).

3.6. AGE content

There were no effects of ovarian status or diet on AGE content re-
lative to collagen in the femur diaphysis (SHM-CON: 2.18 ± 0.29;
SHM-SOY: 1.96 ± 0.29; OVX-CON: 1.90 ± 0.27; OVX-SOY:
1.92 ± 0.27 ng/μg OH-proline).

4. Discussion

4.1. Study summary

We examined the effects of ovarian hormone loss and a soy-protein
diet on bone outcomes in our newly established rodent model of human
menopause, the low running capacity (LCR) rat (Vieira-Potter et al.,
2015). Similar to aging, postmenopausal women, LCR rats have re-
duced physical activity and develop metabolic dysfunction with loss of
ovarian hormones (Vieira-Potter et al., 2015), making them more
translatable to human menopause than other animal models. Moreover,
in the present study, because OVX and the soy dietary intervention were
implemented during a period of stable skeletal mass, the observed ef-
fects of OVX and SOY were not confounded by skeletal changes asso-
ciated with development (Kalu, 1984). In this study, we extended our
previous findings to show that the loss of ovarian hormones via ovar-
iectomy (OVX) adversely affects cancellous bone in the LCR rat model.
Further, we found that the SOY diet improved tibial whole-bone and
tissue-level biomechanical properties of cortical bone in both ovar-
iectomized and ovary-intact rats.

4.2. Metabolic effects of ovariectomy and soy protein diet

As confirmation of our previous work (Vieira-Potter et al., 2015;
Park et al., 2016), loss of ovarian hormones following OVX in LCR rats
resulted in greater adiposity and fasting insulin compared to SHM
controls. OVX decreased uterine weight as expected. Other studies have
shown high expression of ER-α in reproductive tissues (Gallo et al.,
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2005). SOY had no effect on uterine mass, as characteristic of SERMs,
including soy isoflavones, which bind ER-β (Gallo et al., 2005; Pie et al.,
2006). SOY significantly reduced body fat and increased lean mass,
regardless of ovarian hormone status. These findings are in agreement
with others that have shown soy beans (Park et al., 2013) or soy protein
reduces adipose tissue mass in estrogen-replete and -deficient female

rats and male rats (Chen et al., 2013; Torre-Villalvazo et al., 2008;
Lavigne et al., 2000). The beneficial effects of soy protein on body
composition have been attributed to reduced adipocyte size and altered
adipose and hepatic expression of genes involved in lipid metabolism
(Torre-Villalvazo et al., 2008; Frigolet et al., 2011).
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Fig. 2. Trabecular microarchitecture of the tibia: bone volume fraction (BV/TV); trabecular thickness (Tb.Th); trabecular separation (Tb.Sp); connectivity density
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4.3. Effects of ovariectomy and soy protein on markers of bone resorption
and formation

Increased bone turnover is a characteristic feature of post-
menopausal bone loss (Garnero et al., 1996), particularly during the
first five to ten years after cessation of menses (Eastell et al., 2016;
Taguchi et al., 1998; Khosla et al., 2011). The increased remodeling rate
is of clinical significance, as accelerated bone turnover is positively
associated with fracture risk (Riggs and Melton 3rd, 2002). In the
present study, OVX resulted in a marked increase in CTx, and OC also
tended to be increased. Traditionally, OC has been viewed as a bone
formation marker because it is synthesized by osteoblasts. However,
because OC is released from the bone matrix during bone resorption, it
is also an indicator of bone resorption. In the present study, OC and CTx
were significantly and positively correlated (r= 0.431, p= 0.008),
suggesting that some of the OC in circulation resulted from bone

resorption. TRAP5b, which correlates with osteoclast number (Rissanen
et al., 2008), tended to be reduced by OVX. The decrease in TRAP5b is
likely due to the significant loss of cancellous bone where the majority
of osteoclasts reside (Rissanen et al., 2008). Consequent to the changes
in CTx and TRAP5b, the resorptive index was significantly increased by
OVX, as previously reported (Rissanen et al., 2008). The bone formation
marker P1NP was not affected by OVX, suggesting that bone resorption
was increased relative to formation following OVX. Increased bone
remodeling markers are correlated with elevated bone remodeling as-
sessed via histomorphometry in ovariectomized rodents (Lin et al.,
2015) and with decreased BMD (Dong et al., 2016; Park et al., 2013;
Arjmandi et al., 1996; Zhang et al., 2007).

Contrary to our hypothesis, SOY had no impact on plasma markers
of bone turnover. The few studies that examined the effects of soy on
bone turnover markers in ovariectomized rats reported mixed results.
Soybeans increased serum OC and decreased urinary DPD in rats (Park

Table 3
Tibial cortical geometry of LCR rats fed a soybean meal (SOY) or corn gluten meal (CON) diet for 30 weeks following ovariectomy (OVX) or sham (SHAM) surgery.

Outcome SHAM OVX 2-factor ANOVA p-values

CON SOY CON SOY OV STAT DIET INT

Length (mm) 39.2 ± 0.6 39.5 ± 0.7 38.1 ± 0.7 38.9 ± 0.6 0.264 0.412 0.656
Tt.Ar (mm2) 5.33 ± 0.14 5.59 ± 0.16 5.35 ± 0.17 5.29 ± 0.14 0.394 0.527 0.296
Ma.Ar (mm2) 1.16 ± 0.04 1.17 ± 0.05 1.16 ± 0.05 1.28 ± 0.04 0.254 0.141 0.172
Ct.Ar (mm2) 4.23 ± 0.04 4.23 ± 0.05 4.23 ± 0.05 4.11 ± 0.04 0.254 0.141 0.172
Ct.Th (mm) 0.77 ± 0.02 0.78 ± 0.02 0.79 ± 0.02 0.75 ± 0.02 0.689 0.476 0.181
Tt.Ar/L (mm2/mm) 7.41 ± 0.19 7.13 ± 0.22 7.16 ± 0.23 7.39 ± 0.20 0.985 0.911 0.212
Imax (mm) 2.54 ± 0.16 2.82 ± 0.18 2.83 ± 0.19 2.57 ± 0.17 0.951 0.951 0.122
Imin (mm) 1.95 ± 0.10 2.08 ± 0.11 1.82 ± 0.12 1.79 ± 0.10 0.085 0.618 0.442
K (mm4) 6.52 ± 0.48 6.48 ± 0.47 6.59 ± 0.48 6.39 ± 0.43 0.975 0.795 0.850

Data are adjusted means ± SE with final body mass (length, Tt.Ar, Tt.Ar/L, Imax, Imin, K) or with final body mass and Tt.Ar (Ma.Ar and Ct.Ar) as covariate(s) in the
model. SHAM, sham surgery. OVX, ovariectomy. CON, control corn gluten meal diet. SOY, soybean meal diet. OV STAT, ovarian status: OVX vs. SHAM. DIET, dietary
treatment: SOY vs. CON. INT, ovarian status× diet interaction.

Fig. 3. Biomechanical properties of the tibial diaphysis: maximum torque (Tmax); torsional stiffness (Ks); ultimate tensile strength (Su); and, shear modulus of
elasticity (G) in SHAM-CON, SHAM-SOY, OVX-CON, and OVX-SOY LCR rats at sacrifice. Data are means± SEM adjusted with final body weight as a covariate
(n=8–10 animals per group). There was a significant main effect for DIET on Tmax [(Nmm): SOY=310.0 ± 10.8a; CON=275.8 ± 11.9b, p= 0.050], Ks
[(Nmm/rad): SOY=645.3 ± 22.9a; CON=552.1 ± 25.2b, p= 0.014], G [(N/mm2): SOY=1363 ± 68a; CON=1124 ± 75b, p= 0.031], and Su [(N/mm2):
SOY=75.7 ± 3.1a; CON=66.4 ± 3.5b, p= 0.067].

P.S. Hinton et al. Bone Reports 8 (2018) 244–254

250



et al., 2013), while in another study of ovariectomized rats, black or
yellow soybeans decreased OC and DPD (Byun et al., 2010). Similar to
results of the present study, soy protein with or without high levels of
isoflavones did not affect serum or urinary markers of bone formation
or resorption in ovariectomized rats (Arjmandi et al., 1996; Arjmandi
et al., 1998). These discrepant results might be due to the limitations of
circulating bone turnover markers, which do not distinguish between
skeletal sites or cortical versus cancellous bone (Marcus et al., 2013).

4.4. Effects of ovariectomy on tibial trabecular microarchitecture and
cortical biomechanical properties

OVX negatively affected trabecular bone volume and micro-
architecture of the proximal tibia, but did not impact cortical geometry
or biomechanical properties of the tibial diaphysis. Specifically, in the
present study, OVX reduced BV/TV, Tb.Th, Tb.N, and Conn.D, and in-
creased Tb.Sp. OVX also resulted in more rod-like trabeculae (i.e., in-
creased SMI). Others have reported similar deterioration of trabecular
microarchitecture in the tibia, femur, or lumbar vertebrae following
OVX (Goulet et al., 2011; Parfitt, 1992; Bourrin et al., 2002; Maimoun
et al., 2012; Hu et al., 2015; Dai et al., 2008; Ahn et al., 2014; Li et al.,
2011; Bagi et al., 1996; Cai et al., 2005; Blum et al., 2003; Jee and Yao,
2001), and BV/TV of the proximal tibia was significantly reduced in
LCR rats 4 weeks after OVX relative to LCR rats that underwent sham
surgery (Goulet et al., 2011). Tb.N reflects osteoclast activity (Parfitt,
1992; Bourrin et al., 2002); therefore, we conclude that the loss of
trabeculae observed in the present study was likely mediated by in-
creased osteoclast activity, which is consistent with the significant in-
crease in CTx in OVX animals. The decrease in cancellous bone strength
observed following ovariectomy has been attributed to the loss of tra-
becular bone mass and deterioration of trabecular microarchitecture
(Maimoun et al., 2012; Hu et al., 2015; Dai et al., 2008; Ahn et al.,
2014; Li et al., 2011; Bagi et al., 1996), rather than to changes in na-
nomechanical (material) properties (Hu et al., 2015). The deleterious
changes in trabecular microarchitecture are clinically significant, as
fragility fractures associated with early phase of menopausal bone loss
usually occur in cancellous bone (Eastell et al., 2016).

In contrast to the marked effects of ovarian hormone loss observed
in cancellous bone, OVX had no effect on cortical cross-sectional geo-
metry at the tibial mid-diaphysis. Others have also reported that OVX
does not affect cortical area of long bone diaphyses (Zhang et al., 2007;
Cai et al., 2005; Blum et al., 2003). This might be because cortical bone
loss following ovariectomy is slow to develop (Jee and Yao, 2001). The
differential pattern of bone loss is consistent with that observed in
human menopause, which is characterized by rapid initial phase of
cancellous bone loss, followed by slower decline in cortical bone
(Eastell et al., 2016). The discrepant expression of ER-α and ER-β in
cancellous versus cortical bone (Bord et al., 2001) might explain this
different pattern bone loss. Osteocytes, osteoclasts, and osteoblasts in
cortical bone express ER-α, while both ER-α and ER-β are expressed in
cancellous bone (Khosla et al., 2011; Bord et al., 2001). Because ER-α
and ER-β heterodimers have lower affinity for estradiol, cancellous
bone is less sensitive to estrogen and its actions, i.e., greater estrogen
concentrations are required to elicit receptor binding. Consequently,
cancellous bone is more readily affected by loss of ovarian hormone
production at menopause. In addition, OVX is associated with de-
creased ER-α protein expression in bone (Li et al., 2011), further ex-
acerbating the decrease in endogenous estrogen.

4.5. Effects of soy protein on trabecular microarchitecture

In the present study, ovary-intact animals fed the SOY diet had
significantly greater trabecular bone volume compared to those fed the
CON diet. Although data on the effects of soy protein in non-osteporosis
models are sparse, others have also reported that a diet containing soy
protein isolate favorably affects cancellous bone. Soy protein isolate

increased BV/TV in male mice (Yan et al., 2015) and trabecular bone
mineral density in young, ovary-intact female rats (Chen et al., 2008).
In the OVX rats, the SOY diet did not preserve trabecular micro-
architecture, similar to previous reports that a soy protein diet with or
without added isoflavones did not protect against deleterious changes
in BV/TV, Tb.Th, Tb.N, Tb.Sp, SMI or Conn.D following ovariectomy in
rats (Cai et al., 2005; Devareddy et al., 2006). These results suggest that
the skeletal effects of soy protein are dependent on endogenous es-
trogen status.

4.6. Effects of soy protein on cortical biomechanical properties

In the present study, cortical geometry was unaffected by SOY.
Despite this, rats fed SOY had greater whole-bone strength (Tmax),
stiffness (Ks), and tissue-level stiffness (G) than rats fed CON, regardless
of ovarian hormone status. The soy isoflavone genistein increased
cortical whole-bone strength and stiffness in osteoporotic OVX rats
(Azboy et al., 2016; Bitto et al., 2008). Cortical bone strength is de-
termined by bone quantity, cross-sectional geometry, and whole-cortex
tissue composition (Donnelly, 2011). Therefore, because cortical geo-
metry was not altered by SOY, the effects of SOY on whole-bone
strength and stiffness were likely due to changes in these parameters at
the tissue-level, which are determined by characteristics of the protein
matrix and mineral.

Bone is a composite biomaterial, consisting of a mineralized protein
matrix, which is 90% type I collagen and 10% non-collagenous pro-
teins, such as osteocalcin and osteopontin (Bala and Seeman, 2015).
Enzymatic intermolecular crosslinking of lysine residues by lysyl oxi-
dase within and between collagen fibrils stabilizes collagen and im-
proves its mechanical properties (Bala and Seeman, 2015). Both the
total number of enzymatic crosslinks and the ratio of immature to
mature enzymatic crosslinks affect mechanical properties. Non-enzy-
matic crosslinking occurs via a series of reactions, the initial reaction
occurring between an aldehyde group of a sugar (e.g. glucose) and the
ε-amino group of hydroxylysine or lysine. Ultimately, non-enzymatic
crosslinks, which are known as advanced glycation end-products
(AGEs), form within and across collagen fibers. AGEs accumulate in
bone with age and disease, negatively affecting biomechanical prop-
erties (Karim et al., 2013). AGE accumulation in diabetic or aging bone
increases brittleness, crack propagation, and fracture propensity
(Osterhoff et al., 2016). We hypothesized that SOY would reduce AGE
content of bone and thus improve tissue-level biomechanical properties.
SOY had no effect on AGE content and therefore does not explain the
effect of SOY on cortical tissue-level biomechanical properties. Like-
wise, contrary to our hypothesis, OVX had no effect on AGE content in
the femoral diaphysis. This might be because OVX rats did not exhibit
hyperglycemia compared to ovary intact animals. It is worth noting,
however, that cancellous bone has a much higher AGE content than
cortical bone (Karim et al., 2013; Michalsky et al., 1993), and we might
have detected effects of ovarian status or diet in cancellous bone.

The chemical properties and structure of the bone mineral phase,
which is poorly crystallized non-stoichiometric apatite, influence the
tissue-level mechanical properties. Mineralization increases strength in
compression and stiffness in tension, but dramatically reduces tough-
ness. As crystal size increases, the surface area of interaction with the
collagen increases limiting fibril deformation. Assessment of mineral
composition and crystal structure require sophisticated techniques
(e.g., Fourier transform infrared spectroscopy, backscatter electron
microscopy, scanning small- and wide-angle X-ray scattering. Thus,
although we know that soy protein increases bone Ca content (Gaffney-
Stomberg et al., 2014; Figard et al., 2006) and whole bone BMC/BMD,
the effects of soy protein on mineral composition or crystal structure
have not been investigated to date. Cortical bone has a greater pro-
portion of ER-α (Eastell et al., 2016) and soy isoflavones bind ER-β with
greater affinity (Kuiper et al., 1998). Therefore, we hypothesize that the
benefits of soy protein on tissue-level strength and stiffness are due to
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changes in the collagen matrix and its mineralization, independent of
ER-mediated effects.

4.7. Mechanisms by which soy protein exerts beneficial effects

We hypothesized that SOY would increase plasma markers of bone
formation, decrease plasma markers of bone resorption, and improve
trabecular microarchitecture, cortical geometry and biomechanical
properties of the tibia, particularly in the OVX rats due to their greater
potential to respond to the soy phytoestrogens because of the loss of
ovarian hormone production. However, soy protein had equivalent
beneficial effects on cortical whole-bone and tissue-level biomechanical
properties in both ovariectomized and ovary-intact LCR rats, and fa-
vorably impacted trabecular bone volume only in ovary-intact rats.
Since improvements in cortical biomechanical properties occurred with
SOY in both OVX and ovary-intact rats, soy isoflavones do not appear to
be acting as “estrogen replacements” (i.e., acting via ER-α). Instead, ER-
α-independent mechanisms are likely responsible for the improvements
we observed with SOY.

We hypothesize that the beneficial effects of soy protein on can-
cellous bone observed in the present study might be mediated via soy
isoflavone binding to ER-β, as this isoform of the ER is expressed in
cancellous, but not cortical bone (Bord et al., 2001). There is both in
vivo and in vitro evidence that soy isoflavones alter expression of genes
encoding proteins involved in osteoclast and osteoblast differentiation,
proliferation, and activity. In vivo, isoflavones increase osteoblast dif-
ferentiation and proliferation by activating Smad(s) (Zhang et al.,
2012), decrease RANKL levels (Yu et al., 2015), and increase osteoblast
OPG expression (Yu et al., 2015). Soy isoflavones also increase ex-
pression of β-catenin and Wnts 3a and 7b in primary osteoblasts (Yu
et al., 2015). Interestingly, osteoblasts have a membrane ER that binds
daidzein and is structurally similar to ER-β, but not ER-α (de Wilde
et al., 2006), which is expected as isoflavones preferentially bind ER-β.
Physiologic concentrations of daidzein activate ERK1/2 and induce
phosphorylation of transcription factors for early genes controlling os-
teoblast differentiation and proliferation (de Wilde et al., 2006). In vitro
studies show that both soy protein matrix and soy isoflavones are re-
quired for optimal ER activity (Rando et al., 2009).

Other possible mechanisms include the relative high concentration
of arginine in soy protein. Arginine is a GH secretagogue (Ghigo et al.,
2001) and therefore increases GH and IGF-I in vivo (Isidori et al., 1981).
Both GH and IGF-I are osteogenic with some of the effects of GH
mediated via IGF-I (Yakar et al., 2002; Locatelli and Bianchi, 2014;
Ohlsson et al., 1998). In addition, the relatively high levels of arginine
and lysine compared to animal-based proteins, might increase calcium
absorption (Bihuniak et al., 2014). Soy protein increases expression of
intestinal calcium transporters, specifically TRPV6, in rats (Gaffney-
Stomberg et al., 2014). Thus, increased intestinal calcium absorption
following soy consumption might explain the beneficial effects of soy
independent of ovarian hormone status. In recent years, there has been
growing interest in the effects of β-conglycinin, the primary storage
protein in soy beans, on bone health (Akao et al., 2015). Deamidated
soybean β-conglycinin suppresses parathyroid hormone (PTH) secre-
tion and reduces bone resorption in OVX rats (Akao et al., 2015). Lastly,
oxidative stress, leading to increased inflammation and bone resorp-
tion, might play a causal role in age- and menopause-associated bone
loss (Zhang et al., 2011). Soybean flour or soy isoflavones increase
antioxidant defenses (Razzeto et al., 2015) and reduce oxidative stress
(Sankar et al., 2015). Therefore, it is possible that the beneficial skeletal
effects of soy protein are due to the anti-oxidant properties of iso-
flavones and peptides (Ma et al., 2016; Agyei, 2015).

4.8. Study strengths and limitations

A strength of the present study is the applicability of the OVX LCR
rat model to human menopause, as OVX provides insight into some of

the menopause-associated changes such as increased adiposity and in-
sulin resistance (IR) (Rogers et al., 2009; Walton et al., 1993). In ad-
dition, the long-term feeding of SOY and CON (30 weeks) allowed us to
examine the effects of our dietary intervention well beyond the initial
phase of rapid bone loss and increased turnover that follows OVX (Kalu
et al., 1989). The use of torsional loading to test cortical biomechanical
properties of the tibia was also a strength of the present study because it
allowed us to assess both whole-bone and tissue-level biomechanical
properties, both of which are important determinants of overall bone
strength and fracture risk. However, the present study is not without
limitations. While OVX is often used to simulate human menopause, the
abrupt decline in ovarian hormones is not representative of the more
gradual decline that occurs with human menopause. This sudden de-
cline in ovarian hormones following OVX may make clinical translation
of the results more challenging, as extended studies in animals have
demonstrated increased bone mineral content, bone area, and body
weight, which is not compatible with the human condition (Chen et al.,
1995; Bagi et al., 1993; Thompson et al., 1995). In addition, since a
large number of osteoporosis-related fractures occur at the ends of long
bones, vertebrae or hip, future studies should also test the biomecha-
nical properties of trabecular bone (e.g., vertebrae via compression
loading) following OVX and SOY.

4.9. Conclusions

In summary, the present study highlights that a soy-protein-based
diet improves tibia cortical biomechanical properties in female low-fit
rats, regardless of ovarian hormone status. These results support our
hypothesis that a soy-protein-based diet might improve metabolic and
bone outcomes in both menopausal and premenopausal women.
Moreover, our results support the benefits of dietary soy protein, rather
than the isolated, individual components.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bonr.2018.05.002.
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