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Current research in brain computer interface (BCI) technology is advancing beyond
preclinical studies, with trials beginning in human patients. To date, these trials
have been carried out with several different types of recording interfaces. The
success of these devices has varied widely, but different factors such as the level
of invasiveness, timescale of recorded information, and ability to maintain stable
functionality of the device over a long period of time all must be considered
in addition to accuracy in decoding intent when assessing the most practical
type of device moving forward. Here, we discuss various approaches to BCIs,
distinguishing between devices focusing on control of operations extrinsic to the
subject (e.g., prosthetic limbs, computer cursors) and those focusing on control
of operations intrinsic to the brain (e.g., using stimulation or external feedback),
including closed-loop or adaptive devices. In this discussion, we consider the current
challenges facing the translation of various types of BCI technology to eventual human
application.

Keywords: brain-computer interface (BCI), microelectrodes, electrocorticography (ECoG),
electroencephalography (EEG), closed-loop neuroprosthetic devices, neural prostheses

INTRODUCTION

Brain-computer interfaces (BCIs) and their applications for treatment of nervous system damage
have shown enormous progress as functional restoration tools in pre-clinical studies. In general,
most BCIs are designed to bypass damaged structures and fiber tracts. BCIs range from common
devices, such as cochlear implants that use externally recorded sound to directly stimulate auditory
nerve fibers, to devices that derive control signals from cortical activity, allowing individuals
with paresis to operate a prosthetic device. Other BCIs are designed to aid in acute rehabilitation
training sessions. Regardless of the type, the major purpose of BCIs is to improve the quality of life
for the patients who use them.

Damage to the nervous system can result in profound sensory, motor, and cognitive
deficits that strongly impact day-to-day functioning of afflicted individuals. The type and
extent of these deficits are dependent upon the location and extent of the injury. Injuries
affecting motor cortex, such as might occur after a focal traumatic brain injury or stroke, can
lead to impaired use of digits, limbs, or whole regions of the body due to loss of descending
corticospinal neurons or disruption of sensory-motor integration. Spinal cord injury impacts
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communication of neural signals at the site of injury, leading
to motor, sensory and autonomic deficits. For these types of
injuries, there are no effective post-acute restorative treatments.
Research in stem cell therapy to regenerate damaged neurons
that could restore damaged pathways is currently underway
(Gavins and Smith, 2015; Hosseini et al., 2015; Sharma et al.,
2015; Sullivan et al., 2015), but is likely years from fruition.
Recovery after central nervous system (CNS) injury is thought
to manifest itself through neuroplastic mechanisms, which have
been shown to be aided through rehabilitative therapy (Nudo
et al., 1996; Nudo and Friel, 1999). Dramatic recovery from
motor deficits has occurred in some cases (Bajaj et al., 2015;
Warnecke et al., 2015), but recovery from neurological injuries
rarely results in a full restitution of function. Effectiveness
of any therapy is constrained by the type and extent of
injury, efficiency of neuroplastic mechanisms involved, and
type of intervention. BCIs offer a pathway, in conjunction
with rehabilitative therapy, for promoting restitution
of function.

Current technology available for clinical populations
ranges from simple devices that stabilize a shaking hand
(Popović Maneski et al., 2011; Grimaldi et al., 2013), to
devices that augment the ability of a patient with locked-in
syndrome to communicate with others (Holz et al., 2015).
While these technologies offer promise for recovery from or
for relief of symptoms of CNS injury, there are still many
challenges in the integration of BCIs into effective prosthetic
devices. These challenges include adequate spatiotemporal
resolution in interpreting information recorded from the
brain for naturalistic control, decoding a sufficient number
of degrees of freedom to maintain natural movements,
integration of feedback mechanisms, easing the technological
support needed for integration of the BCI and reducing
the invasiveness of components while maintaining the
longevity of signal acquisition. Additionally, a number of
recent studies have focused on devices contained entirely
within the CNS that create artificial links between related
areas. Here, we focus on the advantages and disadvantages
of various approaches to interfacing BCI devices with the
nervous system, based on results from both pre-clinical
and clinical studies. We highlight the challenges associated
with the implementation of high fidelity BCI devices to
a clinical setting, possible methods for overcoming these
challenges, and the distinction between devices that control
extrinsic operations and those that control operations intrinsic
to the CNS.

BCI OPERATING MODES

When considering potential clinical interventions using neural
prostheses, a convenient way of classifying devices is based
on whether they control extrinsic or intrinsic operations. In
this review, BCI devices that operate primarily by detection
of electrical signals from the CNS are mainly considered, as
techniques for recording other measures of CNS information
(i.e., magnetic, metabolic) are typically unwieldy for chronic use
or cost prohibitive.

Control of Extrinsic Operations
Neural prostheses are classified as controlling extrinsic
operations when the device contains a decoder that records
CNS signals in real-time, modifies those signals via a control
algorithm and outputs the translated and modified signal to a
body-external device such as a prosthetic or robotic limb or a
computer cursor. In this way the individual gains control over
an artificial device that has the possibility to be incorporated into
the body schema.

A limitation of devices controlling extrinsic operations is that
accuracy in decoding movement intention is typically gained
through an increase in the number of recording channels
(Carmena et al., 2003); however, increasing recording channels
brings the challenge of increasing channel density in a particular
location of interest. Depending on the type of information
being recorded and the decoding strategy, the increase in
computational burden and power required from adding greater
numbers of channels may also become nontrivial. Likewise,
increasing the invasiveness of the electrodes can lead to increases
in decoding accuracy, but at the cost of increased surgical
risk and potential immune response (Ward et al., 2009).
Additionally, chronic recordings are prone to drift in intent
decoding, making repeated calibration necessary. Although these
limitations prevent the widespread use of these BCI systems in
clinical settings, studies to date are encouraging and represent
tangible evidence of the type of functional restoration that
can be achieved using BCIs. Here, BCIs controlling extrinsic
operations are classified into three different categories based
on the electrode interface used for signal acquisition from the
CNS (Figure 1). These include two invasive electrode-CNS
interface approaches [microelectrode array (MEA) recording,
electrocorticography (ECoG)] and one non-invasive electrode-
CNS interface (electroencephalography, EEG).

Microelectrode Array Recording
MEA recording, used in animal models for decades, represents
the most invasive BCI approach, as penetrating microelectrodes
are placed within the brain structure itself, typically within
the gray matter of cerebral cortex. Though the technology was
initially developed in animal models, a relatively small number of
human studies have now been conducted with implanted MEAs.
Microelectrode probes can range from a single-shank electrode
to arrays consisting of tens of thousands of recording sites.
The specific pattern and distribution of sites allows for dense
population recordings throughout a single or multiple regions of
interest. MEAs allow the highest spatial and temporal resolution
of any type of neurophysiological recording system used in BCIs
(Obien et al., 2015), but at the expense of spatial coverage at
the site of recording. The use of MEAs allows for detection of
the extracellular electric field changes reflecting the membrane
potential of the individual neurons closest to the tip of each
microelectrode.

While the voltage changes are quite small, neuronal action
potentials, or spikes, can be detected within the electrical signal
since rapid changes in membrane potential associated with
the opening and closing of membrane ion channels have a
characteristic temporal pattern. Due to their rapid onset and
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FIGURE 1 | The resolution of each type of recording interface, as well as a selection of recent human studies associated with each interface. Red dots
represent the relative extent of recording interface placement, while inserts demonstrate the scale and possible arrangement of electrodes at that site.

offset, the resulting detected spikes can be effectively reduced
to point processes using voltage thresholding, simplifying the
design of decoding algorithms, especially when large MEAs
are employed. Further analysis using automated or semi-
automated clustering algorithms or manual feature detection
allows classification of multiple individual neurons recorded
from a given recording site, increasing the accuracy of decoding

(Todorova et al., 2014). It should, however, be noted that
the process of detecting spikes introduces another source of
error, with some techniques sacrificing accuracy for the sake of
computational expedience (Rey et al., 2015). Depending on the
information that needs to be obtained from spike trains, these
errors can have a nontrivial significance (Pazienti and Grün,
2006).
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Once spikes have been detected and multiple neuronal spikes
discriminated (if desired), typically the rate of firing (i.e., spike
rate) of the individual neuronal components is calculated. Both
accuracy and ease of computational processing are dependent
upon the combined choice of a spike rate estimator and a spike
rate decoder, with simpler methods allowing computations to
be performed on a millisecond time scale and more complex,
probabilistic models limiting computations to seconds or even
minutes (Cunningham et al., 2009). Based on these temporal
limitations, the practical need for real-time adaptation when
implementing a BCI makes some of the simpler methods more
attractive (Cunningham et al., 2011). To this end, it has been
demonstrated that the use of a closed-loop, adaptive decoder can
also lead to increased simultaneous neural adaption, resulting in
improved skill retention (Orsborn et al., 2014).

Preclinical BCI research in animal models has typically
utilized implanted MEAs chronically embedded in the cortex for
decoding movement intention. The rationale for this approach
dates to the 1960s when Evarts found that neurons in the
motor cortex of non-human primates (NHPs) altered their firing
patterns immediately prior to the onset of movement (Evarts,
1966) and was later strengthened when Fetz (1969) demonstrated
that neuronal firing rate could be volitionally controlled. More
recent studies in NHPs demonstrate a consistent ability to decode
signals to move transiently paralyzed limbs (Ethier et al., 2012), a
simulated or robotic limb (Wessberg et al., 2000; Carmena et al.,
2003; Velliste et al., 2008; Willett et al., 2013), or a cursor on a
screen (Taylor et al., 2002; Wu et al., 2004; Nuyujukian et al.,
2014), and even predict hand orientation with extremely high
accuracy (Peng et al., 2014).

MEAs have proven resilient in producing reliable signals from
a single area over periods of up to a year (Flint et al., 2013).
However, longevity of single unit recordings with indwelling
electrodes has been one of the major limitations of this approach.
For example, studies have shown a decay in signal strength
over the course of 100 days (Rousche and Normann, 1999),
and large performance variability between trials and type of
electrode used (Ward et al., 2009). Furthermore, information
generated by decoders has been shown to diminish over extended
implantations (Nuyujukian et al., 2014). This somewhat variable,
and arguably short, lifetime limit for recording robust signals
from implanted MEAs still needs to be addressed by future
improvements in MEA materials technology. While estimates of
the number of neurons needed to decode arm movements off-
line range between 150 neurons with serial single unit recordings
and 600 units from MEAs (Georgopoulos et al., 1986), accurate
on-line BCI control is possible with far fewer recorded units
due to the closed-loop adaptation that occurs when learning
BCI skills (Taylor et al., 2002; Carmena et al., 2003). This
phenomenon could be a key to improving long-term patency of
indwelling MEAs. If it is possible to use only a subset of sites to
generate information for decoding, then as those sites slowly lose
functionality it may be possible to use redundant sites, allowing
for an extended prosthetic lifespan.

Although MEA studies in humans are limited due to their
invasive nature, recent results indicate the advantages of using
such high-resolution paradigms. Aflalo et al. (2015) found that

the decoding of spike trains associated with motor imagery in
a patient chronically implanted with MEAs embedded in the
posterior parietal cortex resulted in the smooth movement of
a robotic limb with 17 degrees-of-freedom. Two 96-channel
MEAs were embedded for 21 months with no signs of adverse
effects. The subject was asked to imagine reaching toward a
specific goal, and channels that demonstrated preferential firing
when the subject imagined achieving the goal were discriminated
from neurons tuned to trajectory. When these goal-tuned units
were used as tuners for accomplishing a specific task, decoding
accuracy was higher for a given number of units. It should be
noted, however, that the goal-tuned units changed over time,
indicating that an adaptive decoder would be important for this
sort of prosthetic device to be implemented in the future for long-
term implantations. This problem of varying tuning is also seen
in recordings from units in motor cortex (Perge et al., 2013).

These changes in tuning were most likely due to physiological
changes in the neuronal firing patterns as a result of
adaptation to the decoder. As the patient learns to operate
the BCI, functional reorganization occurs in multiple brain
areas, resulting from closed-loop feedback and adaptation to
performing the new BCI-related task, and presumably allowing
a smaller number of units to function in tuning the device
(Taylor et al., 2002; Carmena et al., 2003). The ability to produce
a smooth movement based on the decoding of a goal-tuned
unit represents a significant divergence from previous studies
involving chronically implanted MEAs in human patients. These
studies used motor cortex (Hochberg et al., 2006, 2012; Collinger
et al., 2013) as an area for control, and were quite successful;
however, a noted limitation was that movements produced using
these systems were slower and somewhat inflexible (Hochberg
et al., 2012) when compared to natural reaching movements.
Thus, the ability to use a goal-tuned unit in posterior parietal
cortex as a control source for decoding intent using motor
imagery could serve as an informative alternative to decoders
focused on motor cortex.

There are several additional challenges related to using MEAs
in BCIs for clinical populations. The insertion of MEAs into
cortical tissue is an invasive procedure requiring a craniotomy
and resection of the dura. The surgical procedure introduces a
possible pathway for infection. MEA implantation can lead to
small-scale tissue damage that increases with a greater number of
implants. Glial scarring occurs at the insertion site, and is thought
to be a major factor reducing the longevity of useable signals that
can be recorded in a chronically implanted individual. Another
major problem of chronically implanted MEAs is micro-motion,
which causes the formation of scar tissue, leading to a decrease in
the quality of recordings over time (Williams et al., 2007; Ersen
et al., 2015). Current materials research is focusing on changing
various properties affecting the stiffness of the microelectrode, in
the hope that scar tissue formation caused by micro-motion will
be minimized (De Faveri et al., 2014). Obien et al. (2015) provide
a comprehensive review of the different types of MEAs currently
in use. The viability of MEAs in clinical use may ultimately
depend upon further advances in materials research (McCarthy
et al., 2011; Tooker et al., 2012; Felix et al., 2013; De Faveri et al.,
2014).
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A potential solution for MEA signal stability would be to
implement BCIs that utilize somewhat lower-fidelity neural
signals. One signal that can be acquired by MEAs is the local
field potential (LFP). The LFP represents the summation of active
cellular processes nearest the site of each microelectrode. While
the general process of analysing LFPs is similar to analysing spike
data, the computational stage and filtering is somewhat different
(Figure 2), and some delay is inherent due to the latency with
which changes in spectral power occur and can be measured.
Despite these limitations of LFPs, the advantages of increased
recording stability may outweigh the loss in accuracy.

A combination of lower-fidelity LFP recordings and spike
recordings might also be desirable. It is possible to generate
predictions of the imagined single-joint movements in a
tetraplegic individual by decoding the joint trajectory using the
LFP frequency signals and multi-unit spike activity similarly
to those predicted by decoding single-unit activity (Ajiboye
et al., 2012). Recent work by Hall et al. (2014) indicates that
it is possible to estimate single unit firing rates using the slow
potentials from LFPs derived at several cortical locations. If this
method can be applied to estimate the single unit firing rate of
a single unit, without the need for first gathering spike data to
calibrate the estimation, it could lead to the development of a
BCI with sufficient longevity that still offers good spatiotemporal
resolution. However, it is important to note that the filters used
to perform the necessary calculations to deconvolve the firing
rate of a single neuron from the low frequency LFP signals
using current methods require prior knowledge of spike train
information from multiple neurons. Furthermore, when using
single-unit activity decoded from LFPs, there is an additional
step of transforming the data during which accuracy could be
lost. Despite these limitations, the method described by Hall
et al. (2014) offers the added benefit of allowing accurate single
unit firing rate predictions over the course of several weeks,
which is an improvement on intra-day instabilities in decoding
from single-unit activity itself (Perge et al., 2013). In this way,
using LFP decoders in conjunction with single- and multi-
unit activity may be a key step in implementing long-term
implants.

Electrocorticography Grids
ECoG consists of a mesh or grid of electrodes distributed across
the cortical surface that can be placed either subdurally or
epidurally. This technique can detect the LFPs from the cortical
surface at specific locations, but does not have the resolution to
detect individual spikes. As less invasive interface approaches are
used, the focality of the recorded signal necessarily is degraded.
What ECoG lacks in spatiotemporal precision with respect to
individual spiking profiles, it makes up for in patency. ECoG
has shown resilience in long-term recordings in human patients
implanted for up to 7.1 years (King-Stephens et al., 2015).
In addition, ECoG has the ability to expand the extent of
spatial coverage relative to MEAs. For example, signals can be
detected and decoded simultaneously from M1, PMd, and S1.
Additionally, using this method, it is possible to detect not only
recordings from gyrus, but also from the sulcal wall (Yanagisawa
et al., 2009), albeit via a more invasive process.

In humans, most studies investigating the use of ECoG
for BCI applications have used clinical electrodes implanted
in epilepsy patients for localization of epileptic foci with an
electrode size on the order of a few millimeters and an
interelectrode distance of approximately 1 cm. In particular,
movement-related spectral power changes have been shown to
occur not only during overt movements of skeletal musculature,
but also during imagined movements (Leuthardt et al., 2004),
indicating that these spectral power changes may be useful
in motor-impaired patients who are unable to perform overt
movements. Furthermore, several studies have demonstrated
that functionally motor-intact human patients can modulate the
spectral power of ECoG signals to achieve on-line control of
a computer cursor (Leuthardt et al., 2004; Wilson et al., 2006;
Felton et al., 2007; Schalk et al., 2008).

ECoG has also been used to implement BCI devices in motor-
impaired patients. A study in a hemiparetic patient demonstrated
that it is possible to use ECoG to control a prosthetic arm
using recordings from sensorimotor cortex (Yanagisawa et al.,
2011). Additionally, the use of ECoG signals for control of a
BCI system with three degrees-of-freedom based upon motor
imagery of movements at multiple independent joints has been
demonstrated in a quadriplegic patient with good signal quality
for durations up to 1 month (Wang et al., 2013). While on-line
BCI control in human patients with ECoG has been limited to
short durations, with relatively large electrode sizes, arrays with
sub-millimeter electrode sizes have been proposed as a means
to obtain signals with increased spatial specificity. These micro-
scale arrays have been utilized for online BCI control experiments
in NHPs (Leuthardt et al., 2009; Rouse et al., 2013). Importantly,
these studies utilized chronic epidural recordings, demonstrating
the stability of ECoG signals as well as the potential to implant
ECoG BCI systems on the surface of the dura, which would
reduce the risks of infection due to isolating the implant from
the subdural space.

While closed-loop BCI systems generally have used changes in
spectral power associated with imagined movements of a single
joint in humans or high gamma power in arbitrary electrodes in
NHPs, a more natural control algorithm may be to use signals
decoded from natural movements or behaviors. The potential
for this type of BCI using ECoG has been demonstrated by
studies that have used ECoG signals to decode 2D movement
directions in rats (Slutzky et al., 2011) and NHPs (Flint et al.,
2012) and to continuously decode movement kinematics of 2D
(Flint et al., 2012; Marathe and Taylor, 2013) and 3D arm
movements in NHPs (Chao et al., 2010). Along with animal
models, ECoG recordings from human epilepsy patients have
been used to decode information about voluntary movements.
ECoG recordings have been used to classify movement directions
of arm and hand movements (Reddy et al., 2009; Wang et al.,
2012; Chestek et al., 2013). Similarly, it is possible to decode
continuous finger flexion/extension (Chestek et al., 2013) and
2D arm and hand trajectories using ECoG with modest accuracy
(Schalk et al., 2007; Pistohl et al., 2008; Sanchez et al., 2008;
Kellis et al., 2012), as well as move a cursor to an onscreen
target using full neural control with no trajectory decoding
(Kellis et al., 2012). Flint et al. (2014) extended these findings
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FIGURE 2 | Schematic of possible differences in analysing point-processes and waveforms when using externally interfaced motor prosthetics. Note
that this flow may change depending on the specific device, but is designed to provide a broad overview for comparison. In the diagram, the green ellipse represents
data that has been recorded and amplified from the neural source. Blue rectangles are stages along the processing pathway that are typical for many devices. Red
hexagons represent potential rate-limiting steps in determining the latency of the Brain Computer Interface (BCI) response to immediate internal changes in patterns
of neural activity.

to show that it is possible not only to determine trajectory, but
kinetics for use in functional electrical stimulation as well using
ECoG (Flint et al., 2014). There are also preliminary indications
that ECoG in patients with stroke and epilepsy can be used to
predict three degrees-of-freedom in arm trajectory during motor
imagery (Nakanishi et al., 2013). Other recent experiments have
used high-density ECoG placed over specific areas to yield high
accuracy decoding. Placement over the speech cortices yielded
accurate prediction of vowel acoustics during speech (Bouchard
and Chang, 2014), and placement over the hand knob area
in sensorimotor cortex resulted in decoding of hand gesturing

(Bleichner et al., 2014), with high frequency signals (>65 Hz)
showing the most accurate results. In general, it should be noted
that the higher frequency signals tend to produce more accurate
results, presumably in part because there is a shorter latency
between intent and decoding/feedback.

Electroencephalography Caps
EEG is the least invasive technique, but also provides signals
with the broadest spatiotemporal coverage of the cortex. Similar
to ECoG, EEG detects general electric fields that are a sum
of the electrical activity for a given region. However, as the
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EEG signal detection is somewhat distant to the site of interest
(e.g., the precentral gyrus) there is an inherent limitation to
spatial and spectral resolution during signal acquisition. Because
the voltage from a dipole falls off with the inverse of the square of
the distance from the dipole, the extra distance between neural
sources in the cortex and EEG electrodes causes a summation
over a wider range of cortex (Cooper et al., 1965). The spectral
resolution limitation is due primarily to the fact that higher
frequency signals, which are more focal, tend to be averaged
out by the low spatial resolution. In addition, high frequency
activity in general is lower in amplitude than low frequency
activity, and can be filtered out from the inherent dampening
of the bone and tissue that it must travel through Cooper et al.
(1965) and Pfurtscheller and Cooper (1975). Finally, EEG signals
are also susceptible to contamination from electromyographical
(EMG) artifacts or eye blinks (Cooper et al., 1965; Wolpaw
and McFarland, 2004). Due to these complications, trajectory
predictions using EEG are generally not as accurate as those using
MEA recording or ECoG.

Despite these limitations, EEG provides an excellent method
for obtaining neural information from patients in a clinical
setting without the need for surgery. EEG is also promising for
use in acute settings that could be associated with rehabilitation
and behavioral recovery, since it is non-invasive in nature. One
of the hopes for EEG is that by using proper placement of a
sufficient number of leads and a significant amount of prior data
in healthy patients, it will be possible to use frequency signatures
from different areas to overcome some of the spatiotemporal
problems listed previously. As noted previously, EEG has the
advantage of broad spatial coverage in recordings. It may be
possible to turn this broad spatial coverage into an advantage
in resolving the origin of activity in the brain. There is a large
body of work in EEG source imaging that focuses on estimating
the location of current sources for scalp measurements by
solving the so-called static electromagnetic inverse problem.
This is done using the collection of scalp measurements as
well as a set of reasonable a priori constraints based on the
assumed or measured physiology of the brain to determine
the most likely origin of the current source or sources. As
Michel et al. (2004) detail in their review of such techniques,
such estimates depend on a number of factors, including but
not limited to the number and position of electrodes on the
scalp, the solution algorithm used to solve the inverse problem,
and the integration of MRI data to serve as a prior. Recent
studies demonstrate that it is possible to incorporate such source
estimation techniques to EEG recordings for potential use in
future BCI applications (Aihara et al., 2012; Yoshimura et al.,
2012).

Although a variety of signal analyses have been used for EEG
BCI systems (Blankertz et al., 2004), a more traditional approach
has been to utilize average features of the frequency spectrum
in relation to a motor event. A common strategy is to identify
periods of event-related desynchronization (ERD) as a cue for
some BCI output. ERD itself is a decrease in a pre-defined
spectral frequency band that can have a different physiological
interpretation depending on the context of the task. Controlling
a BCI system with ERD associated with motor movements has

particular relevance to motor-impaired populations. Because
ERD has been shown to occur with imagined in addition to
overt movements, it is applicable as a BCI control signal in
patient populations that are unable to execute motor actions
(Pfurtscheller et al., 1997). The application of EEG ERD-based
BCI systems has been demonstrated in normal controls and
patient populations (Wolpaw et al., 1991; Pfurtscheller et al.,
2003; Blankertz et al., 2004; Wolpaw and McFarland, 2004;
McFarland et al., 2010). While EEG is a powerful tool due
to its ease of use and non-invasiveness, its use in BCI system
development is hampered by the limitations described above. To
date the best performance of an EEG BCI system in control of
extrinsic operations is three degrees-of-freedom, which was only
achieved after months of intensive training (McFarland et al.,
2010).

Although EEG-based BCI that use ERD and event related
synchronization (ERS) in various frequency bands are common,
recent work has aimed at providing a more comprehensive
picture of changes through various power bands through the
duration of a variety of tasks. Depending on the task, and thereby,
the neural circuits involved, different signal features may be
important at different times relative to the event of interest. A
recent study identified EEG features in healthy subjects related
to several stages of motor activities (Ramos-Murguialday and
Birbaumer, 2015). Ideally, when using EEG to control a BCI,
the different components of a movement would have distinct
feature signatures that could be detected. Indeed, in this study
it was noted that there were distinct features during active and
passive proprioception, active intention, and passive involvement
in motor activity. Importantly, these features were significantly
different when performing a BCI task as compared to other
motor tasks, indicating that decoder design must take into
account changes in EEG features depending on the type of
activity involved.

Other less time-sensitive applications than fine motor
movement may lend themselves to BCIs that utilize even
lower frequency signals, sometimes referred to as slow cortical
potentials (SCPs) or movement-related cortical potentials
(MRPs). In these cases accuracy can be added by including pre-
processing steps using a variety of methods to reject false positive
signals. A recent study has demonstrated that it may even be
possible to decode movement intent from delta-band (0.1–4 Hz)
features, showing high accuracy in movement classification
during a sitting-to-standing task in healthy volunteers (Bulea
et al., 2014). In fact, BCIs using slow signals have application
even beyond motor tasks, such as allowing communication via a
spelling device for patients with locked-in syndrome (Birbaumer
et al., 1999) or even allowing web-browsing for paralyzed patients
(Bensch et al., 2007). Another recent direction for improving
accuracy is seen in the development of the brain/neuronal
computer interface (BNCI). The recent distinction between
BNCI and BCI devices draws on the fact that the BNCI makes
use of other signals or current sources recorded from the body
that are not located directly in the brain. Soekadar et al. (2015b)
demonstrated that it is possible to use electrooculography (EOG)
in conjunction with EEG to improve use of a grasping hand
exoskeleton.
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Control of Intrinsic Operations
Some implantable devices operate by modifying the flow
of information or causing modifications in the functional
neural networks of the brain. These devices control what can
be considered intrinsic operations in the brain. Devices in
this category fall into two sets: open-loop and closed-loop
stimulators. In open-loop stimulation, some form of stimulation
is applied to a region of the brain with a frequency that is often
determined using physiological parameters, but not necessarily
correlated to the immediate activity of the brain. Such open-
loop devices deliver a constant stream of current to the site
of interest, as is predominant in deep brain stimulation (DBS),
although recent studies have used closed-loop DBS for treatment
of Parkinson’s Disease (PD), epilepsy, and intention tremors, as
will be noted. There is also interest in the application of open-
loop stimulation in conjunction with BCI therapy; however, in
the scope of this review we will mainly cover closed-loop devices.

Closed-Loop Controlled Intrinsic Operations
By nature of their application in primarily remedying some sort
of functional deficit to patients, most BCIs could be broadly
considered as closed-loop devices by virtue of the feedback a
patient receives, typically visually, from the device when using
it. In this review, we will be more precise with the definition
of closed-loop strategies, and break ‘‘closed-loop’’ into two
subcategories. The first subcategory of closed-loop strategies
incorporates the ongoing activity patterns in individual neurons
or ensembles of neurons to determine when an electrical stimulus
will be applied in another location. Thus, intrinsic control can
facilitate the flow of information from one region of the brain
to another (Figure 3). These strategies are not driven by patient
recognition of some extrinsic goal, but rather form a completely
internal closed-loop. Feedback from an applied stimulus that
controls intrinsic operations is typically less overt, as electrical
stimulation is generally at subthreshold levels for generating
sensation or movement, and measures of functional outcome
are harder to ascertain on a trial-by-trial basis. In contrast, such
feedback results in gradual changes in network connectivity,
cognitive function or memory. This feature of intrinsic control
provides an additional challenge since the network changes
are thought to rely on Hebbian learning mechanisms, as are
discussed below. While it is true that at the synapse such a
circuit would comprise a feed-forward system, it is generally the
case that reciprocal anatomical projections exist between cortical
areas (Donoghue and Parham, 1983; Zhang and Deschenes,
1998), leading to bi-directional information flow and thus closing
the loop. Stimulation in this paradigm requires not only a
high-fidelity signal to detect and decode trigger events, but a
highly focal, transient stimulus delivery. This is relatively simple
when using MEAs to deliver the stimulus, but becomes more
challenging when using less focal types of stimulation such as
epidural stimulators or transcranial magnetic stimulation that
stimulate relatively large volumes of tissue.

In PD, it is thought that DBS can improve motor functioning
by disrupting abnormal activity. To improve upon existing,
open-loop DBS methods, one study in eight PD patients used
frequency characteristics of LFPs recorded from the subthalamic

nucleus (STN) to determine when to stimulate. Since beta
frequencies (13–30 Hz) are thought to correlate with impairment
in PD, stimulating the STN only during periods of high
beta activity provides an adaptive, or closed-loop, approach
to DBS (Little et al., 2013). This adaptive DBS caused a
significant increase in subjects’ neurological scores compared
with continuous or random DBS. A closed-loop BCI to control
intrinsic operations has also been used in epilepsy patients.
In a randomized multicenter double-blinded controlled trial of
191 subjects, ECoG electrodes were used to detect epileptiform
activity in the recorded signal (Heck et al., 2014). Following
detection of epileptiform activity, brief pulses of electrical
stimulation were applied to the seizure focus, an approach known
as responsive focal cortical stimulation (RNS). Subjects receiving
RNS showed a significant reduction in partial-onset seizures after
2 years in the study. In treatment of intention tremors, surface
electrodes recording EMG activity have been used to create a
sort of closed-loop on-demand control system for DBS that may
reduce patient resistance to treatment by stimulation (Yamamoto
et al., 2013).

Aborting pathological activity using feedback-controlled
electrical stimulation is just one application for closed-loop
control of intrinsic operations. Another application is to facilitate
synaptic efficacy of specific neural connections, using the natural
timing of neuronal firing between groups of neurons. This
approach derives its rationale from Hebbian plasticity theory,
which posits that neuronal connections are strengthened when
presynaptic activity is temporally linked with post-synaptic
activity. Because synaptic efficacy changes rely on precise
millisecond by millisecond timing relationships, approaches to
investigate closed-loop control in this context necessarily require
the highest temporal resolution possible. To date, this has
been achieved only with MEAs recording individual neuronal
spikes. Jackson et al. (2006) showed that it is possible to
modulate activity of neurons within the motor cortex based
on a spike-dependent stimulation paradigm. In this model,
monkeys with chronically implanted microelectrodes in two
nearby populations of neurons in the motor cortex were trained
on a torque-tracking task. The two populations were tuned to
different trajectories. However, when one of the microelectrodes
was stimulated based on the spikes recorded from the other
microelectrode, the trajectory tuning became similar between
the two populations. This study suggested that it is possible to
alter existing cortical connections by ‘‘linking’’ two areas together
using closed-loop stimulation. Of added interest is the fact that
these changes persisted even after the closed-loop period ended,
indicating that it was possible to induce long-term changes in
synaptic efficacy using this paradigm.

Extending this idea to a traumatic brain injury model,
Guggenmos et al. (2013) showed that it is possible to restore
a reaching function in rats following damage to motor cortex
by linking the premotor and somatosensory areas using activity-
dependent stimulation (ADS; Guggenmos et al., 2013). In this
study, a focal impact was made over the rat’s caudal forelimb area
in motor cortex, abolishing its ability to perform the reaching
task effectively, largely due to the disruption in somatosensory
motor integration. A recording microelectrode was implanted
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FIGURE 3 | Schematic by which internally contained stimulation devices restore lost function resulting from damaged or missing tissue. Before
damage, the area of interest (red circle) and functionally related areas (rectangles) relay information between each other and effectors (solid arrows) of some output
task (yellow star). The majority of information in controlling task output initially comes from the damaged area (thick red arrow), but may also arrive, although to a
lesser extent, from functionally related areas (thin black arrows). Following injury, connections to and from the damaged area are lost (all red elements). The
stimulation device serves as a direct bridge between functional areas, allowing strengthened output (thick green arrows) from those areas to the output effectors and
thereby restoring some degree of lost functionality.

in the spared rostral forelimb area (RFA), which is somewhat
analogous to the primate premotor area. A stimulating electrode,
which was triggered by a wireless, battery-operated, head-
mounted chip, was implanted in the primary somatosensory (S1)
forelimb area. In the ADS paradigm, which ran continuously
24 h a day for up to 28 days, spikes detected in RFA were
used to trigger stimulation in S1 after a brief delay (7.5 ms).
Remarkably, rats in the ADS protocol demonstrated a significant
recovery of functional reaching behavior within a few weeks of
ADS treatment. In conjunction with behavioral improvement,
synaptic potentiation between S1 and RFA increased as well.
Recently, a version of this paradigm has been applied to the rat
cervical spinal cord as well, demonstrating a possible treatment
mechanism for spinal cord injury, although the trigger signal was
EMG activity and not primary CNS activity (McPherson et al.,
2015).

There are still a number of unanswered questions regarding
the effects of ADS in the context of neuronal pathologies. For
example, it is not yet known how long the effects last, or the
duration of the therapeutic window. Nevertheless, such a strategy
of changing synaptic efficacy is an attractive option for use in a
temporary implant because it raises the possibility of a removable
or degradable device that only needs to function transiently.
Thus, the simplicity of use of the device would mean a one-time
surgical operation for patients, with the possibility of having a
degradable or removable device that could then either be left
in situ or explanted after treatment. In addition, aside from
setting the thresholds for spike detection, there are a minimum

of decoding algorithms that must be customized for individual
patients, increasing the feasibility of such an approach in a
clinical setting.

Other devices that control intrinsic operations have utilized a
different approach. These devices restore cognitive function by
replacing circuitry of the brain that is missing or malfunctioning
(Berger et al., 2011, 2012; Hampson et al., 2012; Opris et al.,
2012; Bonifazi et al., 2013). Berger’s group demonstrated that it is
possible to improve rat memory scores in a delayed non-match-
to-sample task by implanting a device to translate spike trains
detected in CA3 into stimulus trains in CA1 (Berger et al., 2012).
Presumably, this closed-loop stimulation acts as a proxy for lost
hippocampal function, modifying the spatiotemporal coding of
the neural spike information in a similar way to the intact brain.

A major remaining challenge for these types of devices is that
in order to increase the degree of complexity of information
transmitted, it is necessary to increase the number of inputs.
This problem presents a similar challenge as in the externally
operating device case in that there is a density limit to the
number of electrode sites that can record from a given area
at a particular time. As the number of inputs increases, the
computational difficulty increases as well. Put in context, a
2004 study by Izhikevich that modeled 100,000 neurons with
8.5 million connections between them took roughly 60 s of
computation time for every 1 s of simulation time (Izhikevich
et al., 2004). While technology has improved substantially since
2004, it is easy to imagine that as the number of neurons increases
the computational difficulty will increase quickly, too. Thus, the
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complexity of the cognitive task being recovered will most likely
determine the feasibility of employing such techniques.

As mentioned previously, a second strategy exists when
incorporating closed-loop strategies for control of intrinsic
operations. These types of devices are commonly classified as
‘‘restorative’’ BCI, as they are primarily used in rehabilitation
treatments as a means to train patients to overcome some form
of impairment. While they technically do affect some element
extrinsic to the patient, the goal is to cause lasting intrinsic
plastic changes that remedy deficits and eventually allow the
patient to no longer need the use of the BCI; thus they are
classified here with the other intrinsic devices. For example, a BCI
designed to reward desynchronization of particular oscillatory
rhythms in stroke patients with corresponding proprioceptive
feedback by movement of an orthosis demonstrated a clinically
meaningful change in assessment scores of patients receiving
the orthotic treatment against controls (Ramos-Murguialday
et al., 2013). This type of training BCI has been the subject
of much interest in the field. One direction is the adjunctive
use of non-invasive electrical stimulation with training BCI to
enhance learning by amplifying the ERD signal using anodal
transcranial direct current stimulation (Soekadar et al., 2014;
Kasashima-Shindo et al., 2015; Soekadar et al., 2015a). Another
avenue is the use of graded velocity feedback in response to
the relative strength of the ERD signal to improve learning
by providing improved visual and proprioceptive feedback
during BCI-triggered orthotic movement (Soekadar et al., 2011).
In this study, even stroke patients demonstrated improved
modulation of ipsilesional activity; a similar study demonstrated
evidence that this paradigm could lead to new voluntary EMG
activity in hemiparetic patients (Shindo et al., 2011). There
are a few case studies involving BCI for modulating intrinsic
operations as well. One study used visual feedback for the
control of excessive levels of beta band activity detected by
EEG, providing some evidence that this paradigm could cause
voluntary changes in pathological brain activity and improve
handwriting for a patient suffering chronic writer’s cramps
(Hashimoto et al., 2014). A within-subject withdrawal design in
functional EEG BCI-driven neuromuscular electrical stimulation
showed some restoration of voluntary EMG activity in a paretic
patient where previous rehabilitation treatments had failed
(Mukaino et al., 2014). Methods of non-invasive stimulation
that could tentatively be used with some of the aforementioned
strategies have been proposed, but are still in preliminary
stages (Soekadar et al., 2013; Wilde et al., 2015; Zrenner et al.,
2015).

Evaluating Intrinsic Operation Efficacy
While many of the restorative closed-loop BCI devices have
demonstrated substantial clinical efficacy, one common theme
among closed-loop devices that do not fall under this category
is that they are still farther from clinical application when
compared to their externally interfaced counterparts. This may
be, in part, because the underlying mechanisms of some of
the internally interfaced devices are still not well understood.
For example, in a device attempting to recreate the firing
patterns connecting one region to another, what sort of simulated

pattern would be important to use? Or in the stimulation-
dependent closed-loop system, how does the ‘‘linkage’’ between
the two areas occur? Before the translation of these devices to
a clinical setting, there remains a large amount of investigation
to understand the mechanistic means by which these devices
work. Even in those devices that are closer to widespread clinical
implementation, the neuronal substrates for improved control
and use of BCIs are not entirely understood (Soekadar et al.,
2015a).

A large remaining area of study is to demonstrate specific
features of how these internally interfaced devices affect changes
in network connectivity. For example, a method to measure
the putative changes in anatomical connectivity between two
artificially linked areas would be to look at the number of
projections from one area to the other in animals with and
without the device post mortem; this provides a statistical
means for comparison between groups, but is limited in the
description of functional connectivity that may take place.
Alternatively, means of visualizing connections in the brain
such as diffusion tensor imaging has been used in rats in vivo
(Laitinen et al., 2015), and could be employed for such a within-
subject comparison study; however, it can be cumbersome to
use such methods to map animals pre- and post- implantation.
Additionally, implanted devices can obscure the accuracy of such
data collection methods.

Rather than tracking changes in anatomical connectivity, it
may be easier to track changes in effective connectivity directly
using electrophysiological means. It is common practice to use
methods such as finding the cross correlation over a sliding
window to determine the average cross correlation for spike
train firing in two areas in in vitro studies (Perkel et al., 1967).
This method has also been used in vivo (Murphy et al., 1985),
and has recently been used in conjunction with delayed mutual
information to provide insight to the direction of connections as
well as the specific patterns of connectivity of individual neurons
(Taghva et al., 2012; Endo et al., 2015). Using statistical analyses
such as cross correlation and time delayed mutual information
may allow for the quantification of these effective changes over
time in BCI models.

Eventually, these methods could pinpoint the time scale over
which permanent changes take place, or help to identify other
parameters necessary for the optimization of such devices. For
example, for the closed-loop system used by Guggenmos et al.
(2013) to be generalized to multiple areas of the brain, it will
be necessary to test whether the delay between trigger and
stimulation is a general property of ADS, or if other factors such
as distance and intrinsic connectivity between areas plays a role
as well. In order to test different delay times and how well they
change the effective connectivity between areas, having a good
metric to describe and compare changes will be critical.

CONCLUSION

An ideal high fidelity BCI would both sample and allow
stimulation of precise neural features non-invasively. In reality,
such a combination is unlikely. Nonetheless, current work across
several types of BCIs provides promising results for the clinical
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applicability of these technologies. Despite the positive outlook
for the future of BCIs, several challenges remain before high
fidelity recording and stimulating devices are made available for
common clinical use. For MEA recordings, two major challenges
remain. The first is to improve the patency of chronically
implanted microelectrodes so that they can continue to be
used for recordings for the duration of the patient’s lifespan.
The second challenge is to find reliable recording sites and
decoding algorithms that do not need to be recalibrated on a
daily or weekly basis, and adaptive decoders that would allow for
automatic recalibration as patients learn to use implanted BCIs
more efficiently.

For ECoG and EEG, the challenge is less from a materials
perspective, and more from a computational perspective. The
primary goal remains similar to MEA-based BCIs: it is most
important to find regions from which task-related information
can be reliably decoded and translated into repeatable intent. It
may first be necessary to find a means to identify reliable neural
substrates for BCI learning using MEAs, then demonstrate that
the activity patterns of these substrates can be reliably decoded
using less invasive measures. Emerging methods incorporating
structural and metabolic information into current source
estimates may provide the additional information necessary to
increase decoding accuracy (Aihara et al., 2012). Additionally, as
frequency-domain based decoders improve in accuracy, it will
be important to continue to incorporate signals with greater
numbers of independent features into BCI decoders in order to
improve the ease of adaptation for implanted patients. In ECoG,
this could potentially be improved by optimizing location and
spacing.

In terms of decoded output, goal-tuned single units in MEA-
based BCIs have shown great promise for decoding intent in
complex movements. Meanwhile, work involving less-invasive
approaches such as ECoG and EEG continues to improve in
decoding accuracy. The future combination of these lines of work
will be critical for progress towards increased clinical use of
neural prosthetics. In order to demonstrate the complete neural
electrophysiological basis for learned BCI behavior, elements
from all types of recording paradigms may be necessary. Such
an understanding may lead to new therapeutic targets for BCI
devices.

As non-invasive electrical stimulation becomes a more
realistic possibility in restorative devices that use overt, extrinsic
goals for patient rehabilitation, combination stimulation

approaches may increase the utility and effectiveness of BCIs.
Devices controlling intrinsic operations, which offer a more
subtle form of closed-loop stimulation, face a different set of
challenges going forward. The primary challenge will be to find
a way to generalize their use to many parts of the CNS. Whether
that is finding the optimal delay for ADS between two areas,
or finding the right recorded or computed pattern of neural
stimulation to recreate lost functionality, the challenges facing
internally interfaced devices are also numerous.

Thus, the current state of progress in implementing a
high fidelity BCI depends on the type of device. Restorative
closed-loop devices for rehabilitation therapy have already
demonstrated some clinical effect in paretic patients (Ramos-
Murguialday et al., 2013), but are limited to treatment of
patient populations that retain spared neural pathways following
injury. Devices that control extrinsic operations have attained
clinical use in the sense that they have been implemented in
limited human trials (Hochberg et al., 2012; Aflalo et al., 2015).
However, the practicality of such devices for widespread use
remains questionable until such time that costs are reduced
and devices made more widely available. In addition, decoders
must be made generalizable and receive more accurate input
from a higher density of sources. Completely intrinsic closed-
loop devices offer tantalizing possibilities due to the possibility
of not only use in motor recovery (Guggenmos et al., 2013;
McPherson et al., 2015), but potentially cognitive therapy as well
(Berger et al., 2012). Still, many important questions remain
unanswered about these devices. Can they show reliability
in animal models at a large scale? How long must such a
therapeutic device remain in effect before clinical results are
demonstrated? Thus, each type of device has its potential benefits
and drawbacks, but importantly, an abundance of paths remain
toward a future where BCIs are commonplace in a variety of
clinical settings.
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