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Abstract: Unresolved hyperglycaemia, a hallmark of type 2 diabetes mellitus (T2DM), is a well
characterised manifestation of altered fuel homeostasis and our understanding of its role in the
pathologic activation of the inflammatory system continues to grow. Metabolic disorders like T2DM
trigger changes in the regulation of key cellular processes such as cell trafficking and proliferation,
and manifest as chronic inflammatory disorders with severe long-term consequences. Activation of
inflammatory pathways has recently emerged as a critical link between T2DM and inflammation.
A substantial body of evidence has suggested that this is due in part to increased flux through
the hexosamine biosynthetic pathway (HBP). The HBP, a unique nutrient-sensing metabolic path-
way, produces the activated amino sugar UDP-GlcNAc which is a critical substrate for protein
O-GlcNAcylation, a dynamic, reversible post-translational glycosylation of serine and threonine
residues in target proteins. Protein O-GlcNAcylation impacts a range of cellular processes, including
inflammation, metabolism, trafficking, and cytoskeletal organisation. As increased HBP flux culmi-
nates in increased protein O-GlcNAcylation, we propose that targeting O-GlcNAcylation may be a
viable therapeutic strategy for the prevention and management of glucose-dependent pathologies
with inflammatory components.
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1. Introduction

Sustained hyperglycaemia, which is the hallmark of type 2 diabetes mellitus (T2DM),
comes with far reaching consequences such as increased risk of cardiovascular diseases
(CVD) and kidney failure [1]. While some of the complications associated with hyper-
glycaemia are the result of acute metabolic derangements e.g., ketoacidosis, a majority
of complications are due in part to chronically elevated blood glucose levels e.g., stroke,
neuropathy, retinopathy and nephropathy [1]. Metabolic alterations associated with hyper-
glycaemia have been well characterised [2]. Specifically, the pathogenesis and progression
of T2DM have been ascribed to four key mechanisms; increased polyol pathway flux,
increased advanced glycation end product (AGE) formation, activation of protein kinase
C (PKC) isoforms, and increased hexosamine pathway flux [2,3]. However, until recently,
the contribution of increased hexosamine pathway flux to the development of metabolic
disorders was unclear [2,4–6]. The final product of the hexosamine biosynthetic pathway
(HBP) is the activated amino sugar UDP-GlcNAc, a critical substrate for protein glycosyla-
tion [6–8]. UDP-GlcNAc serves as the sugar donor for O-GlcNAcylation events which is
a dynamic, reversible post-translational modification of serine and threonine residues in
target proteins within cells [8,9]. This process is controlled by two enzymes: O-linked β-N-
acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminidase (OGA) [8,9].
OGT is responsible for catalysing the addition of a O-GlcNAc moiety to either serine or
threonine residues in target proteins [10,11]. Conversely, the enzyme OGA reverses this
modification by catalysing the hydrolysis of O-GlcNAc from protein targets [10,11]. A
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large body of evidence has shown that increased hexosamine pathway flux results in in-
creased OGT-mediated O-GlcNAcylation events [6,12–15]. Importantly, O-GlcNAcylation
of inflammatory pathways, and trafficking and proliferation of cells have emerged as a
critical link between T2DM and the chronic inflammation observed in pathologies that are
a consequence of poor blood glucose control [2,4,5,16]. In recent years, a growing number
of findings elucidating the role of O-GlcNAcylation as vital molecular mechanism in the
pathogenesis of T2DM and its complications have emerged [2,4,5,12–16]. In this review, we
will, therefore, evaluate the involvement of O-GlcNAcylation in the inflammatory events
induced by T2DM and the potential therapeutic viability of targeting O-GlcNAcylation in
preventing and managing disease progression.

2. Hexosamine Biosynthetic Pathway (HBP) and O-GlcNAcylation
2.1. Hexosamine Biosynthetic Pathway (HBP)

The HBP is a distinct nutrient-sensing metabolic pathway that produces the activated
amino sugar UDP-N-acetyl-glucosamine (UDP-GlcNAc), a key substrate for protein gly-
cosylation. This type of glycosylation is particularly sensitive to changes in UDP-GlcNAc
concentration. However, HBP and O-GlcNAcylation are not only sensitive to changes in
glucose concentrations but also changes in protein and lipid metabolism [17]. Over the
years, there have been significant advances in our understanding of this dynamic pathway.
An important breakthrough came when Marshall et al. [18] treated isolated rat adipocytes
with glucosamine (GlcN) to demonstrate the contribution of glucose flux through the HBP
to the development of insulin resistance. Given the likelihood that glucose and GlcN medi-
ate desensitisation through the same mechanism and, since GlcN appears to be 40 times
more potent than glucose, it was suggested that an estimated 2–3% of the incoming glucose
that is converted to fructose-6-phosphate (Fru-6-P) enters the HBP [18]. However, recent
findings by Olsen et al. [19] using a more reliable quantitative assay in an ex vivo mouse
heart model showed that glucose metabolism through the HBP, as determined by the
rates of glycolysis and UDP-GlcNAc synthesis, comprises only ~0.006% of the glycolytic
efflux, which is much lower than that originally proposed [18]. The 2–3% estimate from
Marshall et al. [18] was from a single study in rat adipocyte cultures and expressed as a
representation of the percentage of total glucose uptake. However, it is unclear whether this
value would be consistent between quiescent cells in culture versus metabolically active
organs with high energy demand such as the heart. In view of these shortcomings, the
estimate by Olsen et al. [19] may be more quantitatively reliable.

As shown in Figure 1, when glucose enters the cell, it is converted to fructose-6P
(fructose-6-phosphate), following this, glutamine-fructose-6P amidotransferase 1 (GFAT),
the rate-limiting enzyme in the HBP transfers an amino group to fructose-6-phosphate
from glutamine to form glucosamine-6-phosphate (GlcN-6-P). GlcN-6P is then rapidly
acetylated by glucosamine-phosphate N-acetyltransferase (GNPNAT, EMeg32) in the pres-
ence of Acetyl-CoA, to produce N-acetylglucosamine-6-phosphate (GlcNAc-6P) [20], which
further undergoes isomerisation by GlcNAc phosphomutase (PGM3/AGM1) to produce
N-acetylglucosamine-1-phosphate (GlcNAc-1P) [21]. Then the nucleoside is added to
the sugar by UDP-N-acetylhexosamine pyrophosphorylase 1 (UAP/AGX1) to yield UDP-
GlcNAc which is the amino sugar substrate. UDP-GlcNAc is then used as a substrate for N-
and O-linked glycosylation reactions in the ER and Golgi and for O-GlcNAc modification
of nuclear and cytoplasmic proteins by OGT (O-GlcNAc transferase). OGA (O-GlcNAcase)
catalyses the removal of O-GlcNAc and adds back GlcNAc to the HBP pool for re-cycling
through the salvage pathway. Studies have shown that unresolved and sustained hypergly-
caemia increases glycolytic efflux and subsequent activation of HBP which then increases
production of the amino sugar substrate UDP-GlcNAc for protein glycosylation [6,12–15].
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Figure 1. Schematic of the hexosamine biosynthetic pathway. fructose-6P (fructose-6-phosphate), 
glucosamine-6P (glucosamine-6-phosphate), GFAT (glutamine:fructose-6-phosphate amidotrans-
ferase), OGT (O-GlcNAc transferase), OGA (O-GlcNAcase) GNA1/GNPNAT1 (glucosamine-6-
phosphate N-acetyltransferase), GlcNAc-6P (N-acetylglucosamine-6-Phosphate), GlcNAc-1P (N-
acetylglucosamine-1-phosphate), PGM3/AGM1 (phosphoglucomutase), UDP-GlcNAc (uridine di-
phosphate-N-acetylglucosamine), UAP/AGX1 (UDP-N-acetylhexosamine pyrophosphorylase). 

Figure 1. Schematic of the hexosamine biosynthetic pathway. fructose-6P (fructose-6-phosphate),
glucosamine-6P (glucosamine-6-phosphate), GFAT (glutamine:fructose-6-phosphate amidotrans-
ferase), OGT (O-GlcNAc transferase), OGA (O-GlcNAcase) GNA1/GNPNAT1 (glucosamine-6-
phosphate N-acetyltransferase), GlcNAc-6P (N-acetylglucosamine-6-Phosphate), GlcNAc-1P (N-
acetylglucosamine-1-phosphate), PGM3/AGM1 (phosphoglucomutase), UDP-GlcNAc (uridine
diphosphate-N-acetylglucosamine), UAP/AGX1 (UDP-N-acetylhexosamine pyrophosphorylase).
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2.2. Protein O-GlcNAcylation

O-GlcNAcylation is a dynamic post-translational glycosylation that links single Glc-
NAc molecules to target serine and threonine residueson target proteins by an O-linked
β-glycosidic bond [21]. The O-GlcNAcome recently reached a milestone of 5000 human
proteins identified [22]. Distinct from other protein glycosylation events, which are chiefly
produced by the secretory pathways, O-GlcNAcylated proteins are predominantly lo-
calised in the nucleus and cytoplasm, with only approximately 7% of O-GlcNAc moieties
detectable at the cell surface [7,21]. Furthermore, cellular distribution analysis has con-
firmed that O-GlcNAcylated proteins are chiefly concentrated in nuclear and cytoplasmic
compartments (Figure 2) [22]. O-GlcNAcylation has been shown to be highly enriched on
proteins in nuclear pore complexes and the nuclear envelope [21,23], as well as proteins
that can interact with chromatin [24]. Cytoskeletal [25], and intrinsic membrane proteins
in the Golgi apparatus and endoplasmic reticulum (ER) have also been shown to be O-
GlcNAcylated [26]. Unlike phosphorylation and other post-translational modifications
(PTMs), there is currently no consensus sequence that can accurately predict target protein
modification by O-GlcNAcylation.
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As stated earlier, a single pair of enzymes—OGT and OGA—controls this dynamic
cycling [15,16]. OGT catalyses the attachment of a monosaccharide (GlcNAc) moiety to the
free hydroxyl group of either serine or threonine residues in target proteins through an
O-glycosidic linkage [10,11,27]. The human OGT gene produces three known isoforms of
OGT namely the ncOGT, mOGT, and sOGT. The ncOGT which is the longest of the isoforms
is localized to both the nucleus and cytoplasm. It contains a unique N-terminal sequence
followed by 12 tetratricopeptide repeats (TPR) motifs, a linker region, and the catalytic
domain. Furthermore, mOGT, the second isoform has a distinct N-terminal sequence which
includes a mitochondrial targeting motif. The N-terminal sequence is then followed by
9 TPR motifs, a linker region, and the catalytic domain. sOGT, the shortest of the isoforms
is ubiquitously expressed. Characteristically, it has only 2 TPR motifs, a linker region, and
the catalytic domain. Importantly, all three isoforms have identical catalytic region which
contained two sub-domains termed CD I and CD II [11,27].
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Conversely, OGA, which was first purified from rat spleen cytosol, reverses O-
GlcNAcylation by catalysing the hydrolysis of O-GlcNAc from protein targets [11]. OGA is
largely enriched in the cytosol, unlike OGT, which accumulates in the cytoplasm and nu-
cleus [28]. The OGA transcript encodes a protein with three distinct regions: a N-terminal
catalytic domain, a stalk domain and a C-terminal pseudo-histone acetyltransferase do-
main [29,30]. The human OGA can exist as a homodimer with a unique interaction with
other OGAs. During this interaction, it uses the substrate-recognition mode in which its
stalk domain combines with the catalytic domain from other OGA monomer, and this
interaction forms a cleft for substrate binding [30–33]. Also, hydrophobic residues are
chiefly dominant in the inner surface of the substrate binding cleft, and are conserved in
most eukaryotes. These hydrophobic interactions are important for protein binding and
spatial constraints [30].

3. Involvement of O-GlcNAcylation in Inflammation
3.1. Impact of O-GlcNAcylation on Inflammatory Signalling Pathways

Activation of inflammatory signalling pathways by glucose-dependent metabolic
stress is a major phenomenon in the pathogenesis and progression of T2DM [2,4] as well
as other known pathologies such as cancers, autoimmune disorders and neurological dis-
ease [34–38]. Despite our incomplete understanding of the mechanisms responsible for
nutrient regulation of inflammation, several studies suggest that O-GlcNAcylation is critical
to the pathophysiology of inflammatory derangements [37,39–43]. Importantly, while some
studies have indicated that O-GlcNAcylation of target proteins is a pro-inflammatory event
in diabetes and is involved in the development of insulin resistance [44,45]. Conversely,
others have shown that this dynamic post-translational modification can also confer protec-
tion against acute inflammatory stimuli [46–48]. These findings [44–48] strongly suggest
that diverse forms of insults could result in dynamic changes to O-GlcNAcylation patterns
to either promote or inhibit inflammation in response to fluctuations in cellular metabolism.
This section of the review highlights core involvement of O-GlcNAc modification of target
proteins in inflammatory pathways.

3.1.1. Pro-Inflammatory Role of O-GlcNAcylation

Emerging findings have continued to improve our understanding of the pro-inflammatory
role of O-GlcNAcylation in the NF-κB signaling pathway. NF-κB is a chief regulator of
innate and adaptive immune responses and plays a central role in chronic inflammation
responsible for tumour development, rheumatoid arthritis, atherosclerosis, chronic ob-
structive pulmonary disease, asthma, multiple sclerosis, inflammatory bowel disease, and
ulcerative colitis [49–53]. Yang et al. [54] have shown that the p65/RelA NF-κB subunit is
O-GlcNAcylated in rat vascular smooth muscle cells. O-GlcNAc modification of NF-κB
p65 on Thr352 inhibits the interaction between NF-κB p65 and IκB, thereby promoting
translocation of NF-κB heterodimers to the nucleus and increasing transcription of target
genes such as the gene for adhesion molecule VCAM-1 under hyperglycaemic condi-
tions [50]. These findings strongly suggest that specific O-GlcNAcylation of p65/RelA
on Thr352 may facilitate sustained activation of NF-κB-mediated chronic inflamamtion in
response to prolonged hyperglycaemia and development of diabetes [50]. Although the
mechanism of how O-GlcNAcylation activates NF-κB signaling is not fully understood,
however, O-GlcNAcylation has been shown to increase the phosphorylation and acety-
lation of NF-κB subunit p65/RelA [51]. O-GlcNAc modification of p65 at Thr305 and
Ser319 increased CREB-binding protein (CBP)/p300-dependent activating acetylation of
p65 at Lys310, and this contributes to NF-κB transcriptional activation [51]. Also, elevation
of O-GlcNAcylation by upregulating the expression of OGT increased the expression of
p300, IKKα, and IKKβ and promoted IKK-mediated activating phosphorylation of p65 at
Ser536, contributing to NF-κB activation (Figure 3) [51]. Similarly, it has been proposed that
O-GlcNAcylation of IKKβ at Ser733 enhances NF-κB activity by increasing IKK activity,
IκB phosphorylation and subsequent IκB degradation in both mouse and human fibrob-
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lasts [52]. These findings [49,50,52] suggest mechanisms through which O-GlcNAcylation
regulates NF-κB signaling through interplay with phosphorylation and acetylation with
consequent inflammatory outputs.
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Figure 3. Schematic of the pro-inflammatory downstream signalling modulation by O-GlcNAcylation.
O-GlcNAc (O-linked β-N-acetylglucosamine), OGT (O-linked β-N-acetylglucosamine transferase),
NF-κB (nuclear factor kappa light chain enhancer of activated B cells), STAT3 (signal transducer
and activator of transcription3), TAK 1 (Transforming growth factor-β activated kinase 1), TAB1
(TAK1-binding protein 1), Nod2 (nucleotide-binding oligomerization domain-containing protein 2),
IL-1,6,8, and 12 (Interleukin-1,6,8, and 12), Sp1 (substrate of Keap1), CXCL1 (chemokine ligand 1),
VEGF-A (vascular endothelial growth factor), ICAM-1 (intercellular Adhesion Molecule 1), TNF-α
(tumor necrosis factor alpha).

Furthermore, Sp1, a zinc finger transcription factor is also O-GlcNAcylated in response
to high glucose concentrations and elevated Sp1 activity upon O-GlcNAcylation could play
a role in hyperglycaemia-induced pro-fibrotic and pro-inflammatory factors involved in
diabetic retinopathy [55,56]. Donovan et al. [55] showed that hyperglycaemia significantly
increased Sp1 binding to the gene promoter of the pro-angiogenic mediator vascular
endothelial growth factor (VEGF)-A, while shRNA-mediated knockdown of either OGT
or Sp1 significantly inhibited glucose-induced increases in VEGF-A levels in ARPE-19
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human retinal pigment epithelial cells and TR-iBRB rat retinal microvascular endothelial
cells. These observations suggest that hyperglycaemia-induced O-GlcNAcylation of Sp1
drives VEGF-A production in both systems. Zhang et al. [56] have also proposed that
hyperglycaemia also stimulates expression of intercellular adhesion molecule (ICAM)-1
by O-GlcNAcylation of Sp1 in both human umbilical vein endothelial cells and rat retinal
capillary endothelial cells.

Alternatively, the transcriptional activity of Sp1 can be reduced when O-GlcNAc
modified, and this may be due to the resultant distortion in its interaction with its co-
operative factors such as Elf-1 [57], NF-Y [58], Ying-Yang 1 [59], and sterol regulatory
element binding protein 2 [60]. Thus, O-GlcNAc modification of Sp1 could contribute to
negative regulation of placental and embryonic expression of oncofetal protein gene (Pem),
a gene which encodes a homeobox protein expressed in reproductive tissues and a wide
range of transformed cells [57]. Furthermore, O-GlcNAcylation of Sp1 inhibits hyaluronan
synthesis (an important component of the extracellular matrix that plays a crucial role
for cumulus cell expansion which occurs during maturation of oocytes [59,60], and lipid
synthesis [61]. Intriguingly, Suh et al. [62] demonstrated that O-GlcNAc modification of Sp1
protects primary cultured renal proximal tubule cells against hypoxia-induced dysfunction
of Na/glucose cotransporter (SGLT). Similarly, Lee et al. [63] showed that O-GlcNAcylation
of Sp1 protects mouse embryonic stem cells against hypoxia-induced apoptosis. A weak-
ened association between Sp1 and its co-operative factors caused by O-GlcNAcylation is
one potential mechanism which could explain these phenomena.

As a critical effector of cytokines which activate the Janus kinase (JAK)-STAT pathway,
STAT3 function is tightly controlled [64]. However, our understanding of how metabolic
changes regulate STAT3 function via specific PTMs that regulate STAT3 function, and their
pathophysiological significance remain incomplete. Li et al. [46] demonstrated that there
was an increased disease severity in azoxymethane-induced colitis and a colitis-associated
cancer model in the bone marrow-derived macrophages isolated from CUL3-deficient mice.
Li et al. [46] proposed that this was due to increased O-GlcNAcylation of STAT3. In addition,
the expression levels of pro-inflammatory cytokines IL-1 and IL-6, and chemokines CXCL1
and CXCL2 were upregulated by O-GlcNAcylated STAT3 in BMMs from CUL3-deficient
mice, thus contributing to azoxymethane-induced colitis and colitis-associated cancer.

Apart from the transcription factors highlighted above, other proteins which control
inflammation and immunity e.g., Transforming growth factor-β activated kinase (TAK)
1 are also O-GlcNAcylated. TAK1 is an important serine/threonine protein kinase that
mediates signals transduced by multifunctional cytokines such as TGF-β, TNF-α and
IL-1 [65]. Emerging data have suggested that O-GlcNAcylation of TAK1-binding protein 1
(TAB1) at Ser395 is needed for TAK1 activation [65]. More so, activated TAK1 is intricate to
downstream activation of NF-κB and production of IL-6 and TNF-α in human embryonic
kidney (HEK) 293 cells stably expressing the IL-1 receptor and reconstituted Tab1-deficient
MEFs upon exposure to IL-1 or hyperosmotic stress [65]. Upon stimulation, O-GlcNAc
modification of TAK1 at Ser427 is needed for the phosphorylation of Thr187/Ser192 and full
activation of TAK1 in RAW264.7 cells [66]. Thus, O-GlcNAc modification of TAK1 has been
shown to trigger downstream activation of JNK and NF-κB signaling pathways, facilitate
M1 polarisation of macrophages, and increase production of pro-inflammatory cytokine,
resulting in the development of acute inflammatory responses [67]. Also, a cytoplasmic hu-
man nucleotide-binding oligomerization domain-containing protein 2 (Nod2)-like receptor
that recognises bacterial components, is O-GlcNAcylated and this modification causes it to
produce various pro-inflammatory cytokines and chemokines via activation of NF-κB in
HEK293T cells (Figure 3) [42].

3.1.2. Anti-Inflammatory Role of O-GlcNAcylation

There is evidence to support O-GlcNAc modification of target proteins in the vascula-
ture as a novel anti-inflammatory and vasoprotective mechanism [47,48]. Xing et al. [47]
acutely treated ovariectomized rats with GlcN and PUGNAc before balloon injury of
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the right carotid artery and found that GlcN and PUGNAc each upregulated protein O-
GlcNAcylation and significantly ameliorated acute inflammation [47]. Also, increased levels
of proinflammatory HIS48+ granulocytes and ED1+ monocytes in response to injury were
significantly reduced by GlcN and PUGNAc treatment through reduced infiltration into
injured arteries [47]. The authors were also able to demonstrate that chronic (14 days) treat-
ment with GlcN significantly reduced neointima formation in injured arteries compared
with vehicle controls [47]. A protective anti-inflammatory role for O-GlcNAcylation in the
vasculature is also supported by Hilgers et al. [48], who demonstrated that acute increases
in protein O-GlcNAcylation were associated with reduced TNF-α-induced hypocontractil-
ity of rat aortic rings. In this study, iNOS protein expression was increased in TNF-α-treated
rings, and this was attenuated by pretreatment with either GlcN or Thiamet-G, suggesting
that acute increases in protein O-GlcNAcylation ameliorated TNF-α induced vascular
dysfunction at least in part by limiting iNOS expression (Figure 4) [48].
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Figure 4. Schematic of the anti-inflammatory downstream signaling by O-GlcNAcylation. GlcN
(Glucosamine), OGA (O-linked β-N-acetylglucosaminidase), PUGNAc (O-(2-acetamido-2-deoxy-
D-glucopyranosyliden)amino-N-phenylcarbamate), iNOS (inducible nitric oxide synthase), IL-6
(interleukin-6), TNF-α (tumor necrosis factor alpha), NF-κB (nuclear factor kappa light chain enhancer
of activated B cells), COX2 (cyclooxygenase-2).

Furthermore, Hwang et al. [68] proposed that GlcN could be a novel neuroprotective
or anti-inflammatory agent. In this study [68], administration of GlcN was found to
reduce infarct volume and ameliorates motor impairment and neurological deficits in a
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rat middle cerebral artery occlusion model of ischaemic stroke. Also, GlcN suppressed
LPS-induced upregulation of pro-inflammatory mediators in BV2 microglial cells and
RAW264.7 macrophages [68]. GlcN is a substrate for GFAT, the rate-limiting enzyme
in the HBP (Figure 1). Increase in the influx of glucose and glutamine would result in
increased UDP-GlcNAc levels and upregulation of O-GlcNAcylation. However, in this
case, Hwang et al. [68] suggest that GlcN inhibits the O-GlcNAcylation of NF-κB, probably
by disturbing the association between OGT and NF-κB.

In addition, Zou et al. [69] showed that increased O-GlcNAcylation by PUGNAc
administration following induction of trauma-haemorrhage (TH) in fasted rats improves
recovery of organ perfusion and function. In this study [69], they demonstrated that
PUGNAc attenuated the TH-induced increase in plasma IL-6 levels, and suggested that
PUGNAc, like GlcN, improves cardiac function and organ perfusion by reducing the level of
circulating IL-6 and TNF-α after TH. The same researchers have also shown that treatment
of fasted rats with GlcN attenuated TH-induced increases in NF-κB activation and reduced
cardiac levels of TNF-α and IL-6 mRNAs, ICAM-1 protein and myeloperoxidase activity
(Figure 4) [70]. These results demonstrate that the modulation of O-GlcNAc levels regulates
activation of the NF-κB pathway in the heart, which may contribute to the observed
GlcN-mediated improvement in cardiac function following haemorrhagic shock.

Also, sepsis leading to multiple organ damage is mainly caused by an uncontrolled
systemic inflammatory response. However, the mechanisms responsible for this are unclear
and our understanding of its pathogenesis remains incompletely understood [71,72]. As it
shares common major blood lineages [73] and strikingly similar immune system architec-
ture with humans, the zebrafish has been proposed as a tractable model to investigate the
underlying pathophysiology of infectious diseases as well as immune and inflammatory
disorders [73–75]. In addition, Hwang et al. [76] have demonstrated that pre-treatment
of mice with GlcN upregulated protein O-GlcNAcylation and improved survival in the
caecal ligation and puncture (CLP)-induced sepsis, and attenuated LPS-induced septic
lung injury and systemic inflammation. In this study [76], they demonstrated that LPS
reduced O-GlcNAcylation of nucleocytoplasmic proteins in liver, lung, and spleen. Also,
LPS-induced downregulation O-GlcNAcylation in mouse lung was inhibited by GlcN, and
the OGA level increased by LPS was suppressed by GlcN [76].

Another study has provided evidence that GlcN stimulates the O-GlcNAcylation of
both nuclear and cytosolic forms of c-Rel [77]. Furthermore, this study demonstrated that
upon stimulation with LPS, GlcN inhibits the binding of c-Rel to the NF-κB site in the iNOS
promoter [77]. Although the mechanism through which GlcN exacts these effects is not
fully understood, however, it is suggested that GlcN is impairs the interaction between
OGT and c-Rel [77]. It has been observed in N9 microglial cells treated with LPS, the
enhanced expression of iNOS, NO and ROS is mediated via the downregulation of OGT
and protein O-GlcNAcylation, or via the upregulation of MAPKs phosphorylation and
NF-κB translocation [78]. Also, overexpression of OGT inhibits LPS-induced activation of
NF-κB and iNOS through modulation of histone acetylation either directly or indirectly [79].
Furthermore, Thiamet G improved clinical outcomes and ameliorated the neurological
deficits when used to treat mice either before or after middle cerebral artery occlusion
(MCAO) [80]. Additionally, the number of Iba1+ cells in MCAO mice were reduced when
treated with Thiamet G [80]. Also, expression of MI markers was decreased by Thiamet
G, conversely, the expression of the M2 markers increased in vivo [80]. Also, Thiamet G
decreased the expression of iNOS and COX2 mainly by suppressing NF-κB p65 signaling
(Figure 4) [80]. These results suggest that Thiamet G exerts a neuroprotective effect which
suggest its usefulness as a potential anti-inflammatory agent for ischemic stroke therapy.

Furthermore, the deubiquitinase A20 has been identified as suppressor of NF-κB
pathway activation [81]. Our understanding of the downstream regulation of the activi-
ties of A20 is still unclear. However, it has been shown that GlcN and Thiamet G which
significantly increased O-GlcNAc modification of A20 enhanced its binding to TAB1, a
key regulator of A20 activity [81]. These studies [81,82] suggest that O-GlcNAcylation is a
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critical regulatory modulator of the activities of A20, which consequently downregulates
NF-κB signaling, including in vascular smooth muscle cells. Furthermore, it has been shown
that the activities of Glutathione peroxidase 1 (GPX1) is induced by hyperglycaemia [83].
GPX1 is an anti-oxidant enzyme that is critical for cell survival. Hyperglycaemia en-
hances the O-GlcNAc modification of GPX1 and subsequently increases the association
between non-receptor tyrosine kinase c-Abl and Arg in rat vascular smooth muscle cells [83].
Also, 1,2-dideoxy-2′-propyl-alpha-D-glucopyranoso-[2,1-d]-Delta2′-thiazoline (an OGA
inhibitor) was shown to cause the activation of GPX1 in the mouse liver [83]. Furthermore,
Hwang et al. [84] after stimulating with LPS, discovered that GlcN relieves the basal tran-
scription activity of RNA polymerase II (RNAPII), a multiprotein complex that catalyzes
the transcription of all protein-coding genes and several non-coding RNAs. They suggest
that this observation was due to increased O-GlcNAcylation of RNAPII and DNA binding
upon treatment with GlcN, which are inhibited by LPS [84].

3.2. Intrinsic Role of OGT and OGA in Inflammatory Pathways

Findings showing the intrinsic involvement of the key modulating enzymes of O-
GlcNAcylation in inflammation are beginning to emerge [46,85–87]. Mutual and balanced
interaction between OGT and OGA is critical for normal O-GlcNAc homeostasis. However,
sustained alteration in form of enhancement or inhibition of these key enzymes initiates
the development of O-GlcNAcylation mediated pathologies with inflammatory compo-
nents. Recent findings have demonstrated that OGT promotes inflammatory responses
in macrophages [46,49,85,86,88]. NF-κB which is a critical regulator of pro-inflammatory
responses in macrophages has been shown to be O-GlcNAc modified [49]. Allison et al. [49]
demonstrated that OGT could co-localise to NF-κB–regulated promoters causing the modifi-
cation of Thr305 residue of the NF-κB subunit RelA. This was shown to promote acetylation
on K310 of RelA, and further enhanced NF-κB transcriptional activity after stimulation of
tumour necrosis factor (TNF) [49]. Allison et al. [49] further showed that a knockdown
of OGT abolishes p300-mediated acetylation of RelA on Lys310, a posttranslational mark
required for full NF-κB transcription. Similarly, Ramakrishnan et al. [85] identified Ser350
as the site of modification and activation of NF-κB subunit c-Rel. They also showed that pre-
venting the OGT mediated O-GlcNAc modification of this residue repealed c-Rel–mediated
expression of the cytokine-encoding genes IL2, IFNG, and CSF2 in response to TCR activa-
tion, whereas increasing the extent of O-GlcNAcylation of cellular proteins promoted the
expression of these genes [85].

Microglial cells are the brain resident macrophage [89]. In BV2 microglia cells, c-Rel has
been shown to interact with OGT upon lipopolysaccharide (LPS) treatment, which promotes
c-Rel O-GlcNAcylation and formation of a c-Rel-p50/p105 heterodimeric complex [77].
More so, this study [88] demonstrated that the S-nitrosylation of OGT inhibits its catalytic
activity in resting RAW 264.7 murine macrophage cells [88]. However, stimulation of
OGT with LPS results in de-nitrosylation of OGT which then enhanced OGT-mediated
O-GlcNAc modification of p65/RelA [88]. Furthermore, attenuation of O-GlcNAcylation
negatively modulates p65 nuclear translocation, resulting in diminished production of
nitric oxide (NO) and IL-1β [88]. Also, the role of STAT3, a critical transcription factor
in promoting inflammation and tissue repair has been well enumerated [90,91]. More so,
STAT3 can induce IL-10 production in macrophages to suppress inflammation [92]. It has
been previously demonstrated that OGT modulated O-GlcNAc modification of STAT3 at
transactivation domain Thr717 competitively downregulates STAT3 phosphorylation which
results in reduced production of IL-10 [46]. Furthermore, in macrophages derived from the
bone-marrow, OGT expression can be transcriptionally downregulated by myeloid-derived
cullin 3 (CUL3), a process dependent on nuclear factor-2 (Nrf2) which binds to the Ogt
promoter to increase gene transcription [46,93,94]. Therefore, CUL3 counteracts STAT3
O-GlcNAcylation to elevate STAT3 phosphorylation and inhibit inflammation [46].

In contrast, many studies have demonstrated that increased O-GlcNAcylation corre-
lates with suppression of inflammation in sepsis and ischemia [76,95–99]. Upon GlcN treat-
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ment, which bypasses the GFAT rate-limiting step to induce hyper-O-GlcNAcylation [95],
the transcriptional activity of c-Rel is inhibited, thereby reducing NF-κB-mediated expres-
sion of inducible nitric oxide synthase (iNOS) in LPS stimulated BV2 microglial cells [68,77].
Furthermore, it has recently been shown that receptor-interacting serine/threonine-protein
kinase 3 (RIPK3) can be O-GlcNAc modified [96]. RIPK3 is a member of the necrosome
complex, a complex consisting of RIP1, RIP3, and Fas-associated protein with death domain
causing rapid plasma membrane rupture and induction of an inflammatory response. This
is done through the release of damage-associated molecular patterns and cytokines [97,98].
Also, RIPK3 reduces inflammation by diminishing the production of pro-inflammatory
cytokines resulting from necroptosis of macrophages [100]. Interestingly, O-GlcNAc modifi-
cation of RIPK3 at Thr467 is believed to suppress RIPK3-RIPK1 and RIPK3-RIPK3 complex
formation, therefore preventing necroptosis of macrophages [96]. Ogtf/f Lyz2-cre conditional
knockout mice, in which Ogt is specifically deleted in macrophages, revealed significantly
increased activation of RIPK3, elevated production of inflammatory cytokine, and more
severe mortality in experimental sepsis when compared with control mice [96]. Further-
more, Yang et al. [87] have shown that OGT prevents macrophage mediated inflammation
and metabolic disturbance by suppressing the phosphorylation of S6 kinase beta-1 (S6K1).
Phosphorylation of S6K1, a ribosomal protein is critical for macrophage proinflamma-
tory activation [87]. More so, OGT mediated O-GlcNAcylation is downregulated during
macrophage proinflammatory activation, and knockout of OGT in high fat-diet induced
obese mice enhances macrophage proinflammatory polarization and promotes adipose
tissue inflammation [87].

On the other hand, acute upregulation of O-GlcNAcylation by inhibiting OGA have
been shown to prevent inflammation-induced vascular dysfunction, hence, confer a protec-
tion on the heart and vasculature [48]. Hilgers et al. [48] demonstrated that acute increase
in O-GlcNAcylation by inhibiting OGA prevented TNF-α-induced vascular dysfunction.
Furthermore, O-GlcNAcylation can possibly modulate the polarisation of M2 macrophages
in a pattern that contribute to resolution of inflammation and tissue repair [76,80,99].
This study [76] demonstrated that treatment with GlcN reduced M1 macrophage-specific
gene expression profiles in macrophages in an LPS-induced septic lung injury animal
model. More so, when Thiamet-G, a selective OGA inhibitor [80] was administered to
a mouse model of middle cerebral artery occlusion, there was an increase in the expres-
sion M2-specific markers in microglia [80]. Also, there was suppression of NF-κB p65
signaling which resulted in diminished expression of iNOS and cyclooxygenase-2 (COX-2)
expression [80]. This strongly suggests that alteration O-GlcNAc homeostasis can vary the
differentiation of M2 versus M1 macrophages in tissues.

4. Targeting O-GlcNAcylation in Inflammatory Derangements: Perspectives

O-GlcNAcylation is currently an unexplored therapeutic target in the management of
pathologies with inflammatory derangements; this may be due to the fact that the involve-
ment of this dynamic PTM is just beginning to evolve. Also, our current understanding
of the involvement of O-GlcNAcylation in inflammatory pathways is unclear. More so,
that O-GlcNAcylation seem to be a dual-directional regulator of inflammatory system.
Therefore, further characterisation would help improve our current knowledge which
could pave way for the development of new therapeutics that can find their way into
mainstay clinical applications. Over 5000 proteins have now been identified as targets
for O-GlcNAcylation and this will continue to increase due to technological advances
in the mapping of protein O-GlcNAcylation sites [22,100,101]. As we have described in
detail, the role of O-GlcNAcylation in the activation of pro-inflammatory and immunomod-
ulating pathways has gained more attention. For example, findings have shown that
O-GlcNAcylation activates NF-κB and NFAT pathway [39,50–52,102]. Activation of NF-κB
initiates the transcription of relevant downstream target genes with pro-inflammatory
tendencies and on the other hand, activation of the NFAT pathway has been linked with
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modification of proteins in human bronchial epithelial cells by fibroblast growth factor
23 resulting in upregulation of IL-6 and regulation of airway inflammation [103].

Furthermore, recurring and/ prolonged inflammation, a common and characteristic
feature of a variety of disorders such as autoimmune disease, diabetes, and cancer have
been attributed to aberrant regulation of NF-κB activity [104–106]. Therefore, a clearer
understanding of the mechanisms that underpin the involvement of NF-κB in the inflam-
matory process may have great biological and clinical significance. Increased cellular
O-GlcNAc level which is typical in diabetes and insulin resistance is usually accompanied
by NF-κB activation, and treatments that upregulate O-GlcNAcylation appear to have
anti-inflammatory and pro-survival effects during acute injuries like myocardial infarction,
burns, trauma and sepsis [69,70,107,108]. For instance, GlcN and PUGNAc improved
organ perfusion and function after trauma-hemorrhage in fasted male rats [69]. Also,
Xing et al. [109] showed that treatment of rat aortic smooth muscle cells with GlcN and
PUGNAc prevented TNF-α induced inflammatory stress by upregulation of O-GlcNAc
modification of p65 on Ser536. Xing et al. [109] further suggested that GlcN and PUGNAc
inhibited TNF-α induced phosphorylation of NF-κB p65, thus inhibiting NF-κB signaling
in rat aortic smooth muscle cells. In vivo, dextran sodium sulfate-induced phosphoryla-
tion of NF-κB p65 and IL-1β mRNA expression are significantly lower in Ogt-transgenic
when compared wild type mice. This suggests that acute colitis could be prevented by
upregulating O-GlcNAcylation which result in diminished acute inflammation [110].

Also, alteration in the metabolic pathways of effector T cells is core to the progress of
insulin resistance and atherosclerosis and this may lead to enhanced supply of metabolites
to the HBP, thereby promoting O-GlcNAc modification. More so, effector T cells such as Th1
and Th17 cells are crucial for several autoimmune diseases, including inflammatory bowel
disease, rheumatoid arthritis, multiple sclerosis (MS), and systemic lupus erythematosus
(SLE) [111]. It has been suggested that the progression of SLE is enhanced by the reactivation
of the silenced X-chromosome due to CD4+ T cell DNA demethylation and diet [112]. Hence,
it is proposed that the magnitude of overexpression of OGT in CD4+ T cells could be a
critical factor that contributes to the progression of SLE in women [112]. Additionally, it
has been demonstrated that miR-15b suppressed the differentiation of Th17 cells which are
likely the most critical pathogenic factor of human MS [113]. It is suggested that this results
in suppression of the pathogenesis of MS by decreasing the expression of OGT in an NF-κB
p65- and c-Rel-dependent manner [113]. Taken together, these observations should lead
to the investigation of the links between protein O-GlcNAcylation and the activation of T
cells in metabolic and autoimmune diseases. We believe that further characterisation of
the role of OGT and O-GlcNAc modification in autoimmunity may yield new therapeutic
targets for autoimmune diseases with inflammatory components.

Furthermore, the involvement of O-GlcNAcylation in pro- versus anti-inflammatory
processes is dependent on the distinct GlcN stimulus which regulates inflammation by
sensing both a healthy nutritional status and overnutrition. At normoglycaemic concentra-
tions, GlcN enhances LPS-triggered inflammation in macrophages in a dose-dependent
manner, conversely, in high glucose cell culture the inflammation of macrophages was
suppressed [114]. Also, it was observed that LPS-stimulated induction of iNOS as well as
an increase in DNA binding of c-Rel to the iNOS promoter in macrophage cells is increased
by GlcN in normoglycaemic conditions and decreased in high glucose conditions [114].
In addition, there is a high risk in pregnancy due to hyperglycaemia which could have
negative effects on the fetus. Considering that O-GlcNAcylation is a nutritionally respon-
sive modification; hence, excess flux of glucose may alter the O-GlcNAc homeostasis in
the intrauterine environment resulting in metabolic deregulation of the offspring [115].
Furthermore, inhibition of TNF-α and IL-8 gene expression in osteoarthritis is mediated
in part by GlcN-induced O-GlcNAcylation [116]. Therefore, these findings suggest that
depending on the cell state, the nature of insult, and the cellular nutrition state, HBP may
swiftly adapt the management pattern to regulate inflammation, resulting in either pro-
or anti-inflammatory outcomes [114]. Thus, proper modulation of O-GlcNAc homeostasis
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presents a viable therapeutic strategy for combating inflammatory diseases and metabolic
dysregulation such as sepsis, diabetes, and osteoarthritis.

Pharmacological modulation of the critical enzymes (OGT and OGA) that regulate
this dynamic PTM might be a critical lead way in treating inflammatory derangements.
Drugs like alloxan [117,118], benzoxazolinones [119], BADGP (Benzyl-2-acetymido-2-
deoxy-α-D-galactopyranoside) [120–122] are used as OGT inhibitors but due to off-target
effects and toxicities, their role over the years has been limited to experimental and
in vitro studies [122,123]. However, more recently developed OGT inhibitors such as
Ac-5SGlcNAc [124,125], OSMI 1 [126], OSMI 2-4 [127], and L01 [128] have not only helped
improve the understanding and characterisation of this dynamic PTM but are more promis-
ing as potential pharmacological agents as they have shown improved specificity and en-
couraging pharmacodynamic profiles [122]. On the other hand, development of therapeutic
agents used clinically to increase O-GlcNAcylation level has been more successful [122].
These agents include OGA inhibitors such as Thiamet-G (5H-Pyrano[3,2-d]thiazole-6,7-
diol2-(ethylamino)-3a,6,7,7a-tetrahydro-5-(hydroxymethyl)-(3aR,5R,6S,7R,7aR)), PUGNAc
(O-(2-acetamido-2-deoxy-D-glucopyranosyliden)amino-N-phenylcarbamate), NButGT (1,2-
dideoxy-2′-propyl-α-D-glucopyranoso-[2,1-d]-∆2′-thiazoline), and more recently devel-
oped GlcNAcstatin [122,129,130]. Also, glucosamine, which increases the UDP-GlcNAc
concentrations by bypassing GFAT [95,122].

However, considering that OGA and OGT are ubiquitously expressed, modulation
of their expression with drugs could come with numerous adverse drug reactions. Also,
considering that the use of OGA and OGT global knockout mice is not viable as this usually
result in high mortality [131–134]. Therefore, cell-specific knock out of these key enzymes
to fully validate the role of O-GlcNAc modification in inflammatory responses in key cell
types in animal models of disease would inform studies in human. Also, assessment of
the expression of OGT/OGA change in target cell types in disease and determining if
targeting OGA/OGT is limited to catalytic inhibitors targeted at their active sites could be
characteristic. In view of this, we believe it is viable to target OGT/OGA-target protein
interaction with protein-protein interaction inhibitors [135,136]. Having identified the sites
of interaction, it is possible to design and optimize a blocking peptide and use this as a
basis to screen for drug-like compounds that function as peptidomimetics [135,136].

5. Conclusions

Findings highlighted in this review have shown that the involvement of O-GlcNAc-
ylation in the modulation of inflammatory pathways is complex, wide-ranging and substan-
tial, yet it is not a populartarget for drug development in the management of inflammatory
pathologies. Therefore, we propose that targeting O-GlcNAcylation is a viable therapeutic
target for future management of pathologies characterised by dysregulation of inflamma-
tory pathways.
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