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Cuproptosis is a newly discovered new mechanism of programmed cell death,

and its unique pathway to regulate cell death is thought to have a unique role in

understanding cancer progression and guiding cancer therapy. However, this

regulation has not been studied in low grade glioma (LGG) at present. In this

study, data on low grade glioma patients were downloaded from the TCGA

database. We screened the genes related to cuproptosis from the published

papers and confirmed the lncRNAs related to them. We applied univariate/

multivariate, and LASSO regression algorithms, finally identified 11 lncRNAs for

constructing prognosis prediction models, and constructed a risk scoring

model. The reliability and validity test of the model indicated that the model

could well distinguish the prognosis and survival of LGG patients. Furthermore,

the analyses of immunotherapy, immune microenvironment, as well as

functional enrichment were also performed. Finally, we verified the

expression of these six prognostic key lncRNAs using real-time polymerase

chain reaction (RT-PCR). In conclusion, this study is the first analysis based on

cuproptosis-related lncRNAs in LGG and aims to open up new directions for

LGG therapy.
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Introduction

Gliomas are the most common and long-lasting malignant primary brain tumors

(Jiang et al., 2016), including low-grade gliomas (LGGs) and glioblastomas (GBMs). LGG,

a diffuse low- and intermediate-grade glioma (WHO grades II and III), is a rare glioma

that can be divided into different subtypes based on IDH1/2 mutation status and the

presence of 1p19q co-deletion (Brat et al., 2015). In general, LGG is more indolent than

glioblastoma (GBM) (WHO grade IV) (Louis et al., 2007; Ceccarelli et al., 2016; Ostrom

et al., 2018). However, compared with other subtypes, the IDH1/2wt subtype is more

aggressive, difficult to completely resect with surgical treatment, and the residual tumor

can rapidly develop into GBM, making subsequent treatment difficult (Suzuki et al.,

2015). In LGG, different IDH1/2 mutation statuses also resulted in different median

survival, ranging from 1 year to 8 years (Brat et al., 2015). The high heterogeneity of LGG

leads to difficult histological diagnosis prediction, high uncertainty, and unpredictable
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prognosis, so there are an urgent need to discover and further

study effective biomarkers (Lapointe et al., 2018).

In 2012, Columbia University discovered a new type of

programmed cell death, ferroptosis, which is completely

different from apoptosis, programmed death, and pyroptosis

in its mode of action and molecular mechanism. A type of

programmed cell death induced by excessive accumulation of

lipid peroxides (Dixon et al., 2012). In 2019, Xin et al. introduced

the mechanism of ferroptosis in cancer in detail, pointing out the

potential application of ferroptosis in systemic therapy,

radiotherapy, and immunotherapy (Chen et al., 2021). Like

iron, copper also plays an important role in the regulation of

biological activity. Excessive copper accumulation induces

apoptosis or necrosis, leading to cell death. In March 2022,

the Harvard-MIT Broad Institute revealed the mechanism of

cuproptosis for the first time. Unlike other mechanisms,

cuproptosis is through direct copper ions and fatty acylation

components of the tricarboxylic acid cycle (TCA) in

mitochondrial respiration (Ruiz et al., 2021). Binding occurs,

leading to fatty acylated protein aggregation and subsequent

iron-sulfur clusterin downregulation, leading to proteotoxic

stress and eventual cell death (Tsvetkov et al., 2022).

Although elesclomol, a copper-supported small molecule

anticancer drug, did not significantly improve the survival of

tumor patients in clinical trials, posthoc analysis showed that this

class of drugs has some effect on inhibiting tumor cells that rely

on mitochondrial production capacity (O’Day et al., 2013).

Target proteins encoding elesclomol were shown to share

genes that promote cuproptosis (Tsvetkov et al., 2022).

Long non-coding RNAs (lncRNAs) are a class of RNAs

longer than 200 nucleotides without the capacity to encode

for protein. They have important functions in transcriptional

silencing, transcriptional activation, chromosome modification,

and intranuclear transport and perform important regulatory

capabilities (Wang et al., 2021). A large number of studies have

proved that lncRNAs are closely related to the occurrence,

development, and prognosis of cancer. For example,

lncRNAsMALAT1 can be used as a therapeutic target for

cancer treatment (Amodio et al., 2018). In LGG, Xu and his

team found that LINC00941 could predict the prognosis of LGG

(Xu et al., 2021). LncRNA LINC00336 was found to have an

inhibitory role in ferroptosis (Wang et al., 2019). Overexpression

of lncRNA NEAT1 can increase ferroptosis, thereby increasing

the antitumor activity of erastin and RSL3. However, the

regulation of lncRNAs in cuproptosis remains unclear.

As the first biological study to integrate lncRNAs with

cuproptosis in LGG, we aim to establish a new signature of

cuproptosis-related lncRNAs to predict the prognosis of LGG

patients and to evaluate the efficacy of these lncRNAs. Based on

the TCGA database, we finally screened 11 of them and

constructed a risk model to predict OS in LGG patients. We

then divided LGG patients into two groups (high-risk and low-

risk) based on mean-risk scores. Through the analysis, we found

that high-risk groups had better responses to immunotherapy,

suggesting that the model could serve as a potential biomarker to

predict the prognosis of LGG patients. We hope that our study

will improve the accuracy of prognosis prediction and elucidate

the possible mechanism of cuproptosis-related lncRNAs in LGG.

Methods

Data acquisition

RNA sequence transcriptome data, clinical information, and

mutation data of LGG were downloaded from the TCGA

database (https://cancergenome.nih.gov/). Ten cuproptosis-

associated genes including FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1, PDHB, MTF1, GLS, and CDKN2A were acquired from

the literature (Kahlson and Dixon, 2022). We excluded samples

(0/<30 OS values) for reducing statistical bias and finally

obtained 479 LGG patients for subsequent bioinformatics

analysis.

Cuproptosis-related LncRNAs

Screening cuproptosis-related lncRNAs based on Pearson’s

correlation analysis and thus identifying 677 cuproptosis-related

lncRNAs. The process followed the rule of |Pearson R| > 0.4 and

p < 0.001.

Construction of the cuproptosis-related
LncRNA risk signature

We randomly divided the 479 LGG samples into the training

set (n = 240) and the testing set (n = 239). The baseline

characteristics of the training set and the testing set are shown

in Supplementary Table S1, and the two datasets are consistent in

clinical characteristics (p > 0.05). The prognostic values of each

lncRNA were first evaluated using univariate Cox regression

analysis. The least absolute shrinkage and selection operator

(LASSO) Cox regression were performed to reduce the

dimension of high-latitude data using R package “glmnet”.

Ten-fold cross-validation was employed to avoid the

overfitting problem and select the penalty parameter (λ)

according to the minimum criteria. Multivariate Cox

regression analysis was then performed to identify the final

candidates involved in the risk signature. The testing set and

the entire set were used to validate its accuracy of it. The risk

score for each LGG patient was counted with the following

algorithm: risk score = expression of a lncRNA [1] ×

corresponding coefficient [1] + expression of a lncRNA [2] ×

corresponding coefficient [2] + expression of a lncRNA [n] ×

corresponding coefficient [n]. Additionally, we classified the
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LGG patients into two groups based on their risk scores: low-risk

group and high-risk group.

Assessment of the prediction ability of risk
signature

We used Kaplan-Meier analysis to test the accuracy of the

established model using R packages “survival” and “survminer”.

Furthermore, we conducted principal component analysis (PCA)

(Ringnér, 2008) and t-distributed stochastic neighbor embedding

(t-SNE) (Belkina et al., 2019) analysis to visualize high-risk and

low-risk groups as well as test the performance of the established

model.

Independent prognostic factor analysis
and nomogram

To determine whether the risk score was superior to other

clinical traits, an independent prognostic factor analysis utilizing

univariate and multivariate Cox regression was conducted in R

with the package “survival”. Using R package “RMS”, we

established a nomogram integrated risk scores as well as other

clinicopathological characteristics (age, gender) to better predict

the 1-, 3-, and 5-year OS. Besides, we applied calibration curve

analysis to examine the reliability of the established nomogram.

The prediction accuracy was examined by using the receiver

operating characteristic (ROC) curves and conformance index

(C-index).

FIGURE 1
Flow chart.
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Analysis of tumor microenvironment

We applied the estimate algorithm to calculate each patient’s

immune score, stromal score, and estimate score using the R

package “ESTIMATE” (Chakraborty and Hossain, 2018).

Furthermore, we conducted ssGSEA (Shen et al., 2019) and

CIBERSORT (Newman et al., 2015) algorithms to quantify the

infiltration of 22 immune cells and immune functions in the

tumor immune microenvironment (TME).

Analysis of somatic mutation

We applied VarScan software to process the “mask somatic

mutation” data from the TCGA database (Wormald et al., 2018).

The tumor mutation burdens (TMBs) were measured using the R

package “maftools”. For dividing patients into high and low TMB

groups, the median TMB score was used as a cut-off value.

Analysis of drug sensitivity

The IC50 was calculated using the R package “pRRophetic”,

and the chemotherapeutic medications were obtained from the

Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang

et al., 2013). The IC50 of high-risk and low-risk groups was then

compared by the Wilcoxon sign rank test.

Quantitative real-time PCR analysis of
long non-coding RNAs in glioma tissues

All tissue samples were collected from the Neurosurgery

Department of Qingdao University Affiliated Hospital, which

was approved by the Medical Ethics Committee of the hospital.

All specimens were stored in liquid nitrogen, and all patients

provided informed consent. From July 2022 to August 2022, four

low grade glioma tissue samples and four non-tumor brain

tissues were obtained. Total RNA was isolated using TRIzol

reagent, quantitative real-time fluorescence quantitative

PCR(qRT-PCR) was performed by using primers (Beijing

Genomics institution) and premix (SYBR Master Mix). Data

were analyzed using the 2−ΔΔCt method with each test performed

in triplicate. The primer sequence is shown in Supplementary

Table S1.

Functional analysis and mRNA-lncRNA
Co-Expression network

We applied the “limma” R package to distinguish the

differentially expressed genes (DEGs) in the subgroups

following criteria (|log2-fold change (FC)| ≥ 1, p-value <

0.05). GO and KEGG enrichment analyses were applied using

the package “clusterProfiler” in R. We performed a GSEA

analysis using the GSEA software (http://www.gesa-msigdb.

org/gsea/index,jsp) to further screen the difference of

functional pathways between high-risk and low-risk groups.

The network among lncRNAs, mRNAs, and risk types was

visualized by Cytoscape. Furthermore, the correlation between

cuproptosis-related lncRNAs, cuproptosis associated genes, and

factors with risk or protection was analyzed using the R package

“ggalluvial”.

Results

Acquisition of cuproptosis-associated
lncRNAs in LGG

Theworkflow of this study is shown in Figure 1. Clinical features

of the final 479 samples shown in Supplementary Table S2, as well as

RNA profiles and somatic mutation data, were gathered from the

TCGA database. Subsequently, we retrieved the expression profiles

of 10 cuproptosis-associated genes and 14,056 lncRNAs, while a

total of 677 cuproptosis-associated lncRNAs were acquired among

lncRNAs and cuproptosis genes based on the linkage intensity of (|

Pearson R| > 0.4 and p < 0.001) (Supplementary Table S3). The

Sankey diagram in Figure 2A interpreted the correlation relationship

between cuproptosis genes and cuproptosis-associated lncRNAs.

Also, the outcome performed by Pearson’s correlation analysis was

visualized in Figure 2B, with more details recorded in

Supplementary Table S4.

Developing the cuproptosis-related
LncRNAs risk model

To identify the ideal risk signature to guide the prognosis in

patients with LGG, the univariate Cox regression analysis was

conducted to screen for 297 cuproptosis-related lncRNAs

associated with OS in concert with training set information

(Supplementary Table S5). Furthermore, 19 cuproptosis-

related lncRNAs were identified using LASSO Cox regression

analysis (Figures 3A,B). Finally, the risk model was developed

with 11 cuproptosis-associated lncRNAs which were determined

by multivariate Cox regression analysis (Figure 3C).

The risk score was produced with the formula: risk score =

expression of MUC12-AS1 × 0.382030727494924 + expression of

AL158212.3 × -1.39920798375446 + expression of BASP1-AS1 ×

-1.9645994664291 + expression of AL589843.1 ×

0.758072939276948 + expression of AC099850.3 ×

0.311101322216435 + expression of AC017104.1 ×

0.654061856724554 + expression of AL162511.1 ×

-0.688335466581498 + expression of AC244453.3 ×

2.05053269718406 + expression of FAM181A-AS1 ×
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0.515445156843301 + expression of AC002351.1 ×

0.556137908535174 + expression of LINC01537 ×

-1.84136636638082.

In this way, we were able to quantify the risk scores of all

LGG patients and identify high- and low-risk groups based on

the median risk score as the cutoff value in the training sets.

All of the figures (Figures 3D–F) in the training set suggested

that the higher the risk score, the worse the prognosis for

patients with LGG, and this was again illustrated by the

difference (p < 0.001) in OS between high- and low-risk

groups in the K-M analysis curve (Figure 3G). We further

conducted a time-dependent ROC curve analysis in the

training set to compare the prediction performance of the

risk signature at different time points. The AUCs for 1-, 3-,

and 5-year were 0.955, 0.870, and 0.869, respectively, implying

that the model based on cuproptosis-associated lncRNAs has

good accuracy (Figure 3H).

Validation of cuproptosis-related lncRNA
risk model

The predictive ability of the risk signature was validated in

both the testing set as well as the entire set. We used the same

formula to calculate the risk scores of LGG patients in the

training and entire set, and patients were also divided into

high-risk as well as low-risk groups according to the same

cutoff value. The distribution of risk scores, the pattern of

survival status, and survival time, as well as the expression of

the 11 cuproptosis-related lncRNAs in the testing set (Figures

FIGURE 2
Cuproptosis-related gene and lncRNA profile in this study. (A) Sankey relation diagram for cuproptosis genes and lncRNAs. (B)Heatmap for the
correlations between cuproptosis genes and lncRNAs.
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4A–C) and the entire set (Figures 4F–H), suggested the same

trend as aforementioned studies. K-M survival analysis also

presented a substantial difference in OS among the low-risk

and high-risk groups based on the testing set (Figure 4D, p <
0.001) and the entire set (Figure 4I, p < 0.001). Additionally, the

AUCs for 1-, 3-, 5-year OS rates were 0.818, 0.754, 0.679,

respectively based on the testing set (Figure 4E), and 0.887,

0.813, 0.778 based on the entire set (Figure 4J). These results

demonstrated that the risk model based on 11 cuproptosis-

related lncRNAs is stable and reliable.

Exploration of the risk signature in a spatial
arrangement

PCA, as well as t-SNE analyses, were both utilized to probe

the relationship between two subgroups in terms of spatial

distribution patterns. PCA analysis was first performed at the

RNA transcriptome level, including a whole gene expression

profile based on the TCGA-LGG database, 10 cuproptosis-

associated genes, 677 cuproptosis-related lncRNAs, and the

risk model based on 11 cuproptosis-related lncRNAs (Figures

FIGURE 3
Construction and validation of the prognostic model in the TCGA training set. (A) The LASSO coefficient profile of cuproptosis-related lncRNAs.
(B) The 10-fold cross-validation for variable selection in the LASSO model. (C) Multivariate Cox regression analysis showed six independent
prognostic lncRNAs. (D) Distribution of cuproptosis-related lncRNAs model-based risk score for the training set. (E) Different patterns of survival
status and survival time between the high-risk and low-risk groups for the training set. (F) The clustering analysis heatmap shows the expression
standards of the six prognostic lncRNAs for each patient in the training set. (G) Kaplan-Meier survival curves of the OS of high-risk and low-risk
patients in the training set. (H) 1-, 3-, and 5-year ROC curve of the risk model.
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5A–D). Furthermore, an equivalent performance was also well

represented in the training and testing sets based on analyses of

PCA and t-SNE (Figures 5E,F). The above results revealed the

excellent performance of our constructed prognostic risk model

based on 11 cuproptosis-associated lncRNAs in distinguishing

LGG patients into high- and low-risk groups, again

demonstrating the accuracy of the model.

Nomogram and correlation of the risk
model with clinical characteristics

Independent analysis was conducted to judge whether the

risk score based on cuproptosis-associated lncRNAs could be a

prognostic factor for LGG. As a result, univariate and

multivariate Cox regression analyses were performed to fulfill

FIGURE 4
Prognostic value of the risk model of the 11 lncRNAs in the testing and entire sets. (A–C) The distributions of the risk scores, survival status, and
the expression heatmap for 11 hub lncRNAs in the testing set. (D) Kaplan-Meier survival curves of the OS of patients in the high-risk and low-risk
groups in the testing set. (E) The AUCs of testing are set for 1-, 3-, and 5-year OS rates. (F–H) The distributions of the risk scores, survival status, and
the expression heatmap for 11 hub lncRNAs in the entire set. (I) Kaplan-Meier survival curves of the OS of patients in the high-risk and low-risk
groups in the entire set. (J) The AUCs of the entire set for 1-, 3-, and 5-year OS rates.
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the requirement for identifying independence factors. As shown

by univariate Cox analysis (Figure 6A), the risk score was

substantially correlated with OS in LGG patients, as indicated

by the hazard ratio (HR) and 95% confidence interval (CI) of

1.008 and 1.006–1.010 (p < 0.001). Likewise, in the multivariate

Cox analysis (Figure 6B), the risk score still had a significant

impact on prognosis and survival after adjusting for other

confounding factors with the HR and 95% CI being 1.006 and

1.004–1.008 (p < 0.001). As nomograms is widely used to predict

the survival and prognosis of cancer patients. Then we

established a nomogram using the risk score and

clinicopathological features such as gender, grade, and age to

better estimate the 1-, three- and 5-year survival rate for LGG

patients (Figure 6C). The calibration curve showed a great fit of

1-, 3-, and 5-year OS predicted by the nomogram compared to

the actual observed OS (Figure 6D). In addition, the largest area

of the risk score in the C-index meant that the model had

considerable confidence in determining the prognosis of LGG

patients (Figure 6E). Similarly, the risk score also occupied the

maximum area of the ROC curves (Figures 6F–H) for the

training (AUCs = 0.955), testing (AUCs = 0.818), and entire

sets (AUCs = 0.887), indicating that the model was highly

discriminatory.

Functional enrichment analysis

GO and KEGG enrichment analysis was performed to

explore potential bio-functions and signaling pathways of

DEGs among high-risk and low-risk groups (Supplementary

FIGURE 5
Principal component analysis. (A–D) PCA analysis between the high and low-risk based on the whole genome expression set (A),
10 cuproptosis-related genes (B), 1272 cuproptosis-related lncRNAs (C), and risk model classified by the expression profiles of the six cuproptosis-
related lncRNAs (D). (E,F) PCA and t-SNE analyses between the high and low-risk groups in the training (E) and testing sets (F).
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Table S6). According to the three dimensions of biological

processes (BP), cellular components (CC), and molecular

function (MF), we found that extracellular matrix

organization, extracellular structure organization, and external

encapsulating structure organization were the top three most BP-

related functions in GO analysis (Figure 7A, Supplementary

Table S7), while collagen−containing extracellular matrix,

external side of the plasma membrane, and secretory granule

membrane, as well as extracellular matrix structural constituent,

glycosaminoglycan binding, and sulfur compound binding, were

equally associated with CC and MF, respectively. Again, the

pathways obtained using KEGG analysis (Figure 7B,

Supplementary Table S7) mainly concerned processes such as

phagosome, staphylococcus aureus infection, and focal adhesion.

Additionally, we performed the GSEA analysis to compare the

differences in signaling pathways enriched in the high- and low-

risk groups based on the cuproptosis-associated lncRNA model

(Supplementary Table S8). Apoptosis, autoimmune thyroid

disease, and cell adhesion molecules cams were shown to be

more associated with the high-risk group (Figure 7C), while

amyotrophic lateral sclerosis als, cardiac muscle contraction, and

glycerolipid metabolism were found to be more linked with the

low-risk group (Figure 7D). And finally, using the Sankey

diagram, a co-expression network between mRNA, modeling

prognostic lncRNAs, and risk type was created to highlight their

link with one another (Figure 7E).

FIGURE 6
Construction and validation of the nomogram. (A) Univariate regression analysis in the testing set. (B)Multivariate Cox regression analysis in the
testing set. (C–D) Uni/multivariate Cox regression in the training set. (E) The monogram. (F) The prediction accuracy of the nomogram. (G) The
concordance index analysis of nomogram.
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Composition and evaluation of tumor
microenvironment

The tumor microenvironment is a promoter of tumor

proliferation and inducer of immunological tolerance since

it is the site of tumorigenesis and development, as well as a

potential target for immunotherapy. Hence, the ESTIMATE

algorithm was used to investigate the proportion of stromal

and immune cells in TME in LGG. The results displayed in

Figure 8A revealed that there were notably higher scores of

immune, stromal, and ESTIMATE in the high-risk group

compared to the low-risk groups, and we may infer from

FIGURE 7
Functional analysis. (A,B) Top 10 classes of GO enrichment terms in biological process (B), cellular component (C), and molecular function (MF)
based on 11 cuproptosis-related lncRNAs. (C,D) Top 30 classes of KEGG enrichment terms. (E) Sankey diagram.
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this that the high-risk group has more immune and stromal

cells. In addition to this, we had also gone deeper into the

composition of immune cells in tumor-infiltrating tissues

according to the ssGSEA program (Supplementary Table

S9). Except for a few immune cells like aDCs, mast, NK,

and Tfh cells, most of the cells were in higher abundance in

the high-risk group (Figure 8B). Surprisingly, all immune-

related functions also appeared to be more relevant in the

high-risk group than in the low-risk group (Figure 8C). The

preceding findings suggested that patients with LGG in the

high-risk group were more likely to respond to

immunotherapy. We further applied the GSVA analysis to

explore the underlying mechanism and immune pathways in

two subgroups. The result is consistent with the above results

FIGURE 8
Stratification Analysis of the cuproptosis -related lncRNA prognostic risk score in immune features. (A–C) The assessment of TME related scores
between high- and low-risk groups. (D–F) The score of immune cells comparing high-risk and low-risk groups by ssGSEA Score. (G,H) Heatmap of
22 tumor-infiltrating immune cell types in low- and high-risk groups. (I) LGG patients with different immune subtypes.
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presented that the high-risk group significantly connected

immune pathways to the low-risk group, such as

APC_co_inhibition, CCR, Check-point, MHC_class_I,

Type_I_IFN_Reponse, and HLA (Figure 8D). To further

compare the variance in immune cells between each patient

in LGG, the CIBERSORT program was implemented to

achieve this need. The proportion, infiltration capacity, and

distribution of 22 immune cell types in the high- and low-risk

groups were demonstrated by the box plot and heatmap

(Figures 8E,F, Supplementary Table S10), respectively.

Yet the stability of the cuproptosis-associated lncRNA

model on immunophenotyping was unclear, and we next

evaluated the association between the risk score and the

pre-published immune subtypes of multiple cancers to

further corroborate the power of this risk signature for

accurate immunophenotyping. As seen in Figure 8I, LGG

patients with the C3 subtype exhibited a much higher risk

score than that in C5 and C6 subtypes. We knew from earlier

research that C3, C4, and C5 were inflammatory, lymphocyte-

depleted, and immune-silent tumors, respectively, and that

C3 was the type sensitive to immunotherapy in contrast to

C4 and C5, offering a new insight based on the distinct features

of this LGG immune microenvironment.

Mutation analysis in LGG

Moreover, we analyzed and integrated the mutation data

and classified the mutations into different levels according to

the mutation effect predictor. We present the top 20 driver

FIGURE 9
Somatic mutation landscapes in AML. (A,B) The top 20 mutation driving genes with the highest change frequency in the high-risk and low-risk
groups. (C) Differences in TMB between high and low-risk groups. (D) Correlation between TMB and risk score. (E) Kaplan-Meier survival curves of
theOS of patients in the high-TMB and low-TMB groups in the entire set. (F) Kaplan-Meier survival curves of theOS of patients based on the TMB and
risk scores.
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genes that altered most frequently between the high-risk

groups and low-risk groups in Figures 9A,B. Then, we

scored TMB levels according to the somatic mutation data

from TGCA. The TMB in the low-risk group was lower than

that in the high-risk group (Figure 9C), further

demonstrating that there was a significant correlation

between the risk score based on the cuproptosis-related

lncRNA and TMB (Figure 9D, R = 0.3, p = 3.9e-11). The

survival of LGG patients in the high TMB group is better than

that of the patients in the low TMB group. Additionally, the

patients in the high-risk group with the high TMB group

show a worse survival time, and the patients in the low-risk

group with the low TMB group hold a significantly better OS

(Figures 9E,F).

Clinical treatment and drug sensitivity
analysis

We performed the drug sensitivity analysis to explore the

high correlation drugs targeting 11 cuproptosis-related

lncRNAs (Figure 10A, Supplementary Table S11). The

results indicated that the correlation between drugs

Vemurafenib and lncRNA LINC01537 was the highest

(Cor = 0.56, p < 0.001), Dabrafenib, and lncRNA

LINC01537 was the second (Cor = 0.499, p < 0.001), and

so on. We speculated that the immunotherapy responses

might be different between the low-risk and high-risk

groups because of the significant differences in the immune

microenvironment. To explore potential drugs targeting our

FIGURE 10
Sensitivity of chemotherapy drugs. (A) The high correlation drugs targeting 11 cuproptosis-related lncRNAs. (B) Drug sensitivity analysis.
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risk model and improve treatments for patients with LGG, we

used the IC50 values obtained from 138 patients using the

“pRRophetic” package to determine therapeutic response. The

IC50 of A.770041, AKT. inhibitor.VIII, AP.24534, AS601245,

ATRA, AUY922, AZ628, and AZD.0530 were significantly

higher in the low-risk group, suggesting that LGG patients

in the high-risk group might benefit from those possible anti-

tumor drugs (Figure 10B, p < 0.05). Thus, we may be able to

select the most appropriate drugs for LGG patients, as well as

our risk model based on the cuproptosis-related lncRNAs,

which may provide a powerful cue for immunity therapy

guidance.

Validations for Long Non-coding RNAs
expressions with quantitative real-
time PCR

We selected six Cuproptosis-related lncRNAs for validation,

and we detected their expression levels in non-tumor brain

tissues and glioma tissues, By using RT-qPCR assay, the

expression level of AL158212.3,BASP1-AS1,

LINC01537 showed an overall upward trend in non-tumor

brain tissues, the expression level of

AC099850.3,AC244453.3,FAM181A-AS1 showed an overall

upward trend in glioma tissues. However, through further

verification, there is no significant difference in the expression

level of AC244453.3 between non-tumor tissues and LGG, which

may be due to the small number of samples (Figure 11).

Discussion

LGG is heterogeneous and highly aggressive, and patient

treatment and prognosis prediction are the focus (Ostrom et al.,

2018). However, studies have shown that the prognosis of LGG

cannot be completely predicted based on histological grading and

currently clinically available molecular biomarkers (Louis et al.,

2016). Tumor cells have abnormal cell death, and molecular

markers for predicting cell death can effectively predict overall

cancer survival (Vogler et al., 2009). Regulated cell death (RCD),

including apoptosis, entosis, necroptosis, pyroptosis, and

ferroptosis, plays an important role in anticancer mechanisms

(Koren and Fuchs, 2021). For example, Meike and his team

found that proper regulation of BCL2A1 and BCL-XL could

improve the resistance of leukemia cells to therapeutic agents

(Vogler et al., 2009). RIPK3 plays an important role in the

regulation of necroptosis in breast and colorectal cancers

(Vergara et al., 2020). At the same time, in LGG, Guilherme

and the team also found that RIPK3 is an independent prognostic

marker of LGG, and the combination of RIPK3 level and IDH

mutation status can improve the overall survival rate of LGG

patients (Vergara et al., 2020). Since the concept of ferroptosis

was proposed, ferroptosis has become a research hotspot in RCD.

Wang and his team found that P53 acetylation can enhance

ferroptosis and achieve the effect of inhibiting tumors (Wang

et al., 2016). In addition, the presence of enzymes that control

ferroptosis, such as GPX4, also enables targeted approaches to

target ferroptosis to eliminate cancer (Yang et al., 2014).

Cuproptosis has recently been shown to play a role in RDC as

FIGURE 11
Validations for long non-coding RNAs expressions. (A–C) Expression analysis of three protective lncRNAs (AL158212.3, BASP1-AS1, LINC01537).
(D–F) Expression analysis of three risky lncRNAs (AC099850.3, AC244453.3, FAM181A-AS1). (G) Expression levels of six Cuproptosis-related lncRNAs
in the non-tumor and glioma by qPCR *p < 0.05, **p < 0.01, ***p < 0.001, and ns No significance.
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well. Tsvetkov and others demonstrated that intracellular copper

accumulation induces aggregation of mitochondrial fatty

acylated proteins, reducing the stability of Fe-S cluster

proteins and leading to cell death (Tsvetkov et al., 2022).

Similarly, the study also found that ferredoxin 1 (FDX1) has a

positive effect on cuproptosis, and buthionine sulfoximine (BSO)

has a certain role in the cuproptosis mechanism of lung cancer

cells. These biomarkers and the mechanisms within them may

help with the application of cuproptosis in cancer treatment and

prediction.

In recent years, more and more researchers have discovered

that long non-coding RNAs (LncRNAs) play an important role

in the progression and metastasis of malignant tumors (Liang

et al., 2020). Moreover, the study of lncRNAs in LGG is gradually

increasing. LINC00941 and BASP1-AS1, as hypoxia-related

lncRNAs (HRLs), have been found to affect LGG proliferation

in related studies and can be used as novel biomarkers to predict

the prognosis and potential therapeutic targets of LGG patients

(Xu et al., 2021). Kang and his team also found that the

expression levels of H19, LINC02587, AC015909.3, and others

can be used as lncRNAs risk models to help identify patients who

are suitable for related treatments and improve the status of LGG

treatment (Kang et al., 2021). However, given that the

cuproptosis mechanism was recently discovered, the

relationship between cuproptosis and lncRNAs is largely

unknown. Here, we established a model of lncRNAs

associated with cuproptosis to explore their relationship and

predict the prognosis of LGG patients.

In our study, we identified 1149 cuproptosis-related

lncRNAs, of which 11 cuproptosis-related lncRNAs were

screened as OS prediction models in LGG patients. Risk

signature screening was performed for seven risk factors

(MUC12-AS1 AL589843.1 AC099850.3

AC017104.1 AC244453.3 FAM181A-AS1 AC002351.1) and four

protective factors (AL158212.3 BASP1-AS1

AL162511.1 LINC01537). Some of these lncRNAs appeared in

the construction of prognostic prediction models. For example,

BASP1-AS1 is positively correlated with the prognosis of LGG

and may be a target for LGG therapy (Xu et al., 2021). Jiang and

others demonstrated that FAM181A-AS1 could promote

gliomagenesis by sponging miR-129–5p (Jiang and Chen,

2020). As ferroptosis-related lncRNAs, LINC01537 can be

used as a prognostic predictor for lung adenocarcinoma

(LUAD), with potential implications for the treatment of

LUAD patients (Lu et al., 2021). AL589843.1 was shown to be

a prognostic feature of bladder cancer (Zheng et al., 2021).

AC099850.3 promotes the proliferation and invasion of HCC

through the PRR11/PI3K/AKT axis and is associated with patient

prognosis (Wu et al., 2021).

When we screened drug candidates by assessing the

response of the samples against the GDSC database, we

were pleasantly surprised to find that the low-risk group

was more resistant to all compounds, implying that high-

risk patients may have a higher susceptibility to these drugs.

Immunotherapy is promising in the treatment of brain

tumors, and predictive biomarkers have been shown to play

a role in the immunotherapy of tumor patients. For example,

the oncogenic activation pathway PI3K-AKT-mTOR pathway

was shown to induce ferroptosis in LGG cells; This can help

predict disease outcome and response to treatment (Lin and

Okada, 2016). In a study of colorectal cancer patients, Lin et al.

also found that immune checkpoint inhibitors (ICIs) have a

better role in the treatment of cancer patients, and specific

predictive markers can improve the clinical response

differences of different patients. To better improve the

prognosis of colorectal cancer (Lin et al., 2020). The

immune landscape analysis of cuproptosis-related lncRNAs

in this study showed that there were significant differences

between the high and low-risk groups. The low-risk group had

lower tumor purity and higher scores than the high-risk

group. After evaluating the immune markers of LGG

patients, we found that the immune infiltration of iDCs,

pDCs, and T helper cells in the low-risk group was

significantly reduced. Rhee et al. also found that the lower

the tumor purity, the higher the immune cell infiltration, and

the higher the expression of specific cell genes, which was

negatively correlated (Rhee et al., 2018). Likewise, Jurjen and

co-workers found that human pDCs act as potent activators of

CD8 (+) T in antitumor responses with significant anticancer

effects (Tel et al., 2013). In addition, Victoria et al. in the study

of activating iDCs, and Pornpimon et al. in the study of IL-9-

producing T helper cells, found that the growth of iDCs and T

helper cells can significantly inhibit the growth of cancer

(Jennings et al., 2019; Angkasekwinai and Dong, 2021).

This is consistent with our GO analysis results. In addition,

according to GSEA analysis, the high-risk group was

significantly enriched in immune response and metabolism-

related pathways.

The number of coding-competent bases subject to somatic

mutation is called TMB. TMB can induce the formation of new

antigens, thereby triggering antitumor immunity. TMB can serve as

an effective biomarker for predicting response to immunotherapy

(Gandara et al., 2018). In our study, the low-risk group had lower

TMB than the high-risk group, indicating that the high-risk group

responded better to immunotherapy. This may be related to the fact

that high TMB favors the infiltration of Tregs in KIRC, CD8+ T cells,

and macrophages in LGG (Li et al., 2021). As mentioned above, we

concluded that the high infiltration of iDCs, pDCs, and T helper

cells in LGG and TMB levels in high-risk groups in TMB analysis

might provide new directions for guiding the treatment of LGG, and

our model may be able to become an Immune biomarker in LGG

patients. In addition, when TMB levels were scored according to the

somatic mutation data in TGCA, the results showed that TMB in

the low-risk group was lower than that in the high-risk group. We

speculate that indicators based on cuproptosis are highly correlated

with TMB, and since the low-risk group patients have an immune
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function, we speculate that there may be a correlation between

immune escape and cuproptosis to improve prognosis, and this

model provides new insights for us to better understand the role of

cuproptosis-related lncRNAs in LGG. However, more research is

needed to prove it.

From a clinical perspective, the pathological stage can be a

decisive factor in the prognosis of LGG patients. However, due to

the present periodization, systems are incompetent to accurately

predict the prognosis of LGG patients. LGG patients always have

different clinical outcomes irrespective of the same stage. So,

novel predictive biomarkers are urgently needed. Here, we

established a cuproptosis-related lncRNAs model that can

predict the prognosis of LGG patients. Our study also offers

insights for further understanding themechanism of cuproptosis.

We utilized multiple methods to support the reliability of the

model and optimized it. We assumed that the model was

dependable without external data validation. We do aware

that there are some limitations in this study. First, additional

clinical datasets are required to validate the model. Second, the

molecular biological function of cuproptosis-related lncRNAs

has not been fully explored. Thus, we’d like to recollect clinical

samples to further confirm our study. Besides, we will perform a

further study to explore the molecular biology functional

mechanism of cuproptosis-related lncRNAs in LGG.

In conclusion, we constructed a prognostic model that is

sensitive and reliable, and it showed well efficacy in predicting the

prognosis of patients with LGG. Additionally, the model can also

predict the response to immunotherapies of LGG patients.

Subsequently, we screen potential drugs to improve current

treatment management. On the other hand, our study laid the

groundwork for exploring the role of cuproptosis in the

biogenesis and progression of LGG.
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