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Abstract: Silver nanowires (AgNWs) have inspired many research interests due to their better
properties in optical, electric, and flexible applications. One such exploitable use is as the electrical
conductive fillers for print electronics. In this paper, AgNWs with mean a diameter of 80 nm and mean
length of 13.49 µm were synthesized using the polyol solvothermal method. A sonication-induced
scission process was used to obtain AgNWs with a length range of 7.64–11.21 µm. Further AgNWs
inks were prepared with the as-synthesized AgNWs as conductive fillers in anhydrous ethanol.
The conductive inks were coated on resin coated photographic paper substrate using the knife
coating process and dried at room temperature. The effects of the number of layers of AgNWs
coating, the concentration of AgNWs, and the length of AgNWs on the microstructure and electrical
properties of samples were investigated by scanning electron microscopy and using the four-point
probe method. The results show that the conductivity of the AgNWs coating increases with the
increase in the number of layers in the AgNWs coating, concentration and length of the AgNWs.

Keywords: silver nanowires inks; flexible circuit; photographic paper; sheet resistance

1. Introduction

Paper-based electronic devices have been judged by researchers to hold great promise as an
environmentally friendly substrate for flexible electronics due to their inexpensive and common
availability worldwide for information storage and packaging [1–3]. In recent years, paper-based
electronic devices such as “smart paper” were applied to disposable health industry point-of-care
bedside [4–7]. The treatment temperature of paper-based electronic devices must be low because
they cannot bear temperatures above 150 ◦C. As one of the most important parts of the paper-based
electronic devices, flexible electrodes are required to be sintered at low temperatures [8,9]. According
to our previous results, silver nanowires (AgNWs) in conductive networks can formed at room
temperature [10].

With the development of flexible electronics, AgNWs have stimulated wide attention due to
their unique physical and chemical properties, such as excellent electrical and thermal conductivity,
malleability, and chemical stability [8–12]. Notable is the fact that AgNWs can form networks with
better mechanical properties, facilitating development of foldable sensors with electrodes capable
of withstanding extremely small bending radii without compromising electrical properties [10–14].
AgNWs are now considered as one of the most promising candidate materials to replace indium tin
oxide [13–16].
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The properties of silver nanostructures are closely related to morphology and size of AgNWs [17–20].
Constructing uniformly connected networks of AgNWs with property size is critical for improving
the conductivity of electrodes composed of AgNWs and maximizing the potential of AgNWs
networks [16–21]. However, the preparation of AgNWs with a controllable structure has always
been a difficult problem. In the past few years, we have been working on investigating the controllable
structure, performance and applications of AgNWs [10,11,21–25]. Bergin and coworkers have recently
reported that the transmittance of AgNW film with AgNWs of a given diameter linearly rely on area
coverage and do not rely on the length of AgNWs, and that the decrease of AgNWs diameter improves
optoelectronic performance only for AgNWs with less than 20 nm in diameter [26]. Anoshkin and
coworkers reported that the position of main peaks and the area of the minimal optical absorbance
spectra of AgNW layers in the range of 300–700 nm strongly depends on the AgNWs diameter,
and three times longer AgNWs gave only about 10% increase of optical transmittance with the same
resistivity [27,28].

To realize the marketization and scale of flexible electronics, it is necessary to improve the
manufacturing technology of flexible circuits. Conductive inks are the key to achieve flexible circuits.
The conductive inks are coated on flexible substrates, such as fabric, paper, Polyethylene terephthalate
(PET) and polyimide (PI) by silkscreen printing, inkjet printing, spraying, screen, knife-over-edge,
spray coating, gravure, and slot die, to make flexible conductive pathways or transparent conductive
films, which are then applied to flexible electronic products [1–5,29].

Herein, we prepared AgNWs and obtained AgNWs with the different lengths by the
sonication-induced scission method, and further the AgNWs inks were prepared with as-synthesized
AgNWs as conductive fillers in anhydrous ethanol. The inks were printed on photographic paper
substrate and the effects of the number of AgNWs coating and concentration and size of AgNWs on
the microstructure and electrical properties of samples sintered at room temperature were discussed.

2. Materials and Methods

Silver nitrate (≥ 99.8%) was purchased from Guangdong Guanghua Chemical Reagent Co., Ltd.
Guangdong, China; poly(vinylprrolidone) (PVP, K30, Mw ≈ 10,000) was purchased from Guoyao
Group Chemical Reagent Co., Ltd., Shanghai, China; ferric chloride hexahydrat (≥ 99.5%) was
purchased from Chengdu Kelong Chemical Co., Ltd., Chengdu, China; ethylene glycol EG, ≥ 99.7%)
and ethanol absolute (≥ 99.7%) were purchased from Tianjin Yongda Chemical Co., Ltd. Tianjin, China;
resin coated (RC) photographic papers were purchased from Oracle Technology Co., Ltd. Shenzhen,
China. All the chemicals were used as received.

AgNWs were grown via polyol solvothermal method. FeCl3 (0.3 mmol·L−1) was dissolved in
40 mL EG (0.17 mol·L−1) PVP and AgNO3 (0.1 mol·L−1) were dissolved into 40 mL of EG in turn. Then
FeCl3-EG solution was dropped into the mixed solution of PVP and AgNO3 with a syringe. Please note
that the mixed solution was not stirred during the dropping process, and was immediately transferred
the into the reaction kettle after the completion of dropping. The reaction kettle was placed in an
oven at 160 ◦C for 3 h. After the completion of reaction, the sample was removed and cooled down to
room temperature. Then, acetone and ethanol were used to wash the product. Each washing process
was repeated 3 times to remove the extra solvent and chemical agents (PVP and other reactants).
The AgNWs were re-dispersed in ethanol absolute.

For ultrasonication treatment, 10.80 mg·mL−1 AgNWs solution was put into the beaker filled
anhydrous ethanol and sequentially underwent ultrasonication for 1–5 h at a power of 120 W.
The ultrasonication was carried out with a bath type sonicator (JP-120ST, 0–600 W, 28/40 kHz,
Shenzhen Jiemeng Cleaning Equipment Co., Ltd., Shenzhen, China). AgNWs inks were prepared
with as-synthesized AgNWs as conductive fillers in anhydrous ethanol. The stability of the dispersion
of AgNWs inks was not good enough. AgNWs settled after being kept at room temperature for
7–15 days or so. However, AgNWs inks have good redispersibility which is usually achieved by
ultrasonic stirring.
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The inks were coated on photographic paper substrate using the knife coating process. The effects
of the number of layers of AgNW coating, the concentration of AgNW ink, and the length of AgNWs on
the microstructures and electrical properties of samples dried at room temperature were investigated.

A scanning electron microscope (SEM, zeiss sigma 500, Carl Zeiss, Oberkochen, Germany) was
used to characterize the microstructure of AgNWs. The lengths of individual silver nanowires in
the images were measured manually according to an image processing software (ImageJ Software.
version 1.46, developed by National Institutes of Health, Bethesda, MA, USA). X-ray diffraction (XRD,
DIFFRRACTOMETER, Rigaku Co. Ltd., Tokyo, Japan) was used to measure the phase structures.
The sheet resistance of the AgNW film was measured using a 4-point probe instrument ST2253 (Suzhou
Jingge Electronics Co., Ltd., Suzhou, China).

3. Results

Figure 1 shows the XRD and SEM image of the purified AgNWs. The inserted photo in Figure 1a
is the non- purified AgNW solution. The inserted image in Figure 1b is the length distribution of
AgNWs. There are five peaks at 2θ = 38.12◦, 44.32◦, 65.54◦, 77.40◦, and 81.56◦, corresponding to
diffraction from (111), (200), (220), (311) and (222) planes of the face centered-cubic silver crystals,
no other phases were detected. The lattice constant was calculated from these XRD patterns according
to the spacing distance dg of the (111) plane. The equation is as follows:

1/d2
g = (h2 + k2 + l2)/α (1)

α = 4.0837 Å, which is close to the reported date of α= 4.0862 Å, JCPDS file 04-0783 [16]. It indicates
that a high purity of AgNWs were synthesized. Meanwhile, the peak intensity ratio of (111)/(200) for
AgNWs is much higher than that for the standard value, implying the enrichment of (111) crystalline
planes of the AgNWs. It can be observed that the length distribution of AgNWs from 8 µm to 15µm,
and mean diameter and length are 80 nm and 13.49 µm, respectively (Figure 1b).
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Figure 1. XRD and SEM of as-synthesized silver nanowires (AgNWs). The inserted photo in (a) is
AgNWs solution without purification. The inserted image in (b) is the length distribution of AgNWs.

Sonication is widely applied to disperse materials in liquid media due to the ultrahigh shear rate
attained during cavitation events [30–32]. However, sonication can also induce the scission of the
materials that are imploding cavitation bubbles. Sonication-induced scission is often used to solve
the problem of scission in fiber-like structures with a high aspect ratio, including the exfoliation and
scission of carbon nanotubes [30–32]. Here, in order to obtain AgNWs with different lengths, we used
a sonication-induced scission process to fracture the AgNWs. Figure 2 shows SEM images of AgNWs
(Figure 2a–d) using sonication-induced scission for 1, 2, 4, and 5 h. The inserted images are the length
distribution. The distribution of the lengths of the as-synthesized AgNWs allows the average length of
AgNWs to be calculated. After being treated by the ultrasonication-induced scission process for 1, 2, 4,
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and 5 h, the mean lengths of AgNWs are approximately 11.21, 10.8, 8.66, and 7.64 µm, respectively,
and the diameter does not change. It is clear that the mean length of the AgNWs decreases as the
sonication-induced scission time increases, which is attributed to sonication energy [30,31].
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With RC photographic paper as a substrate, the AgNWs coating was prepared by the knife coating
process and heat treated at the room temperature. Schematic diagram for the steps applied to fabricate
AgNW coating on the photographic paper by knife coating process was shown in Figure 3.
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Figure 3. Schematic diagram for the steps applied to fabricate the AgNW coating.

As we all know, the properties of AgNW coating are strongly dependent on the morphology,
size and distribution of AgNWs on the substrate [10–15]. Here, we obtained AgNWs with different
lengths (13.49, 11.21, 10.93, 8.66, 7.64 µm) by sonication-induced scission process and AgNW inks
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(0.1 mL, 10.80 mg·mL−1) were dropped and knife coated the surface of RC photographic paper and
dried at the room temperature for 15 min. Figure 4 shows the relationship between the average sheet
resistance of AgNW coating and the length of AgNWs. The photos of samples were inserted into
Figure 4. We can see the color of AgNW coating is gray with the increase of AgNW length, and the
sheet resistance of the coating obviously reduces. When the length of AgNWs is 13.49 µm, the sheet
resistance is 15.68 Ω·sq−1. When the length of AgNWs is 7.64 µm, the sheet resistance is 196.4 Ω·sq−1.
The sheet resistance increases by 12.5 times. At the conditions of the same concentration and diameter,
the shorter the AgNWs are, the more AgNWs there are. Not surprisingly, the contact resistance among
the AgNWs at the same coverage area increases with the increase in the number of AgNWs, leading to
a sheet resistance increase.
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Figure 5 shows SEM images of coatings of AgNWs with different lengths, from Figure 5a–e is 7.64,
8.66, 10.93, 11.21, and 13.49 µm, respectively. We can observe that the thickness of AgNWs coating
and the overlaps among the AgNWs become reduced with the increase of the length of the AgNWs.
The densification of the AgNWs coating decreases with the decrease of the length of AgNWs. This is
due to the reduction in the number of AgNWs.

Once the effect of the length of AgNWs on the conductivity of the coating is understood, it is
necessary to study the effect of the deposition density of the AgNWs on the conductivity of coating.
In order to ascertain the deposition density of the AgNWs dependence, we fabricated the AgNWs
(13.49 µm) coatings with different layers. To prepare for multi-layer coating, each sample coated layer
is put at room temperature for 15 min, and then coated with the next layer. The concentration of AgNW
ink (0.1 mL) is 10.80 mg·mL−1. Figure 6 shows relationship between the average sheet resistance of
AgNW coating dried at room temperature and the number of coating layers. Inserted is the local
enlarged image. During the experiment, we found that AgNWs coating was not as conductive as one
coated layer. The average sheet resistance of AgNWs coatings from one layer to five layers, is 654.5,
59.05, 5.87, 2.26 Ω·sq−1, respectively. When the layers of coating increased to six the sheet resistance
of AgNW coating reduced to 0.45 Ω·sq−1. After that, the sheet resistance of AgNWs coating slightly
decreased when coating layers were increased to seven. The formation of electrical conduction paths
in AgNW coating is considered to contact among the AgNWs. The contact resistance at the interfaces
between AgNWs is considered to be strongly influenced by the contact area. The more AgNWs,
the more conductive paths are easily formed, which promotes conductivity. However, when the
conductive paths in the coating are well formed, the increase of the number of AgNWs coating layers
only slightly reduces contact resistance [11,17]. As the conductive material, AgNWs are likely easy to
form conductive networks by overlapping each other due to the two-dimensional wire structure.
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In order to further analysis of the effect of the number of coating layer on the sheet resistance
of AgNWs coating, we observed the microstructures of the samples, as shown in Figure 6, in which
Figure 7a–d is the pure photographic paper, 2, 4, and 7 coating layers, respectively. It is clear that with
the increase of the number of coating layer, the AgNWs coatings become dense.

In order to analyze of the effect of the number of AgNWs on the conductivity of the coating,
we prepared the coatings with different AgNW ink concentrations (13.20, 10.80, 8.70, 6.51. 4.32,
and 2.65 mg·mL−1) and four coating layers, dried at room temperature for 15 min, as shown in
Figure 8. The inserted image is a photo of the samples. It is clear that the sheet resistance of AgNWs
coating decreases with the increase of concentration of AgNW ink. When the concentration of AgNW
ink is 13.20 mg·mL−1, the sheet resistance of AgNW coating is 0.77 Ω·sq−1, which is close to that of the
sample prepared with 10.80 mg·mL−1 AgNWs ink and six coating layers (Figure 5). It is indicated that
the good conductive coating can be obtained with a high concentration ink by a simple preparation
process. However, it is not good for AgNW ink with higher concentration because AgNWs are easy
to deposit in the condition of high concentration. When the concentration of AgNWs ink reduces to
2.65 mg·mL−1, the sheet resistance of AgNW coating increases to 334.90 Ω·sq−1. The more AgNWs
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that are are added to a coating achieved percolation, the more effective conductive paths are formed,
therefore the conductivity of the AgNWs coating will be improved [11,15–18].Micromachines2018, 9, x FOR PEER REVIEW  7 of 11 
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As discussed above, the AgNW inks are viable in the application of the flexible devices. Here,
the potential application of the AgNWs ink by fabricating an LED device on the AgNW electrodes was
measured (Figure 10). One 0.5-W LED lamp was fixed onto the surface of the AgNW electrode with
conductive adhesive on the photographic paper substrate. In can be seen that the LED lamp was lit
whether the photo paper was flat or bent, indicating the good conductivity and mechanical behavior
of the AgNW coating.Micromachines2018, 9, x FOR PEER REVIEW  9 of 11 
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4. Conclusions

AgNWs with a mean diameter of 80 nm and mean length of 13.49 µm were synthesized using the
polyol solvothermal method. Then sonication-induced scission process was used to obtain AgNWs
with a length range of 7.64–11.21 µm, and further the AgNWs inks were prepared with as-synthesized
silver nanowires as conductive fillers in anhydrous ethanol. The conductive inks were coated on
photographic paper substrate using the knife coating process and dried at room temperature for 15 min.
We demonstrate that the conductivity and densification of AgNW coating increases with the increase
in the number of AgNW coating layers, concentration and length of the AgNWs. When the length
of AgNWs is 13.49 µm, the sheet resistance is 15.68 Ω·sq−1. When the length of AgNWs reduces to
7.64 µm, the sheet resistance increases to 196.4 Ω·sq−1. The sheet resistance increases by 12.5 times.
When the concentration of AgNW ink is 13.20 mg·mL−1, the sheet resistance of AgNW coating with
four layers is 0.77 Ω·sq−1, which is close to that of the sample that was prepared with 10.80 mg·mL−1

AgNW ink and six coating layers.
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