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Abstract In this paper, the impact of human migration on the dynamics of dengue epidemic
has been discussed. The vector-host model considers two patches with different dengue
serotype in each patch. The model considers the constant rate of migration in susceptible and
recovered class from one patch to other. Recovered migrants from prior infection are exposed
to secondary infection in the patch where different serotype is present. The basic reproduction
number is computed and analyzed in terms of migration parameters. The model is analyzed for
the existence and local stability of various equilibrium states in terms of migration parameters.
The numerical simulations for the choice of relevant data from literature have been performed
to verify analytical results and to further explore the dynamics of the system. The sensitivity
analysis of basic reproduction number with respect to migration parameters is carried out. It
is found that immigration in a patch increases the basic reproduction in respective patch and
vice-versa. The basic reproduction number has been estimated for the two states of Brazil
which verifies the occurrence of severe epidemic in one of the states of Brazil.

Keywords Dengue · Secondary infection · Human migration · Basic reproduction number ·
Stability · Estimation

Introduction

Dengue was confined to only nine countries before 1970. However, it has now been spread to
more than 100 countries in the tropical, subtropical and temperate areas of North America,
South America, Africa and Southeast Asia. According to one estimate, it affects 50–100
million people every year [1]. In fact, World Health Organization has declared dengue as the
fastest communicable mosquito-borne disease in the world in terms of human morbidity and
mortality [2,3]. The causes of emergence and resurgence of dengue disease are attributable
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to multiple factors including urbanization, fast transportation, economic development and
changes in human behavior. The fast increase in modes of transportation, their reach, speed
and efficiency led to the global movement of human population [2,4]. This may be responsible
for the spread of infectious diseases from isolated locations to the new regions. It has been
reported that another 100 million people travel to dengue affected areas where they not only
increase the risk of contracting the disease but also spreading it further afield.

Dengue fever exhibits up to four closely related and distinct dengue viruses or serotypes.
The origin of all four dengue serotypes is found to have in Asian forests and subsequently
they have spread worldwide because of the migration of human and commerce [5]. The
mosquitoes Aedes aegypti and Aedes albopictus are the main carriers of these viruses. It is
transmitted through infected mosquito bites. Once a person becomes infected by a serotype,
he/she will never be reinfected by that serotype due to induced lifelong immunity against
it. However, only temporal cross immunity is developed against the other serotypes [6].
Therefore, the recovered individuals from a serotype may get secondary infection when
exposed to a different serotype. Primary infections are generally asymptomatic and nonfatal,
while secondary infections sometimes lead to the fatal forms of dengue infection, namely,
dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) [1,7]. Mathematical
modeling has been applied to understand and control the many vector-borne diseases like
dengue, malaria, leishmaniasis, chagas diseases etc [8–13]. Some mathematical models on
dengue dynamics incorporating primary and secondary infection have been proposed and
analyzed by various investigators [11–16].

Due to short flying range of mosquitoes, the role of human migration becomes crucial
in dissemination of dengue serotypes from one part to other parts of the region [17]. Some
studies on dengue have also confirmed that human migration is the main cause of its spatial
spread [18,19]. In particular, human movement was identified as an important factor for the
spread of dengue serotype-1 from the southern region of Vietnam to its northern and central
regions [20]. Also, human migration from one patch (area) to another increases the chances
of secondary infection [6,21]. During 1977–1978, the dengue epidemic in Cuba occurred
due to DEN-1 serotype with not a single case of DHF [22]. However, human migration from
endemic countries (with DEN-2 serotype) to municipalities in Cuba has been reported to be
responsible for DHF/DSS cases of subsequent epidemics in 1981 and 1997 [22,23]. These
facts exemplify the two largest outbreaks of secondary infection cases by DEN-2 in Cuba in
1981 and 1997 [22–24]. Further, human migration may be one of the reasons for the spread
of secondary infection.

A very limited but relevant metapopulation epidemic models involving movement of
individuals between discrete spatial patches have been proposed by investigators [25–31].
In particular, such compartment models for multi-patches have been discussed for measles,
influenza and SARS [25,28,29,31]. Prosper et al. [32] have discussed Ross-Macdonald type
two patch SI metapopulation model for malaria by considering different degrees of trans-
mission in patches. Gao and Ruan [27] have derived a multi-patch model to study the impact
of population dispersal on spatial spread of malaria between patches. A limited work on
metapopulation model incorporating host-vector dynamics has been carried out. A two patch
vector-host model incorporating secondary infection of dengue disease has been discussed
by Gakkhar and Mishra [33]. They have assumed no vector migration and human migration
is allowed only in one direction.

In this paper, a two-patch vector-host model for the dengue epidemic incorporating sec-
ondary infection has been proposed and analyzed. The model considers human migration
between two discrete patches having different dengue serotypes. Due to imperfect cross
immunity towards heterologous serotype, the recovered migrants of patch-1 may get sec-
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ondary infection in patch-2. The impact of human migration on persistence or extinction of
disease in patches has been discussed by considering all possible combinations of migration
parameters. Stability analysis and numerical simulations have been carried out for various
equilibrium states. Further, sensitivity indices of basic reproduction numbers for migration
parameters have been computed. In the case study, the estimation of basic reproduction has
also been performed for the two states of Brazil. The conclusion is given in the last section.

Formulation of Model

Keeping the above facts into consideration, let there be two distinct serotypes of dengue
namely serotype-1 (DEN-1/DEN-3/DEN-4) and serotype-2 (DEN-2) prevalent in two
discrete patches: patch-1 and patch-2 respectively. Human (host) population is compart-
mentalized into Si , Ii and Ri for susceptible, infected and recovered individuals respectively
in the i th patch, i = 1, 2. It is assumed that the infected individuals are unable to migrate due
to disease-induced weakness. The susceptible individuals of patch-1 (patch-2) may become
primary infected with serotype-2 (serotype-1) when they migrate to patch-2 (patch-1). The
recovered migrants from patch-1 to patch-2 may become secondary infected when exposed
to serotype-2 and form a new compartment of secondary infection I12 in patch-2. As, the
serotype DEN-2 is more associated with secondary infection [7,23,24,34,35], the almost
perfect cross immunity has been assumed for the recovered migrants from patch-2 to patch-
1. The probability of getting secondary infection from serotype-1 is assumed to be negligibly
small in patch-1. Accordingly, the recovered migrants from patch-2 to patch-1 will not get
secondary infection. The secondary infected population I21 is not being considered (I21 ∼ 0)

in patch-1. Further, this simplifying assumption reduces the dimension of the model.
Let ω be the constant rate of recruitment in susceptible class and μ be the natural death

rate of host in both the patches. The disease-induced death rate e is considered only in
the secondary infection compartment of patch-2. Let βi and γi ; i = 1, 2 be the rates of
transmission of infection and recovery of the host population respectively in the i th patch.
The ρ proportion of recovered migrants from serotype-1 become secondary infected by
serotype-2 at the rate β12 in patch-2. Let m1 and m2 be the rates of migration from patch-1
to patch-2 and vice-versa respectively.

Let Ūi (t) and V̄i (t) be the susceptible and infected vector population in the i th patch.
Due to short life span of vector, once infected they never recover. Accordingly, no recovery
class has been considered for them. Further, let ω1 be the recruitment rate of mosquitoes
in the absence of vertical transmission. Let μ1 and μ2 be the constant natural death rates
of mosquitoes in patch-1 and patch-2 respectively. The transmission rate of infection to
mosquitoes by infected host is assumed to be σ . The mosquitoes are not migrating and
their dynamics remains the same irrespective of the patch. Considering all parameters to be
positive, the following model has been formulated:

d S̄1

dt
= ω − β1 S̄1V̄1 − m1 S̄1 + m2 S̄2 − μS̄1 (1)

d Ī1
dt

= β1 S̄1V̄1 − γ1 Ī1 − μ Ī1 (2)

d R̄1

dt
= γ1 Ī1 − m1 R̄1 + m2 R̄2 − μR̄1 (3)

dŪ1

dt
= ω1 − σ Ī1Ū1 − μ1Ū1 (4)
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dV̄1

dt
= σ Ī1Ū1 − μ1V̄1 (5)

d S̄2

dt
= ω − β2 S̄2V̄2 − m2 S̄2 + m1 S̄1 − μS̄2 (6)

d Ī2
dt

= β2 S̄2V̄2 − γ2 Ī2 − μ Ī2 (7)

d R̄2

dt
= γ2 Ī2 − m2 R̄2 + (1 − β12ρV̄2)m1 R̄1 + γ2 Ī12 − μR̄2 (8)

d Ī12

dt
= β12ρm1 R̄1V̄2 − γ2 Ī12 − eĪ12 − μ Ī12 (9)

dŪ2

dt
= ω1 − σ Ī2Ū2 − μ2Ū2 (10)

dV̄2

dt
= σ Ī2Ū2 − μ2V̄2 (11)

The model is associated with following non-negative initial conditions:

S̄1(0) > 0, S̄2(0) > 0, Ī1(0) ≥ 0, Ī2(0) ≥ 0, R̄1(0) ≥ 0, R̄2(0) ≥ 0, Ī12(0) ≥ 0,

Ū1(0) > 0, Ū2(0) > 0, V̄1(0) ≥ 0, V̄2(0) ≥ 0

The schematic diagram has been drawn in Fig. 1 showing the transmission dynamics of dis-
ease in two patches. Note that for simplicity, the mortality rates of mosquitoes are considered
to be equal in both the patches i.e. (μ1 = μ2). Consider the following non-dimensional
parameters:

S1 = S̄1μ

ω
, S2 = S̄2μ

ω
, I1 = Ī1μ

ω
, I2 = Ī2μ

ω
, R1 = R̄1μ

ω
, R2 = R̄2μ

ω
, T = tμ,

U1 = Ū1μ1

ω1
, V1 = V̄1μ1

ω1
,U2 = Ū2μ1

ω1
, I12 = Ī12μ

ω
, V2 = V̄2μ1

ω1
, p1 = β1ω1

μμ1
,

Fig. 1 Schematic diagram representing the transmission dynamics of disease in two patches
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p2 = m1

μ
, p3 = m2

μ
, p4 = β2ω1

μμ1
, p5 = γ1

μ
, p6 = γ2

μ
, p7 = β12ω1

μ1
, p8 = e

μ
,

p9 = σω

μμ1

The dimensionless model is given as:

dS1

dT
= 1 − p1S1V1 − p2S1 + p3S2 − S1 (12)

d I1
dT

= p1S1V1 − p5 I1 − I1 (13)

dR1

dT
= p5 I1 − p2R1 + p3R2 − R1 (14)

dU1

dT
= 1 − p9 I1U1 −U1 (15)

dV1

dT
= p9 I1U1 − V1 (16)

dS2

dT
= 1 − p4S2V2 − p3S2 + p2S1 − S2 (17)

d I2
dT

= p4S2V2 − p6 I2 − I2 (18)

dR2

dT
= p6 I2 − p3R2 + (1 − ρp7V2)p2R1 + p6 I12 − R2 (19)

d I12

dT
= ρp7 p2R1V2 − p6 I12 − p8 I12 − I12 (20)

dU2

dT
= 1 − p9 I2U2 −U2 (21)

dV2

dT
= p9 I2U2 − V2 (22)

The model is associated with following non-negative initial conditions:

S1(0) > 0, S2(0) > 0, I1(0) ≥ 0, I2(0) ≥ 0, R1(0) ≥ 0, R2(0) ≥ 0, I12(0) ≥ 0,

U1(0) > 0,U2(0) > 0, V1(0) ≥ 0, V2(0) ≥ 0

Analysis of the Model

Consider a system of differential equations in R
n+ as

Lemma 1 The closed set

Ω =
{
(S1, I1, R1,U1, V1, S2, I2, R2, I12,U2, V2) ∈ R

11+ | 0 < N < 2, 0 < M < 2

}

is positive invariant for the non-linear system (12)–(22).

Proof Let N (T ) be the total host population with N (T ) = N1(T ) + N2(T ) where N1(T )=
S1(T ) + I1(T ) + R1(T ) and N2(T )= S2(T ) + I2(T ) + R2(T ) + I12(T ) be the total host
population at time T in patch-1 and patch-2 respectively. Further, let M(T )= M1(T )+M2(T )

be the total vector population where, Mi (T ) = Ui (T ) + Vi (T ); i = 1, 2.

123



19 Page 6 of 22 Int. J. Appl. Comput. Math (2018) 4:19

By adding the host dynamics from the model (12)–(22) gives,

dN

dT
= 2 − N − p8 I12;

Using standard comparison theorem [36],

N (T ) ≤ N (0)e−T + (2 − e−T )

�⇒ lim sup
T−→∞

N (T ) ≤ 2

Again, by adding vector dynamics in from the model (12)–(22) gives,

dM

dT
= 2 − M;

Using standard comparison theorem [36],

M(T ) ≤ M(0)e−T + (2 − e−T )

�⇒ lim sup
T−→∞

M(T ) ≤ 2.

Also, Ṅ < 0 and Ṁ < 0 for N > 2 and M > 2 respectively. This shows that the solutions
of the system (12)–(22) converge towards the set Ω . 
�
The Lemma 1 shows that the all solutions of the non-linear system (12)–(22) are non-negative
and bounded. Therefore, the model is mathematically as well as biologically well behaved.
In next subsection, the existence of equilibria for the model (12)–(22) has been discussed.

Equilibrium Points

The non-linear system of Eqs. (12)–(22) have four equilibrium states (S1, I1, R1,U1, V1,

S2, I2, R2, I12,U2, V2):

1. The disease-free state (E0) = (Ŝ1, 0, 0, 1, 0, Ŝ2, 0, 0, 0, 1, 0),

Ŝ1 = 1 + 2p3

1 + p2 + p3
, Ŝ2 = 1 + 2p2

1 + p2 + p3

2. The disease in patch-1 state (E1) = (S̆1, Ĭ1, R̆1, Ŭ1, V̆1, S̆2, 0, R̆2, 0, 1, 0) exists for

p1 p9(1 + 2p3)

(1 + p5)(1 + p2 + p3)
(= R2

10) > 1. (23)

The expressions for non-zero state variables at equilibrium point E1 are given as follows:

S̆1 = 1 + p5 + p9 + p3 + 2p3 p9 + p3 p5

p9(1 + p1 + p2 + p3 + p1 p3)
,

Ĭ1 = (R2
10 − 1)(1 + p2 + p3)

p9(1 + p1 + p2 + p3 + p1 p3)
,

R̆1 = (R2
10 − 1)(1 + p3)p5

p9(1 + p1 + p2 + p3 + p1 p3)
,

Ŭ1 = (1 + p5)(1 + p1 + p2 + p3 + p1 p3)

p1(1 + p5 + p9 + p3(1 + p5 + 2p9))
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V̆1 = (R2
10 − 1)(1 + p5)(1 + p2 + p3)

p1(1 + p5 + p9 + p3(1 + p5 + 2p9))
,

S̆2 = p2 p5 + p1 p9 + p2 + 2p2 p9 + p9

p9(1 + p1 + p2 + p3 + p1 p3)

R̆2 = (R2
10 − 1)p2 p5

p9(1 + p1 + p2 + p3 + p1 p3)

3. The disease in patch-2 state (E2) = (̃S1, 0, R̃1, 1, 0, S̃2, Ĩ2, R̃2, ˜I12, Ũ2, Ṽ2) exists for

p4 p9(1 + 2p2)

(1 + p6)(1 + p2 + p3)
(= R2

01) > 1. (24)

The expressions for non-zero state variables at equilibrium point E2 are obtained as
follows:

S̃1 = p3 + p9 + 2p3 p9 + p4 p9 + p3 p6

p9(1 + p2 + p3 + p4 + p2 p4)
,

R̃1 = (R2
01 − 1)p3B

W

S̃2 = 1 + p2 p6 + p2 + p6 + 2p2 p9 + p9

p9(1 + p2 + p3 + p4 + p2 p4)
,

Ĩ2 = (R2
01 − 1)(1 + p2 + p3)

p9(1 + p2 + p3 + p4 + p2 p4)

R̃2 = (R2
01 − 1)B(1 + p2)

W
,

˜I12 = (R2
01 − 1)(1 + p2 + p3)ρp2 p3 p6 p7

W

Ũ2 = (1 + p6)(1 + p2 + p3 + p4 + p2 p4)

p4(1 + p2 p6 + p6 + p2 + p9 + 2p2 p9)
,

Ṽ2 = (R2
01 − 1)(1 + p6)(1 + p2 + p3)

p4(1 + p2 + p6 + p9 + p2 p6 + 2p2 p9)

where, B = p4 p6(1 + p6 + p8)(1 + p2 + p3)(1 + p6 + p9 + p2(1 + p6 + 2p9)) and

W = p9(1 + p2 + p3 + p4 + p2 p4)[(1 + p2 + p3)(1 + p6)(−ρp2 p3 p7(1 + p8) + (1 +
p2)p4(1 + p6 + p8))+ (1 + 2p2)p4((1 + p3)(1 + p6 + p8)+ p2(p6 + (1 +ρp3 p7)(1 +
p8)))p9]

4. The endemic state (E�)=(S�
1, I �

1 , R�
1,U

�
1 , V �

1 , S�
2, I �

2 , R�
2, I

�
12,U

�
2 , V �

2 ) exists under the
following conditions:

R2
10η > 1 and R2

01ξ > 1 (25)
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where,

η = (1 + p2 + p3)(p3 + p9 + 2p3 p9 + p4 p9 + p3 p6)

(1 + 2p3)(p9 + p2 p9 + p3 p9 + p4 p9 + p2 p4 p9)
;

ξ = (1 + p2 + p3)(p2 p5 + p1 p9 + p2 + p9 + 2p2 p9)

p9(1 + 2p2)(1 + p1 + p2 + p3 + p1 p3)

The expressions for the state variables at equilibrium level are omitted as they are lengthy
and complex.

Basic Reproduction Number

The basic reproduction number is computed by next generation approach [37]. The details
of the new infections and transfer matrices are given in “Appendix”. The basic reproduction
number, R0 (say) is given as

R2
0 = max

(
p1 p9(1 + 2p3)

(1 + p2 + p3)(1 + p5)
,

p4 p9(1 + 2p2)

(1 + p2 + p3)(1 + p6)

)
(26)

or

R0 =
√

max (R2
10, R

2
01)

where, R10 and R01 are the basic reproduction numbers of patch-1 and patch-2 respectively.
Observe that there will be no effect of migration on the basic reproduction numbers R10

and R01 when p2 = p3.

Stability of Equilibrium States

This section analyzes the stability of the non-linear system (12)–(22) for various equilibrium
states by computing eigenvalues of the Jacobian matrix J [E]. The general matrix J [E] of
the system is given in “Appendix”.

Theorem 1 The disease-free state E0 is locally asymptotically stable for

R2
10 < 1 and R2

01 < 1. (27)

Proof About disease-free state, seven of the eigenvalues of the Jacobian matrix (J [E0]) are
negative and computed as −1(multiplicity 4), −1− p2 − p3(multiplicity 2) and -1 - p6 − p8.
The remaining four eigenvalues are given as:

1

2

(
−2 − p5 ±

√
p2

5 + 4p1 p9 Ŝ1

)
,

1

2

(
−2 − p6 ±

√
p2

6 + 4p4 p9 Ŝ2

)

Further simplifications give all eigenvalues with negative real part under condition (27).
Therefore, the disease-free state is locally asymptotically stable under condition (27). 
�

Further, for global stability of disease-free state, the following theorem is concluded:

Theorem 2 The locally asymptotically stable state E0 is also globally stable for

R2
10 <

(1 + 2p3)

2(1 + p2 + p3)
< 1 and R2

01 <
(1 + 2p2)

2(1 + p2 + p3)
< 1. (28)

123



Int. J. Appl. Comput. Math (2018) 4:19 Page 9 of 22 19

Proof For arbitrarily chosen positive constants A, B,C and D, consider the positive definite
function L(I1, I2, V1, V2) as:

L(I1, I2, V1, V2) = AI1 + BI2 + CV1 + DV2

Taking derivative of L(I1, I2, V1, V2) with respect to t and its simplifications yield,

L̇(I1, I2, V1, V2) ≤ −V1(C − Ap1) − V2(D − Bp4)

−I1((1 + p5)A − 2p9C) − I2((1 + p6)B − 2p9D)

For L̇(I1, I2, V1, V2) to be negative, the conditions are

C > Ap1; D > Bp4; (1 + p5)A > 2p9C; (1 + p6)B > 2p9D

Let us choose A = R2
10

p1
and B = R2

01

p4
. Their substitution in inequalities and further simpli-

fications give

R2
10 < C; R2

01 < D;C <
(1 + 2p3)

2(1 + p2 + p3)
and D <

(1 + 2p2)

2(1 + p2 + p3)

Let α = (1 + 2p3)

2(1 + p2 + p3)
(< 1) and β = (1 + 2p2)

2(1 + p2 + p3)
(< 1) for positive p2 and p3.

then the inequalities can be combined to give

R2
10 < C < α < 1; R2

01 < D < β < 1;
The positive arbitrary constants C and D can now be chosen to satisfy the above inequality
ensuring that L̇(S, I1, I2, V1, V2) is negative. Accordingly, the function L(S, I1, I2, V1, V2)

is a Lyapunov function for the condition (28). At V1 = 0, V2 = 0, I1 = 0 and I2 = 0, L̇
becomes zero. If V1 = 0, V2 = 0, I1 = 0 and I2 = 0, then {E0} is the only largest invariant set
that contains a subset in which all these variables are zero. By applying LaSalle’s invariance
principle [38], all trajectories in the closed set Ω approach the equilibrium point E0. Hence,
the locally asymptotically stable disease-free state E0 is also globally asymptotically stable.
Hence, the result is proved. 
�

It is observed that E0 may still be globally stable even when one or both of the conditions in
(28) are not satisfied.

Further, when the state E0 is unstable, existence of some other states may become possible.
These possibilities are explored next.

It may be noted that the existence of E1 requires R2
10 > 1 [see condition (23)] which

implies the instability of disease-free state E0.

Lemma 2 When R2
10 > 1 then

ξ

(
= (1 + p2 + p3)(p2 p5 + p1 p9 + p2 + p9 + 2p2 p9)

p9(1 + 2p2)(1 + p1 + p2 + p3 + p1 p3)

)
< 1. (29)

Proof Assuming ξ > 1 leads to R2
10 < 1 which is the contradiction. Therefore, ξ < 1

whenever R2
10 > 1. 
�
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Theorem 3 For ξ given in (29), the state E1 will be locally asymptotically stable when

ξ R2
01 < 1 (30)

Proof For the local stability of E1 = (S1, I1, R1,U1, V1, S2, 0, R2, 0, 1, 0), the seven of the
eigenvalues of the Jacobian matrix J [E1] are computed as:

−1(multiplicity 3), −1 − p2 − p3, −1 − p6 − p8,
−2 − p6 ±

√
p2

6 + 4(1 + p6)ξ R2
01

2
.

Note that all of these seven eigenvalues are negative provided condition (30) is satisfied. The
other four eigenvalues are the roots of the polynomial

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 = 0

where,

A1 = 4 + p2 + p3 + p5 + p9 Ĭ1 + p1V̆1;
A2 = 6 + 3p5 + (p2 + p3)(3 + p5 + p9 Ĭ1) + (p9 Ĭ1 + p1V̆1)(3 + p3 + p5)

+ p1 p9(V̆1 Ĭ1 − S̆1Ŭ1);
A3 = 4 + 3(p2 + p3 + p5) + 2p2 p5 + 2p3 p5

+ p9 Ĭ1(3 + 2p2 + 2p3 + 2p5 + p2 p5 + p3 p5 + p1 p5V̆1 + 2p1V̆1)

+ (p3 p5 + 2p5 + 2p3 + 3)p1V̆1 − p1 p9 S̆1Ŭ1(2 + p2 + p3);
A4 = (1 + p2 + p3)(1 + p5)(1 + p9 Ĭ1 + p1V̆1 + p1 p9V̆1 Ĭ1)

− p1 p9 S̆1Ŭ1(1 + p2 + p3) − p1V̆1(p2)(1 + p5) − p1 p9V̆1 Ĭ1(1 + p5)

Now, substituting the values of state variables at E1 and simplifying, it has been found that
all the four roots of the polynomial are having negative real part for R2

10 > 1, if the Routh–
Hurwitz conditions satisfy. Hence, the state E1 will be locally asymptotically stable if the
Routh–Hurwitz conditions hold. 
�
Remark 1 Accordingly, state E1 is stable when R2

01 < 1. However, when R2
01 > 1, the state

may be stable/unstable subject to the condition (30). These are further explored in terms of
migration:

• Observe that ξ = 1 in absence of migration (p2 = p3 = 0). Therefore, in absence of
migration the state E1 will be locally asymptotically stable when R2

01 < 1.
• When migration is allowed only in patch-1 i.e. p2 = 0 but p3 > 0, it is observed that

ξ = 1 and the state E1 is locally asymptotically stable for R2
01 < 1.

• When p2 > 0 and p3 > 0 then by simplifying the expression for ξ , it may be noted that
ξ still remains smaller than 1. Therefore, the state E1 is again locally stable for R2

01 < 1.

Remark 2 Stability of the state E1 is possible even though R2
01 > 1 since the stability

condition ξ R2
01 < 1 may still be satisfied for sufficiently small ξ < 1 in presence of migration.

Local stability of E2 (disease in patch-2 state) state is discussed below:

Lemma 3 When R2
01 > 1 then

η

(
= (1 + p2 + p3)(p3 + p9 + 2p3 p9 + p4 p9 + p3 p6)

(1 + 2p3)(p9 + p2 p9 + p3 p9 + p4 p9 + p2 p4 p9)

)
< 1 (31)
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Proof Assuming η > 1 leads to R2
01 < 1 which is the contradiction. Therefore, η < 1

whenever R2
01 > 1. 
�

Theorem 4 For η given in (31), the state E2 will be locally asymptotically stable when

ηR2
10 < 1 (32)

Proof For the local stability of E2=(S1, 0, R1, 1, 0, S2, I2, R2, I12,U2, V2), the seven eigen-
values of the 11 × 11 Jacobian matrix are given as follows:

−1(multiplicity two), −1− p6− p8,
1

2
(−2− p2 − p3±

√
p2

2 + p2
3 + 2p2 p3 − 4ρp2 p3 p7Ṽ2)

and
1

2
(−2 − p5 ±

√
p2

5 + 4(1 + p5)ηR2
10).

Note that all of these seven eigenvalues are negative for condition (32). The other eigenvalues
are the roots of following polynomial of degree four

λ4 + B1λ
3 + B2λ

2 + B3λ + B4 = 0

where,

B1 = 4 + p2 + p3 + p6 + p9 Ĩ2 + p4Ṽ2;
B2 = 3 + 3(1 + p2 + p3 + p6) + (p2 + p3)p6

+ 2p9 Ĩ2(1 + p2 + p3 + p6)p9 Ĩ2 − p4 p9 S̃2Ũ2 + (3 + p2 + p6 + p9 Ĩ2)p4Ṽ2;
B3 = 1 + 3(1 + p2 + p3 + p6) + 2p6(p2 + p3) + p9 Ĩ2(3 + 2p2 + 2p3

+ 2p6 + p2 p6 + p3 p6) − p4 p9 S̃2Ũ2(2 + p2 + p3)

+ p4Ṽ2(3 + 2p2 + 2p6 + p2 p6) + p4 p9 Ĩ2Ṽ2(2 + p2 + p6);
B4 = (1 + p3 + p2 + (1 + p4Ṽ2)(1 + p2))(1 + p6 + p9 Ĩ2

+ p6 p9 Ĩ2) − p4 p9 S̃2Ũ2(1 + p3 + p2) + p2 p4(1 + p6)(1 + p9 Ĩ2)Ṽ2

Now putting the values of variables at state E2, all the four roots of the above polynomial are
having negative real part for R2

01 > 1 provided the Routh–Hurwitz conditions satisfy. Hence,
the state E2 will be locally asymptotically stable if the Routh–Hurwitz conditions hold. 
�
Remark 3 Accordingly, state E2 is stable when R2

10 < 1. However, when R2
10 > 1, the state

may be stable/unstable. These are further explored in terms of migration:

• When both the patches are isolated i.e. p2 = 0 and p3 = 0

Assuming R2
01 = p4 p9

1 + p6
> 1, the state E2 will be locally asymptotically stable when

R2
10 < 1.

• When migration is allowed only in patch-2 i.e. p3=0 but p2 > 0, then it is observed that
η = 1 gives the local stability of E2 for R2

10 < 1.
• When p3 > 0 and p2 > 0 then by simplification yields η < 1. Therefore, the state E2 is

again locally stable for R2
10 < 1.

Remark 4 Stability of the state E2 is possible even though R2
10 > 1 since the stability

condition ηR2
10 < 1 may still be satisfied for sufficiently small η < 1 in presence of migration.

Remark 5 When R2
10 > 1 and R2

01 > 1, the states E1 and E2 both exist. when R2
10η < 1

or R2
01ξ < 1, the states E1 or E2 respectively are locally stable while the state E∗ does not

exist. The state E∗ exists for R2
10η > 1 and R2

01ξ > 1.
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For the local stability of the endemic state E�, the three of the eigenvalues of Jacobian matrix
are −1(multiplicity two) and −1 − p6 − p8. Two of the eigenvalues are the negative roots
of second degree polynomial

λ2 + (2 + p2 + p3)λ + (1 + p2 + p3 + ρp2 p3 p7V
�
2 ) = 0

Further, the remaining eigenvalues are the roots of the polynomial of degree 6:

λ6 + D1λ
5 + D2λ

4 + D3λ
3 + D4λ

2 + D5λ + D6 = 0

The expressions for the coefficients of above six degree polynomial omitted from the text
as they are lengthy and complex. The numerical simulations have been performed for the
stability of the endemic state in the next section.

Numerical Simulation

Numerical simulation of the system (1)–(11) are carried out for the data given in Table 1. For
different combination of migration parameters m1 and m2, the thresholds responsible for the
existence and stability of states E1, E2 and E∗ have been computed in Table 2.

For case 1, the existence condition (25) of the state E∗ is violated while both the states
E1 and E2 exist and are given below:

E1 = (0.243, 0.0058, 36.112, 5601.562, 0.679, 0.246, 0, 7.157, 0, 5602.241, 0)

E2 = (2.311, 0, 23.222, 1600, 0, 0.283, 0.005, 7.120, 0.0000043, 5601.638, 0.604)

Table 1 Parameters values Parameters Values

β1 (0, 0.05) [39]

β2 (0, 0.05) [39]

γ1 0.3428 [40]

γ2 0.3667 [40]

μ 0.0000457 [41]

μ1 0.0714 [39]

ω 0.001

ω1 400 [41]

ρ (0, 1)

σ (0, 0.05) [39]

e 0.001 [41]

Table 2 Computation of R10 and R01 for different combination of migration parameters

m1 m2 R10 R01 R2
01ξ R2

10η

Case 1: 0.001 0.005 9.99268 4.17131 0.636259 8.20645

Case 2: 0.005 0.001 4.50934 9.25027 6.24823 0.775578

Case 3: 0.004 0.005 8.16928 6.76781 1.1458 2.1211
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Fig. 2 Starting from initial conditions Y1 = (2.5, 0.00001, 25, 5290, 0.00001, 0.15, 0.00001, 5, 0.00001,

5300, 0.0006), Y2 = (3.5, 0.00001, 31, 5370, 0.00001, 0.55, 0.00001, 8, 0.00000015, 5560, 0.0000001),

Y3 = (1.8, 0.00009, 28, 5400, 0.00006, 0.4, 0.00005, 100.00001554000.0007) and Y4 = (1.2, 0.00006,

38, 5590, 0.00009, 0.85, 0.000061, 60.00001552000.00001) chosen in the neighborhood of E2 converges
to the state E1

According to stability conditions (30) and (32) of the states E1 and E2 respectively, E1 is
found to be locally stable while E2 gets unstable.

A projection of phase plot in S1 − I1 − V1 hyperplane has been drawn in Fig. 2 for the
set of initial conditions Y1, Y2, Y3 and Y4 chosen in the neighborhood of E2. The solution
trajectories are found to be converging to the state E1 in hyperplane S1 − I1 − V1.

Again, for case 2 in Table 2, the existence condition (25) of the state E∗ is violated while
both the states E1 and E2 exist.

E1 = (0.243, 0.0055, 7.161, 5601.591, 0.649, 2.117, 0, 34.238, 0, 5602.241, 0)

E2 = (0.239, 0, 7.149, 5602.241, 0, 0.283, 0.00539, 36.072, 0.0000047, 5601.606, 0.634)

The Fig. 3 shows a projection of phase plot in S2− I2− I12 hyperplane for the initial conditions
Z1, Z2, Z3 and Z4 chosen in the neighborhood of E1. It is observed that the all the trajectories
starting from the neighborhood of E1 converge to the state E2.

For case 3, the states E1, E2 and E∗ exist:

E1 = (0.243, 0.0057, 24.055, 5601.564, 0.677, 0.391, 0, 19.069, 0, 5602.241, 0)

E2 = (0.632, 0, 20.903, 5602.241, 0, 0.312, 0.0053, 19.147, 0.00014, 5601.613, 0.628)

E∗ = (0.243, 0.00459, 24.0546, 5601.699, 0.541, 0.312, 0.001, 17.391, 0.000029,

5602.112, 0.127)

The initial conditions C1 and C2 have been considered in the neighborhood of E1 and the C3

and C4 have been considered in the neighborhood of E2. It is observed from a 3D phase plot
I1 − I2 − I12 drawn in Fig. 4 that all the solution trajectories converge to E∗ in hyperplane
I1 − I2 − I12. This verifies the instability of the states E1 (R2

01ξ > 1) and E2 (R2
10η > 1).

Further, this confirms the stability of E∗.

123



19 Page 14 of 22 Int. J. Appl. Comput. Math (2018) 4:19

Fig. 3 The initial conditions Z1 = (0.3, 0.001, 10, 5360, 0.3, 2.15, 0.000006, 30, 0.00001, 5580, 0.00001),

Z2 = (0.6, 0.002, 8, 5590, 0.1, 4.5, 0.000003, 38, 0.00008, 5450, 0.00001), Z3 = (0.4, 0.005, 5, 5600, 0.2,

3.0, 0.000002, 32, 0.000003, 5290, 0.00001) and Z4 = (0.5, 0.007, 3, 5510, 0.7, 2.0, 0.000009, 28,

0.000006, 5390, 0.00001) chosen in the neighborhood of E1 showing the stability of the state E2

Fig. 4 Starting with the initial conditions C1 = (0.3, 0.008, 20, 5700, 0.5, 0.15, 0.001, 25, 0.001, 5400,

0.0001), C2 = (0.5, 0.003, 26, 5560, 0.3, 0.5, 0.001, 18, 0.001, 5600, 0.00001) in the neighborhood of
E1 and C3 = (0.8, 0.0001, 16, 5410, 0.00001, 0.4, 0.005, 21, 0.0008, 5770, 0.3), C4 = (0.4, 0.0001,

18, 5320, 0.00001, 0.8, 0.003, 25, 0.0006, 5420, 0.8) in the neighborhood of E2, the solution trajectories con-
verge to the state E∗

Sensitivity Analysis

In disease modeling, sensitivity analysis is important to know the change in basic reproduction
number (R0) in response to the parameters it involves. The control measures can then be
targeted on the basis of the sign and magnitude of the sensitivity indices with respect to
various parameters. To compute the sensitivity of parameters of different scale, the normalized
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Table 3 Sensitivity indices of R10 and R01 for m1 and m2

Parameters Sensitivity index for R2
10 Sensitivity index for R2

01

m1 = 0.001, m2 = 0.003 Υ
R10
m1 = − 0.1238, Υ

R10
m2 = 0.1254 Υ

R01
m1 = 0.3664, Υ

R01
m2 = − 0.3713

m1 = 0.003, m2 = 0.001 Υ
R10
m1 = − 0.3718, Υ

R10
m2 = 0.3670 Υ

R01
m1 = 0.1254, Υ

R01
m2 = − 0.1237

forward sensitivity index has been used [42]. The normalized forward sensitivity index of R0

for the parameter p (say) is defined as

Υ R0
p = ∂R0

∂p
× p

R0

Consider basic reproduction numbers R10 and R01 in terms of dimensional parameters as

R2
10 = β1ωω1σ(μ + 2m2)

μμ2
1(μ + γ1)(μ + m1 + m2)

and R2
01 = β2ωω1σ(μ + 2m1)

μμ2
1(μ + γ2)(μ + m1 + m2)

The sensitivity indices with respect to the migration parameters (m1 = m2) for the two
patches are obtained as follows:

Υ R10
m1

= − m1

2(μ + m1 + m2)
;Υ R10

m2
= m2(μ + 2m1)

2(μ + m1 + m2)(μ + 2m2)
;

Υ R01
m1

= m1(μ + 2m2)

2(μ + m1 + m2)(μ + 2m1)
;Υ R01

m2
= − m2

2(μ + m1 + m2)

Due to emigration from patch-1 Υ
R10
m1 is found to be negative. The same is true for Υ

R01
m2 .

However, Υ R10
m2 and Υ

R01
m1 are observed to be positive. This is due to immigration in respective

patches.
From the above expressions, it can be observed that sensitivity indices for the migration

parameters depend on host death rate μ also. For μ = 0.00004, the sensitivity indices
with respect to migration parameters are given in Table 3. It can be concluded that when
rate of immigration is higher than emigration in a patch, the basic reproduction number of
respective patch increases. Particularly, from given Table 3, if m1 increases by 10%, the basic
reproduction number for patch-1 decreases by 1.238%. However, there will be increase of
3.664% in patch-2.

Case Study: Estimation of Basic Reproduction Number

In this paper, a two patch model incorporating human migration is applied for 2003 dengue
outbreak in the two states of Brazil namely, Ceara and Rio de Janeiro. The first case of
DEN-2 serotype in Rio de Janeiro was reported in 1990 then spread over to other states of
the country namely Ceara, Bahia, Rio Grande do Norte, Alagoas, So Paulo, Mato Grosso do
Sul, Mato Grosso, with the highest incidence rate in northeast region [43]. During summer
2002 a large outbreak of dengue due to DEN-3 serotype occurred in Rio de Janeiro [44]. In
2003, the human migration rate in Ceara was quite high as compared to Rio de Janeiro [45].
The sequential infection by DEN-2 serotype led to severe secondary infection cases in the
form of DHF in the state Ceara [46,47]. Keeping these facts in mind, let us consider the state
Rio de Janeiro as patch-1 with DEN-3 serotype prevalent at time t and the state Ceara as
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patch-2 where DEN-2 serotype is present. The estimation of R0 has been performed for the
two patches from the initial growth phase of the epidemics [48]. Let us consider that at the
beginning of the epidemic, the cumulative number of cases, K (t), varies exponentially as

K (t) ∝ K1 exp(λt) (33)

where, λ is the force of infection and K1 is constant. Accordingly, the infected host and
vector population of both the patches are assumed as

Ii (t) ∼ Ii0 exp(λi t) and Vi (t) ∼ Vi0 exp(λi t) (34)

Ii (0) = Ii0(constant) and Vi (0) = Vi0(constant); i = 1, 2

Again, the number of non-susceptible hosts and vectors can be assumed negligible,

Si (t) = Ni Ui (t) = Mi (35)

Now using Eq. (34) for infected host and vector population in the model (1)–(11) gives,

I10

(
λ1

γ1 + μ
+ 1

)
= β1N1V10

γ1 + μ
(36)

V10

(
λ1

μ1
+ 1

)
= σM1 I10

μ1
(37)

I20

(
λ2

γ2 + μ
+ 1

)
= β2N2V20

γ2 + μ
(38)

V20

(
λ2

μ1
+ 1

)
= σM2 I20

μ1
(39)

Multiplying Eqs. (36) and (37) together for patch-1 and Eqs. (38) and (39) for patch-2
respectively give the following:

(
λ1

γ1 + μ
+ 1

)(
λ1

μ1
+ 1

) (
= RE

10

)
= R2

10 (40)

(
λ2

γ2 + μ
+ 1

)(
λ2

μ2
+ 1

) (
= RE

01

)
= R2

01 (41)

The RE
10 and RE

01 are estimated reproduction numbers for the patch-1 and patch-2 respectively.
Now, from the Eq. (33), it can be easily seen that, at the beginning of the epidemic number

of new cases in a month in the patch-1 and patch-2 (say J1 and J2 respectively) would be
proportional to the cumulative number of cases, i.e. J1 ∼ λ1 I10K1(t) and J2 ∼ λ2 I20K2(t)
. Again by plotting the number of new cases per month against the cumulative number of
cases K (t) for the two patches separately, the force of infection which would be the slope of
respective curves, can be obtained [49].

Using the monthly data of the two states of Brazil namely, Rio de Janeiro (say patch-1)
and Ceara (say patch-2) of 2003 from “WHO Dengue NET”, the commutative number of
cases have been plotted against new number of cases in Figs. 5 and 6 respectively. The force
of infection of patch-1 and patch-2 have been given in Table 4 by computing the slope of
respective curves. The time series for the data of respective states has been given in Tables 5
and 6 in “Appendix”. The host parameters (host death rate and recovery rate) have been
taken from literature [40]. The estimation of mosquito mortality rates are described in next
subsection.
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Fig. 5 Force of infection for the state Rio de Janeiro

Fig. 6 Force of infection for the state Ceara

Table 4 Parameter estimation of mosquito mortality rates and basic reproduction number for two states of
Brazil

Parameters Rio de Janeiro Ceara Source

Force of infection 0.0072/month 0.2937/month Estimated

Mosquito mortality rate 0.0319026 (= μ1)per day 0.03075193 (= μ2)per day Estimated

Basic reproduction number 1.009178 (= RE
10) 1.423395 (= RE

01) Estimated

Estimation of Mosquito Mortality Rate

The mortality rate of mosquitoes is temperature dependent. By using the average temperature
records of nine months of the states Rio de Janeiro and Ceara, the estimation of mortality
rate of the mosquito Aedes aegypti has been explored by the enzyme experiment [50,51].
The following formula is obtained to calculate the mortality rate of Aedes aegypti mosquito:
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Table 5 Monthly dengue cases
in Rio de Janeiro in 2003 from
WHO DENGUE NET

Months Number of infectives

1 1765

2 2311

3 1742

4 972

5 523

6 245

7 119

8 77

9 69

Table 6 Monthly dengue cases
in Ceara in 2003 from WHO
DENGUE NET

Months Number of infectives

1 1195

2 2335

3 4143

4 4264

5 4850

6 2844

7 1159

8 548

9 336

μm(T ) = 0.8692 − 0.159T + 0.01116T 2 − 3.408 × 10−4T 3 + 3.809 × 10−6T 4 (42)

where, T is the temperature and μm(T ) is the mortality rate of mosquito.
By using the monthly temperature records of the states Ceara [52] and Rio de Janeiro

[53] and substituting in Eq. (42), the range of mortality rate for the two respective states has
been calculated. The mortality rate of Aedes aegypti mosquito is found to be in the range
of 0.02987767–0.0363767 for the state Rio de Janeiro. However, for the state Ceara, it is
coming in the range of 0.02714614–0.03403341. Using the average value of the mortality
rates, the estimated value of basic reproduction number of the respective states are given in
Table 4.

It is concluded from the Table 4 that the basic reproduction number for the Ceara state of
Brazil is greater than that of the Rio de Janeiro state. This verifies the fact that severe epidemic
was occurred in Ceara in 2003. It supports that human migration is one of the reasons for the
severe outbreak of DHF.

Conclusion

In this paper, a non-linear two patch dynamic model has been proposed to study the dynam-
ics of dengue transmission. It is assumed that the two distinct serotypes are predominant
in respective patches. The main emphasis is given on inter-patch migration of human pop-
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ulation and its impact on spatial spread of primary as well as secondary infection. The
existence conditions for equilibrium states are obtained in terms of R0. The disease-free
state is found to be globally stable provided the basic reproduction numbers (R10, R01)
of both the patches are less than one. It is found from analysis that for the equilibrium
state E1 (E2), where disease persists in patch-1 (patch-2), it will persist there irrespec-
tive of migration if the basic reproduction number of patch-2 (patch-1) is less than 1.
Numerical implementations have been carried out for the relevant data from the litera-
ture to explore the stability of endemic state. For the set of data where E∗ exists, it is
found that starting from the initial conditions in the neighborhood of the states E1 and
E2, the solution trajectories converge to the state E∗. This shows the stability of the
state E∗.

The magnitude of migration parameters and their mutual relationships are very crucial
to predict the stability of various states. When equal rates of migration are consid-
ered in both the patches, the status of disease will not be affected due to migration.
In other words, the disease-free state will not become endemic or vice-versa in any
patch due to migration. However, the level of primary/secondary infection changes
without affecting the disease-free/endemic status. On the other hand, when rate of migra-
tion is different in the patches, the persistence/extinction of infection will depend on
the magnitude of the basic reproduction number of patches as well as the migration
parameters.

Sensitivity indices of the basic reproduction number for the migration parameters are
computed to analyze the effect of emigration and immigration in respective patches. Accord-
ingly, it is found that emigration from a patch decreases the basic reproduction number
of respective patch which consequently increases the chances to establish the infection-
free state. However, higher rates of immigration in a patch may increase the infection
level.

The case study for the two states of Brazil namely, Rio de Janeiro and Ceara is carried out
to validate the model for the sequential infection by DEN-2 and DEN-3 serotypes occurred
during 2003. It has been found from literature that Ceara had more immigration as compared
to Rio de Janeiro in 2003 because of this Ceara had more severe dengue epidemic in 2003.
By estimation of basic reproduction numbers for these two states, the basic reproduction
number for Ceara state is found to be higher than the Rio de Janeiro state. This is in line with
the fact that severe epidemic was occurred in Ceara in 2003.

Appendix

The details of the Jacobian matrices for computing the basic reproduction number and for
the system (12)–(22) are as follows:

The Jacobian matrices of the system (12)–(22) for the new infections (F) and transfer
from one compartment to another (Y ) are given below:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 p1 Ŝ1 0

0 0 0 0 p4 Ŝ2

0 0 0 0 0

p9Û1 0 0 0 0

0 p9Û2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + p5 0 0 0 0

0 (1 + p6) 0 0 0

0 0 (1 + p6 + p8) 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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The next generation matrix FY−1 at the disease-free equilibrium point E0 is evaluated as:

FY−1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 p1(1 + 2p3)/(1 + p2 + p3) 0
0 0 0 0 p4(1 + 2p2)/(1 + p2 + p3)

0 0 0 0 0
p9/(1 + p5) 0 0 0 0

0 p9/(1 + p5) 0 0 0

⎞
⎟⎟⎟⎟⎠

The dominant eigenvalue of the above matrix is the basic reproduction number, R0 (say). It
is given as

R2
0 = max

( p1 p9(1 + 2p3)

(1 + p2 + p3)(1 + p5)
,

p4 p9(1 + 2p2)

(1 + p2 + p3)(1 + p6)

)

The general matrix J [E] of the system (12)–(22) about any equilibrium state (E) is
computed as:

J [E] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j1,1 0 0 p3 0 0 0 0 0 − p1S1 0
p1V1 j2,2 0 0 0 0 0 0 0 p1S1 0

0 p5 j3,3 0 0 p3 0 0 0 0 0
p2 0 0 j4,4 0 0 0 0 0 0 −p4S2

0 0 0 p4V2 j5,5 0 0 0 0 0 p4S2

0 0 j6,3 0 p6 j6,6 0 0 0 0 j6,11

0 0 ρp2 p7V2 0 0 0 j7,7 0 0 0 j7,11

0 −p9U1 0 0 0 0 0 j8,8 0 0 0
0 0 0 0 −p9U2 0 0 0 j9,9 0 0
0 p9U1 0 0 0 0 0 p9 I1 0 −1 0
0 0 0 0 p9U2 0 0 0 p9 I2 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

j1,1 = −p2 − 1 − p1V1; j2,2 = −p5 − 1; j3,3 = −p2 − 1; j6,3 = p2 − ρp2 p7V2;
j4,4 = −p3 − 1 − p4V2; j5,5 = −1 − p6; j6,6 = −p3 − 1; j6,11 = −ρp2 p7R1;
j7,7 = −1 − p6 − p8; j7,11 = ρp2 p7R1; j8,8 = −1 − p9 I1; j9,9 = −1 − p9 I2

The details of number of dengue cases of Rio de Janeiro and Ceara are as follows:
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