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Abstract: Experimental studies of Caenorhabditis elegans and Drosophila melanogaster have contributed
substantially to our understanding of molecular and cellular processes in metazoans at large. Since
the publication of their genomes, functional genomic investigations have identified genes that are
essential or non-essential for survival in each species. Recently, a range of features linked to gene
essentiality have been inferred using a machine learning (ML)-based approach, allowing essentiality
predictions within a species. Nevertheless, predictions between species are still elusive. Here, we
undertake a comprehensive study using ML to discover and validate features of essential genes
common to both C. elegans and D. melanogaster. We demonstrate that the cross-species prediction
of gene essentiality is possible using a subset of features linked to nucleotide/protein sequences,
protein orthology and subcellular localisation, single-cell RNA-seq, and histone methylation markers.
Complementary analyses showed that essential genes are enriched for transcription and translation
functions and are preferentially located away from heterochromatin regions of C. elegans and D.
melanogaster chromosomes. The present work should enable the cross-prediction of essential genes
between model and non-model metazoans.
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1. Introduction

The elegant worm, C. elegans (CE), and the fruit fly, D. melanogaster (DM), belong to
the Superphylum Ecdysozoa, comprising animals that moult [1]. This large taxonomic
group includes a range of parasitic worms and arthropods, some of which are causative
agents or vectors of infectious diseases [2,3]. Taken together, such parasites and vectors
inflict substantial socioeconomic damage worldwide by causing or transmitting disease
and/or affecting animals or crops [4,5]. CE and DM are used as models to study many
fundamental biological and molecular aspects of multicellular organisms because they
have short life cycles, are readily maintained in laboratory, reproduce in large numbers,
and can be genetically altered using established knockout and knockdown approaches [6].
The availability of their genomes and experimental methods for both species have facil-
itated large-scale studies of molecular function and identified key genes that underpin
survival (i.e., essential genes) [7,8]. The genome-wide characterisation of essential genes
in a broad range of eukaryotic species is paramount to understanding the fundamental
machinery that governs life [9–11]. This understanding could provide a foundation for
innovative biological and biotechnological applications, such as the development of novel
and precise intervention strategies against socioeconomically important parasites and/or
disease vectors. However, functional genomics tools for such non-model organisms are
usually not established [12], and large-scale discovery of essential genes laborious, time-
consuming, and costly [13]. An alternative approach would be to utilise high-genomic and
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transcriptomic data sets available for model species (e.g., [14,15]) to identify key features
that define gene essentiality between or among eukaryotic species.

Despite the technical advances and the wealth of ‘omics data available for CE and DM,
the features defining gene essentiality are poorly understood. Computational methods,
such as machine learning (ML), are now being used to explore such features for effective
computational prediction [16]. Previous studies have attempted to predict essential genes
within eukaryotic species by exploring features based on homology, protein–protein inter-
action (PPI) network analysis, and/or sequence characteristics [13,16–20]. These studies
have shown that better predictions by ML approaches can be achieved by combining pre-
dictive features from multiple data sources. For example, a recent study combined features
derived from gene sequence, ontology, and PPI networks to improve the performance of
essential gene predictions for DM [21]. In recent publications by our research group, we
harnessed the abundance of ‘omics data sets publicly available for CE and DM to discover
strong predictors for essential genes, and showed that ML-based predictions were accurate
within each species [22,23]. Despite this, reliable predictions between or among eukaryotic
species remains challenging. In a first attempt, we showed that protein sequence-derived
features were useful for cross-species predictions of essential genes [20]. Nevertheless,
there is no comprehensive study exploring the wealth of features now available for CE
and DM to discover consensus gene essentiality predictors for the accurate prediction of
essential genes between or among species. Such a study would enhance our understand-
ing of essential genes in non-model ecdysozoans, including socioeconomically important
parasites [24]. In the present study, we harnessed extensive feature sets recently defined for
CE and DM [22,23] to undertake a comprehensive investigation of common features and to
predict essential genes between these two model species using an ML-based approach.

2. Results
2.1. A Selection of Strong Predictive Features of Essential Genes for CE and DM Identified by
Predictions within Species

We obtained 55,694 features for 18,461 CE genes, and 33,759 features for 11,580 DM
genes compiled by Campos et al. [22,23]. Of these features, 1391 were present in both CE
and DM feature sets, of which 8 were readily standardised. Another eight features were
added to those, including two calculated from ‘expressed sequence tag’ (EST) data mapped
to genomes, two histone modifications markers defined by ChIP-seq data (H3K4me3 and
H3K27me3—trimethylation of the H3 protein at lysin 4 or 27, respectively), and 4 PPI
network centrality features (see Section 4). Therefore, we compiled a total of 1399 features
for each CE or DM gene that were used for downstream analyses.

For CE and DM data sets, we selected 621 CE/359 DM genes with the highest (>0.7)
and 16,690 CE/9579 DM genes with the lowest (<0.1) probabilities of being essential,
defined by previous ML approaches [22,23]. Using this selection of genes and their
1399 corresponding features, we employed a strategy for essential gene predictions and
cross-validation within species using random subsampling of the data (from 10 to 90% of
the data for training, with remaining data used for testing, with 10% increments), followed
by feature selection (consensus between elasticNet and ensemble sparse partial least square
[SPLS] methods), training and evaluation of six ML algorithms, and a background model
for each subsample (see Section 4; [23]).

By evaluating the systematic ML approach within species using selected features for
CE, the calculated receiver operating characteristic (ROC)—area under the curve (AUC) for
the ML models were consistently >0.9 for the gradient boosting machine (GBM), eXtreme
gradient boosting machine (XGB), generalised linear model (GLM), and neural network
models (NN). The performances increased steadily as more data were included in the
training sets (Figure 1a). For random forest (RF) models, the ROC-AUC performance was
stable around ~0.9. For support vector machine (SVM), ROC-AUC decreased from ~0.9 to
~0.85 (Figure 1a). Regarding precision-recall (PR)-AUC, the performance increased from
~0.3 to ~0.35 for GLM, GBM, and XGB; decreased for RF (~0.24 to ~0.18) and SVM (~0.26
to ~1.2); and was highly variable for NN, ranging between ~0.2 and ~0.35 (Figure 1a).
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Overall, the XGB and GBM methods were the best performers. We confirmed that those
performances were robust even when using a non-redundant set, whereby genes with
similar sequences (>25% identity) at the protein level were excluded from the analysis
(Supplementary Material Figure S1).
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is expressed, obtained from single-cell data), OMA_orthologs (number of genes present 
in the ortholog group, obtained from the Orthologous Matrix database), ChIP_H3K4me3 
(histone marker overlapping a gene region, obtained from ChIP-seq data), and ‘exons’ 

Figure 1. Evaluation of essential gene predictions within species using standardised/consensus features for Caenorhabditis
elegans (CE) and Drosophila melanogaster (DM). (a) For each species, subsets (10–90%, 10% increments) of high-confidence
essential and non-essential genes [22,23] were randomly selected (x-axis) to train six machine learning approaches/methods,
following a feature selection strategy. Prediction performance (ROC-AUC and PR-AUC) was evaluated using the remaining
data. (b) Venn diagram of the best-predictive features identified for CE and/or DM. (c) Pairwise correlations between the
34 best-predictive features identified for both species.

In total, 76 features were selected as best predictors for CE (Supplementary Material
Table S1; Figure 1b). Among those, num_cells_expressed (number of cells where the gene is
expressed, obtained from single-cell data), OMA_orthologs (number of genes present in the
ortholog group, obtained from the Orthologous Matrix database), ChIP_H3K4me3 (histone
marker overlapping a gene region, obtained from ChIP-seq data), and ‘exons’ (number
of exons for a gene) were among the highest (top 10) feature importances for predictions
in all six ML models. Other selected features among the 76 were derived from DNA
or protein sequences, such as GC content, AAC_S (ratio of serine residues in a protein),
predictions of protein subcellular localisations (particularly cytoplasm and nucleus), and
presence of a signal peptide. Additional predictive features identified were derived from
single-nucleotide polymorphism (SNP) analysis (e.g., number of SNPs and variant effect
on the 3’ UTR) and two PPI network features (‘degree’ and ‘betweenness’ centrality).
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For DM, the ROC-AUC curves achieved for the systematic ML predictions within
species for most models were also >0.9, increasing in performance as more data were added
to the training sets, except for SVM, which ranged between ~0.85 and ~0.9 (Figure 1a).
Regarding the PR-AUC, the XGB and GBM models achieved between ~0.26 and ~0.35,
GLM between ~0.22 and ~0.31, NN was stable around ~0.2, while for RF and SVM it
decreased from ~0.24 to ~1.8 and from ~0.22 to ~0.11, respectively (Figure 1a). Overall,
XGB and GBM were also the best performing models based on the ROC-AUC and PR-
AUC metrics. Again, the observed performances were robust using a non-redundant
set (Supplementary Material Figure S1). For DM, 88 best features were selected as best
predictors (Supplementary Material Table S2; Figure 1b). Among the best predictors,
‘exons’, num_cells_expressed, OMA_orthologs, EST_BLAST (expressed sequence tag data
mapped to the genome), ChIP_H3K4me3, subcellular localisations (membrane, nucleus,
cytoplasm), GC content, and ‘degree’ of centrality ranked highest.

In total, 34 features were identified as best predictors for both CE and DM analy-
ses (Figure 1b,c): 21 were derived from DNA or protein composition/autocorrelation, 3
from genomic data (‘exons’, ‘exons_total_length’, and ‘distance’ from the chromosome
centre), 3 from subcellular localisation (cytoplasm, nucleus, mitochondrion), 2 from ChIP-
seq data (ChIP_H3K4me3 and ChIP_H3K27me3), one from variant effect at the 3’-prime
UTR (variants_effect_3_prime_UTR_variant) based on SNP data analysis, 1 from Ribo-seq
data mapped to the genome (Ribo.seq), as well as 3 others derived from other data sets
(num_cells_expressed, OMA_orthologs and ‘degree’ of centrality). The pairwise corre-
lations between these 34 features were usually low (<0.2), and occasionally moderate
(ranging from 0.2 to 0.45) (Figure 1c). We further assessed the performance of the XGB and
GBM models (RF included as control) using a bootstrap approach within species, where
we randomly selected 90% of the data for training and 10% for testing, 1000 times. For CE,
the ROC-AUC ranged mostly between ~0.90 and ~0.97 with a median of ~0.95, whereas
RF was between ~0.85 and ~0.95 with a median ~0.90. The PR-AUC ranged mostly from
~0.25 to ~0.4 with a median ~0.33, whereas RF ranged between ~0.1 and ~0.22 (Figure 2).
Compared to CE, a markedly similar performance (ROC-AUC and PR-AUC) was observed
for DM (Figure 2).

2.2. Select Features and ML Models Enable Essential Gene Predictions between CE and DM

We selected the best predictive features that were identified for both CE and DM
to train XGB models and to perform predictions between species. Then, the XGB model
trained with DM data was used to predict essential genes in CE. The essentiality probabili-
ties varied from zero to ~0.63. These probabilities showed a Spearman correlation of ~0.55
with rankings defined by previous predictions in CE [22]. The essentiality probabilities
for the ranked genes decreased rapidly from ~0.63 to ~0.1 after the first 1000 genes and
approached zero after the first 3000 genes (Supplementary Material Table S3). For valida-
tion, the ranked genes were cumulatively searched against independent functional data
for CE (GExplore [25]). The ratio of genes with a lethal phenotype decreased from ~0.5 to
~0.07 when searching genes from the highest to the lowest probabilities and increased from
0 to ~0.07 when searching from the lowest to the highest (Figure 3—top). The observed
pattern of ratios was similar to the control experiment ratios, in which the same analysis
was employed using the XGB model trained with CE data.
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Figure 2. Bootstrap ML approach within species. Violin plots depicting the ROC-AUC and PR-AUC
values (y-axis) for bootstrap approaches for CE (left) and DM (right) using the 34 best-predictive
features identified for these species. A total of 1000 random selections containing 90% of the genes
(essential and non-essential) were used to train the gradient boosting machine (GBM), random forest
(RF), and eXtreme gradient boosting (XGB) models (x-axis), using the remaining 10% of the genes
for testing.

Subsequently, the XGB model, trained with CE data, was used to predict essential
genes in DM. The essentiality probabilities for all genes varied from 0 to ~0.68. These prob-
abilities showed a Spearman correlation of ~0.40 with ranked genes defined by previous
predictions in DM [23]. Then, all DM genes were ranked by the probability for essentiality
defined by the models. These probabilities decreased rapidly from ~0.68 to ~0.1 after
1000 genes ranked and ordered by essentiality probability, approaching zero after ~3000
genes (Supplementary Material Table S4). As a validation step, the ranked genes were
cumulatively searched against independent functional data (GenomeRNAi [26]) for DM
(Figure 3—bottom). The ratio of genes with a lethal phenotype decreased from 1 to ~0.13
when cumulatively searching for genes from the highest to the lowest probabilities and
increased from 0 to ~0.13 when searching from the lowest to the highest. The pattern of
ratios was similar to the control experiment, in which the same analysis was employed
using the XGB model trained with DM data.
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Figure 3. Validation of cross-species essential gene predictions. Following the predictions between species using extreme
gradient boosting (XGB) models trained with select features identified in the within-species approach, genes were ranked
by the essentiality probabilities. The ranked genes (x-axis) were cumulatively searched from the highest to the lowest
probabilities, as well as from the lowest to the highest against the GExplore database [25] (DM data used to predict CE—
top) and GenomeRNAi database [26] (CE data used to predict DM—bottom). Cumulative ratios of genes with a ‘lethal’
phenotype reported in each database were calculated (y-axis). Ranked genes following training and prediction within
species were used as controls.

2.3. Visual Representation of Cross-Species Gene Essentiality Probabilities along the CE and
DM Genomes

We assessed the landscape of essential gene probabilities by plotting the essentiality
probabilities from the cross-species predictions along the chromosomal DNA sequences
of CE or DM genomes. For CE, genes with higher probabilities of being essential (>0.5)
appeared to be preferentially located in chromosomes “I” and “III”, followed by “II”, “IV”,
and “V” (Figure 4). Moreover, the sex chromosome “X” seemed to contain fewer genes with
a high probability of being essential, compared to other chromosomes. Overall, genes with
higher probabilities of being essential were found in or near the centre of chromosomes, away
from the regions experimentally defined as heterochromatin in previous studies [27,28]. For
DM, genes with higher probabilities also appeared to be preferentially located away from
heterochromatin regions of autosomal chromosomes (particularly “2R” and “3R” segments)
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and telomeric regions (edges) of “X” (Figure 4). Excluding the heterochromatin regions,
local hotspots of genes with the highest essentiality probabilities were relatively evenly
distributed along chromosome segments “2L”, “2R”, “3L”, “3R”, and “X”. Moreover, genes
with higher probabilities were less likely to be found on chromosomes “4” and “Y”.
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Figure 4. Distribution landscape of essentiality probabilities along CE and DM chromosomes. Essentiality probabilities
defined by the XGB models (x-axis) for the cross-species predictions were plotted for each gene coordinate (y-axis).
Heterochromatin regions defined by previous studies for CE [27] and DM [28] are depicted in grey. Heatmaps below each
chromosome show the areas with higher (dark blue) and lower gene densities (white), and no data (black). Additional
information on karyotype for DM [28] shows the relationship between chromosome segments.

2.4. Gene Ontology (GO) Enrichment and Functional Clustering Analyses Confirm Important
Roles of Essential Genes

We conducted GO and functional clustering analyses using selections of genes with
both highest and lowest probabilities of essentiality established by the cross-species pre-
dictions. For 500 CE genes with the highest probabilities, the most significantly enriched
clusters were associated with ribosome/translation (24–91 genes), nucleotide/ATP-binding
(88–119 genes), cell division/mitosis (8–32 genes), aminoacyl-tRNA synthetase/ligase
(9–33 genes), and cytoskeleton (12–32 genes) (Supplementary Material Table S5). Of those
500 genes, 193 (38.6%) are single-copy genes and 37 (7.4%) did not have an ortholog in DM
according to the Ensembl database [29]. Similarly, the 500 most likely essential genes in
DM were enriched for: ribosome/translation (15–59 genes), mRNA splicing/spliceosome
(25–41), transcription/regulation (32–49 genes), nucleotide/ATP-binding (24–60 genes),
and mRNA splicing regulation (7–13 genes) (Supplementary Material Table S6). Of those
500 genes, 247 (49.4%) are single-copy genes and 82 (16.4%) did not have an ortholog in CE.

For the 500 most likely non-essential genes for CE, enriched functions were:
MATH/TRAF proteins (30–31 genes), F-box domain (13–36 genes), transmembrane/membrane
(133–135 genes), dsRNA transport/SID1 transmembrane (4 genes), and BTB/protein homo-
oligomerisation (6–14 genes) (Supplementary Material Table S5). Of those, 119 (23.8%)
were single-copy genes and 112 (22.4%) did not have an ortholog in DM, according to
the Ensembl database. For DM, enriched functions for the 500 most likely non-essential



Int. J. Mol. Sci. 2021, 22, 5056 8 of 13

genes were: transmembrane/membrane (178–197 genes), olfactory/odorant (9–47 genes),
peptidase S1/proteolysis (10–38 genes), transmembrane/substrate transporter (7–25 genes),
and lipase/ester hydrolase activity (9–19 genes) (Supplementary Material Table S6). Of
those, 204 (40.8%) were single-copy genes and 183 (36.6%) did not have an ortholog in CE.

3. Discussion

Here, we comprehensively demonstrate that the cross-prediction of essential genes
between two well-characterised model organisms is possible using an ML-based approach.
This was achieved by discovering strong consensus predictors of essential genes in each
species. The present work provides prospects for the prediction and validation of essential
genes in non-model ecdysozoan species.

The discovery/confirmation of consensus predictors of essential genes within CE and
DM was instrumental for the successful cross-species predictions using ML. To enable essen-
tiality predictions between these species, 1399 features were assessed [22,23], and a selection
of 34 was found to be the most predictive in both species. Among those, features derived
from scRNA-seq (early developmental stage [30,31]) and ChIP-seq (H3K4me3—associated
with promoter regions [32]; H3K27me3—associated with transcriptional repression [33])
were confirmed to be strong essential gene predictors. Moreover, select genomic and
sequence-derived features, such as protein size, number of exons, subcellular localisation,
and a selection of DNA and protein sequence features, were highly predictive. We con-
firmed that ‘degree’ of centrality in PPI networks, and amino acid sequence conservation
(orthologs [34]) were also important predictors, as suggested by other studies in multi-
ple species [13,19,21,35,36]. Collectively, these findings indicate that essential genes have
specific genomic (sequence/location), transcriptomic/proteomic (expression), epigenetic
(regulatory), network (interactions), and conservation (orthologs) signatures that can be
harnessed for predictions both within and between species using ML. Therefore, these
critical aspects of gene essentiality and their causal relationships should be explored in
the future.

Consistent and accurate prediction performance was achieved by the ML models
trained with the strongest consensus predictors of essential genes identified in CE and DM.
Overall, the systematic ML approaches employed within species with the best predictive
features for the individual species showed that the prediction performances based on
ROC-AUC were high (>0.9), and the PR-AUC was ~0.3 (Figure 1a). The results for the
ROC-AUC were consistent with previous analyses [22,23] whereas a loss in PR-AUC
performance was observed. Nevertheless, the overall performance was robust even when
using only the 34 best-predictive features common to both species, as demonstrated by the
bootstrap approach (Figure 2). Moreover, the low pairwise correlations observed among
the 34 best-predictive features (Figure 1c) suggest that they are both non-redundant and
complementary for essentiality predictions using ML. In terms of ML performance, the
boosting methods (XGB and GBM) were the best based on threshold-independent metrics
(ROC-AUC and PR-AUC), confirming the high accuracy and robustness for essentiality
predictions using such approaches. Boosting methods usually outperform deep learning
methods in the context of well-structured and tabulated data; see [37]. However, there is
still potential to improve the PR-AUC. The PR-AUC metric considers only the prediction of
essential genes (positives), but it is informative for imbalanced data sets [38]. As the total
number of essential genes encoded in a genome is far fewer than that of non-essential genes
in both species, there is a higher chance of predicting false positives, thereby affecting the
PR-AUC results. Indeed, imbalanced data sets are common in ML approaches, potentially
affecting the values and interpretation of different performance metrics [38]. Oversampling
(e.g., Synthetic Minority Oversampling TEchnique—SMOTE) or undersampling techniques
have been proposed as solutions [39,40], and we have carefully considered them here.
However, there is no consensus that such approaches resolve the problem, as they may
introduce unnecessary bias [39,40]. Therefore, we opted to use imbalanced data sets in our
systematic training and test evaluations as they reflect the reality of the biological problem
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(i.e., gene essentiality). Indeed, class imbalance is expected in both the data available for
ML training and new sets of genes to be predicted, particularly in the context of gene
essentiality. Hence, important information from the majority class (non-essential) was not
removed unnecessarily by under-sampling, or bias towards the majority class was not
introduced by adding artificial samples through oversampling. Previously, we showed
that high prediction performance was achievable within species, despite using imbalanced
data sets [22,23]. Therefore, it is possible that there are features of essential genes that are
species or taxon specific. For example, Campos et al. [20] showed that essential genes of
distantly related species can have quite distinct protein sequence features. Nonetheless,
species-specific features would be challenging to use for cross-species predictions.

Following the essential gene predictions between species using XGB, the genes were
ranked by their predicted probabilities for essentiality. Interestingly, the genes most likely to
be essential exceed the probability of 0.7. This may also be an effect of the imbalanced data
sets and/or a result of the evolutionary distance between CE and DM [1]. Nonetheless, we
ranked the genes by probability of essentiality to validate the predictions using independent
functional data sets for each species (Figure 3) and these analyses clearly showed that the
probabilities correlate with lethal phenotypes. Our findings were consistent with previous
results [22,23], demonstrating that the large-scale predictions between species are possible
using this ranking approach.

The essentiality probabilities per gene defined by predictions between species and
plotted on chromosomes showed that there were preferential genomic locations for essen-
tial genes. However, the locations were markedly different between CE and DM. For CE,
the most likely essential genes tend to be located in or near the centre of autosomal chro-
mosomes. For DM “hotspots” for essential genes are more widely distributed, including
on the sex chromosome “X”. These differences in the distribution of essential genes may
also be linked to their distinct karyotypes and estimated heterochromatin/euchromatin
regions [27,28]. In addition, the chromatin and centromere/holocentromere organisations
are markedly different between CE and DM [41,42]. These aspects affect DNA packaging
and transcriptional regulation and remain to be deeply explored in the context of gene
essentiality. In addition, the roles of essential genes in sex determination and reproduc-
tion remain to be investigated in these species, particularly considering the very distinct
reproductive modes for CE (usually selfing) and DM (outcrossing) [43].

From a functional perspective, we found that the most enriched functions in clusters
of the 500 most likely essential genes in either species were primarily associated with ATP-
binding, RNA splicing/processing, and translation. These results provide more evidence
that most essential genes carry out fundamental intracellular activities, in accordance with
their preferred subcellular localisations (nucleus/cytoplasm/mitochondrion). Surprisingly,
only 38.6% (CE) and 49.4% (DM) of the essential genes were found to be single copy, chal-
lenging the assumption that paralogous genes are redundant in function [44]. For example,
previous functional studies in CE and mouse have shown that a large number of duplicated
genes are essential for these species [44,45]. On the other hand, a large proportion of the
single-copy genes, non-essential genes identified here, did not have an ortholog in the
alternative species. Therefore, these findings suggest that the identification of orthologs
between distantly related species appears to be more important than quantifying paralogs
within species for the purpose of essential gene predictions or prioritisations.

In conclusion, the present work has demonstrated, for the first time, that the accurate
large-scale cross-species prediction of essential genes between a worm and a fly is possible
employing a well-defined set of informative features. These findings and insights provide a
foundation for the ML-based prediction of gene essentiality in non-model organisms, such
as parasites and vectors of infectious diseases, with possible biotechnological implications
and applications in the future.
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4. Materials and Methods
4.1. Defining Feature Sets

Genes ranked by essentiality probabilities, and their corresponding features derived
from genomic, transcriptomic, and proteomic information, for CE and DM, were obtained
from previous publications [22,23]. Features not present in the data sets of both species,
and the features that could not be standardised between the species, were filtered out.

Novel features derived from EST, histone modification markers, and PPI were added
to the feature set. EST sequences data was obtained for CE [14] and DM [46] and combined
into a single FASTA file. Using this FASTA file, two features were generated by aligning
the EST data to CE and DM gene sequences: the first by counting the number of significant
hits per gene using BLAST v.2.10.1+ (parameters: -evalue 1e−10 -ungapped) and the second
by counting significant hits using BLAT v.35x1 (default parameters) [47]. We also obtained
features from ChIP-seq data obtained from modENCODE [48] for CE and DM (histone
modifications H3K4me3 and H3K27me3; data sets 3811, 4987, 5163, 5166). Sequencing
quality was checked using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc, accessed on 18 September 2020), adapter-trimmed reads of individual chromatin-
immunoprecipitated and input samples were aligned using BWA v.0.7.10-r789 [49] with
default parameters, and peaks were called using MACS2 [50], parameters: -f BAM -g
[ce/dm] -B -q 0.01. The number of peaks overlapping each CE or DM gene coordinates (GFF;
obtained from WormBase [14] and FlyBase [15]) was calculated using BEDTools v.2.26 [51]
intersect. Next, for each CE or DM gene (by Ensembl identifier), we quantified the number
of orthologs present in their orthologs groups found in the “OMA groups” and “Mapping
to Ensembl” files from the Orthologous Matrix Database [34], and added this information
as a feature. Finally, we used the STRINGdb (http://doi.org/10.18129/B9.bioc.STRINGdb,
accessed on 21 October 2020) and igraph (http://igraph.org, accessed on 21 October 2020)
packages for R v.3.6 (versions for all of the libraries used here are available in a git repository
—see Data Availability Statement) to obtain PPI data and features (‘degree’, ‘betweenness’,
and ‘closeness’ centrality), respectively.

4.2. Feature Selection, ML Training, and Evaluation within Species Using Standardised Data

We established the most probable essential genes (probability > 0.7) and non-essential
genes (probability < 0.1) for CE and DM. Then, we used these genes and their corresponding
features to train and evaluate six ML approaches (GBM, GLM, NN, RF, SVM, XGB) with
hyperparameter optimisation using the “caret” package for R v.3.6 (https://topepo.github.
io/caret, accessed on 10 March 2021) as defined by Campos et al. [23] but used the new
set features common to both CE and DM [23] included for this study. Briefly, random
samples containing 10 to 90% of CE data or DM data (with 10% increments) were used to
perform feature selection and training of six ML models, with the remaining 90 to 10% as
test sets. The prediction performances for each sub-selection were evaluated on the test sets
using ROC-AUC and PR-AUC metrics and plotted using “ggplot2” for R (https://ggplot2
.tidyverse.org, accessed on 10 March 2021). Then, 100% of the CE or DM feature set was
used to train the ML approaches with their respective best-predictive features identified
within species. Then, we established the strongest predictors by ranking and evaluating the
median feature importance (“caret” package) among the final ML models. This systematic
evaluation was also employed using a non-redundant set, whereby, for each species, genes
were clustered (>25% protein sequence identity) using USEARCH v.11 (https://www.
drive5.com/usearch, accessed on 18 March 2021), and only the centroid sequences were
retained and used for feature selection, ML training/testing, and performance evaluation.
We identified the best-predictive features within species for CE or DM based on the feature
selection, as well as the best-performing ML approaches based on ROC-AUC and PR-AUC
metrics. Finally, we used such features and ML approaches to carry out a 1000-boostrap
approach [23] using 90% of the data for training and 10% for testing, evaluating the
same metrics.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://doi.org/10.18129/B9.bioc.STRINGdb
http://igraph.org
https://topepo.github.io/caret
https://topepo.github.io/caret
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://www.drive5.com/usearch
https://www.drive5.com/usearch
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4.3. Employing and Evaluating the ML Approach for Predictions between Species

For the prediction between species, we selected the best-performing ML approach
from within species prediction and the best-predictive features separately for CE and
DM. Then, complete feature sets of each species were used to train the model and pre-
dict essentiality for all genes of the alternative species. Once predicted, genes were
ranked by their essentiality probabilities defined by the ML models. We plotted the
essentiality probabilities on CE and DM chromosomes using ‘chromoMap’ for R v.4.0
(https://lakshay-anand.github.io/chromoMap, accessed on 8 April 2021). The prediction
performances of the ML models were evaluated by using Spearman correlations between
the essentiality probabilities established elsewhere [22,23] and the novel prediction proba-
bilities established here. As a further validation step, we used the genes ordered by their
essentiality probabilities. Using these ranked lists, we cumulatively calculated and plotted
the ratios of genes linked to lethal phenotypes based on independent functional genomic
data [25,26]. Such a validation approach has been established and successfully used in
other studies [22,23].

4.4. Gene Ontology Analyses with Functional Annotation Clustering

For CE or DM, we selected 500 genes with the highest essentiality probabilities of
each species determined by the XGB model trained with the cross-species models and
performed functional enrichment and clustering analysis using the database DAVID [52] v.
6.8 with ‘medium’ stringency, selecting the five most enriched clusters. For each of those
lists, we identified single-copy genes using the “BioMart” tool of the Ensembl database [29].
In addition, we performed the same analysis using a selection of 500 genes with the lowest
essentiality probabilities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22105056/s1, Figure S1: Evaluation of essential gene predictions within species using
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