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Abstract

Background: Affinity purification-mass spectrometry (AP-MS) has been widely used for generating bait-prey data
sets so as to identify underlying protein-protein interactions and protein complexes. However, the AP-MS data sets in
terms of bait-prey pairs are highly noisy, where candidate pairs contain many false positives. Recently, numerous
computational methods have been developed to identify genuine interactions from AP-MS data sets. However, most
of these methods aim at removing false positives that contain contaminants, ignoring the distinction between direct

interactions and indirect interactions.

Results: In this paper, we present an initialization-and-refinement framework for inferring direct PPl networks from
AP-MS data, in which an initial network is first generated with existing scoring methods and then a refined network is
constructed by the application of indirect association removal methods. Experimental results on several real AP-MS
data sets show that our method is capable of identifying more direct interactions than traditional scoring methods.

Conclusions: The proposed framework is sufficiently general to incorporate any feasible methods in each step so as
to have potential for handling different types of AP-MS data in the future applications.

Keywords: Protein-protein interactions, Affinity purification, Mass spectrometry, Network deconvolution

Background

Proteins play an important role in a variety of biological
activities of organism in cells. Knowing the interactions
between proteins can facilitate the identification of pro-
tein functions and the discovery of new drug targets.
Therefore, the accurate inference of protein-protein inter-
action (PPI) network from experimental data is one of
most important and challenging topics in bioinformatics
and proteomics.

Affinity purification-mass spectrometry (AP-MS) is a
mainstream experimental method for identifying PPIs in
a high-throughput manner. In each AP-MS experiment,
a tagged protein (bait) is first selectively purified along
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with its potential interacting partners (preys) from a cell
or tissue lysate. Then, MS is used to identify and quantify
these affinity purified proteins. Such purification exper-
iments are repeated many times with different bait pro-
teins. The set of bait-prey pairs from all purifications,
termed the AP-MS data, is used to infer the underlying
protein-protein interaction network structure.

Ideally, one bait protein should have a real and direct
interaction relationship with each associated prey protein.
However, there is a large number of false positive interac-
tions in the AP-MS data, where the prey protein can be a
non-specific contaminant. In addition, some prey proteins
do not interact with the bait protein directly, which con-
nect to the bait protein via other intermediate proteins. To
remove these spurious interactions and improve the qual-
ity and reliability of network, many scoring algorithms
have been proposed to solve the PPI inference prob-
lem from AP-MS data. As summarized in several recent
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reviews [1-3], these scoring methods can be categorized
into two classes according to the underlying assump-
tion on the composition of candidate interactions: spoke
and matrix models. Spoke models consider only bait-prey
interactions, whereas matrix models additionally incorpo-
rate prey-prey pairs into the set of candidate interactions.
On the other hand, these methods are developed for han-
dling different types of AP-MS data. For qualitative AP-
MS data, scoring methods mainly measure the strength
of interactions according to the co-occurrence correla-
tion between proteins. Typical methods in this category
include SA [4], PE [5], DC [6], Hart [7] and IDBOS [8]. For
quantitative AP-MS data, some methods such as SAINT
[9], MiST [10], ComPASS [11], HGSCore [12] infer inter-
actions between proteins by exploring the quantitative
information of proteins.

Despite of recent algorithmic advances on inferring PPI
networks from AP-MS data, there are still several chal-
lenging problems that remain unsolved. In this paper,
we focus on one of such questions: Can we accurately
infer the direct PPI network from AP-MS data? Note
that there are two types of protein interactions: direct
(physical, binary) interaction and indirect (co-complex)
interaction. Direct interactions are those in which inter-
acting proteins approach closely and bind together in the
form of a complex in some biological processes and then
perform certain functions [13]. The indirect interaction
between two proteins only refers to their functional rela-
tionship without the former direct/physical contact. In
other words, two proteins with the indirect interaction
cooperate to carry out a given task without actually engag-
ing in a physical contact [14]. Mathematically, if the PPI
network is represented as a graph, then each edge in the
graph corresponds to a direct interaction. Meanwhile, two
proteins have an indirect interaction if they are connected
in the graph but have no direct edge. However, most exist-
ing scoring methods are developed to infer PPI networks
whose edges are mixed of direct and indirect interactions.
In other words, these methods do not distinguish direct
interactions from indirect interactions in the construction
of PPI networks. To our knowledge, only a few stud-
ies have investigated the problem of constructing a PPI
network that is composed of only direct interactions [15-17].

Therefore, it is still highly demanded to develop effec-
tive algorithms for inferring direct protein-protein inter-
actions from the AP-MS data. This paper presents a
general framework for inferring direct PPIs from AP-MS
data. It is composed of two phases: initialization phase
and refinement phase. In the initialization phase, we uti-
lize an existing scoring method to generate a PPI network
that may contains both direct and indirect interactions. In
the refinement phase, we distinguish direct interactions
from indirect interactions in the initial PPI networks. Note
that this framework is general and very flexible, in which
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we can use different algorithms in each phase. To demon-
strate the feasibility and advantages of our framework, we
conduct a series of comprehensive performance studies.
In the experiments, we use SA, PE, DC and Hart methods
as the scoring methods in the first phase and two indirect
interaction removal methods [18, 19] in the second phase.
Experimental results show that our method is capable of
detecting more direct interactions than traditional scoring
methods.

The rest of the paper is organized as follows.
“Methods” section describes our PPI network inference
framework. “Results and discussion” section presents the
experimental results and “Conclusion” section concludes
this paper.

Methods

Here we propose a general initialization-and-refinement
framework for inferring the direct PPI network from AP-
MS data. The initial idea of such as a two-step procedure
has been discussed in our previous work [3], which has
been published online since 2014. In addition, some pre-
liminary experimental results have been presented by the
corresponding author in the highlight track of ISB 2015.
In this paper, we further formalize this idea and conduct
extensive empirical studies to demonstrate its feasibil-
ity and effectiveness in practice. In the first step, we use
the existing interaction scoring methods to generate an
initial PPI network that is mixed of direct and indirect
interactions. In the second step, we try to remove indi-
rect interactions from the initial network by utilizing the
so-called network cleaning methods.

Figure 1 provides an overview of this framework. In the
following, we will elaborate each step in detail.

(I) In the initialization phase, we utilize existing scoring
methods to construct an initial PPI network. Indeed, we
can use any feasible scoring algorithms in this step. As we
have discussed in the introduction, many interaction scor-
ing algorithms have been proposed to infer PPI networks
from AP-MS data. These methods are designed to tackle
different types of AP-MS data. Therefore, the choice of
scoring methods actually depends on the input AP-MS
data. For qualitative AP-MS data sets where we only know
the co-occurrence of bait-prey pairs, we need to choose
methods such as SA [4], PE [5] and DC [6]. For quanti-
tative AP-MS data sets with protein abundance informa-
tion, we can use those methods such as SAINT [9] and
MiST [10].

Despite of the seeming difference among existing meth-
ods, the problem of interaction prediction from AP-MS
data can be modeled as a complex pairwise correla-
tion mining problem. Here variables correspond to pro-
teins, while samples correspond to purifications. Note that
this problem is different from the traditional correlation
mining problem with several distinct features: (1) Each
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Fig. 1 An overview of the two-step framework for direct PPI network inference from AP-MS data. There are two major steps: the initialization step
constructs an initial PPl network with the state-of-the-art scoring methods and the refinement step produces a filtered PPI network by removing
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variable (i.e.. protein) may take different roles (bait vs.
prey). Such information is valuable for effective inter-
action detection, which has been incorporated in many
scoring methods such SA and PE; (2) The data sets are
highly noisy, in which many frequently appeared proteins
may be containments.

Overall, many existing algorithms are available in the
literature that can be utilized in this step. A detailed
description and discussion on the advantages and limita-
tions of available methods are beyond the scope of this
paper, which could be found in a recent review paper [3].

(II) In the refinement phase, we obtain a filtered PPI
network by exploring indirect association cleaning meth-
ods on the initial network. Recently, several algorithms
have been proposed to recover direct relationships from
an observed correlation matrix containing both direct and
indirect relationships (e.g. network deconvolution [18],
Silencer [19]). Since the initial PPI network generated in
the first phase is mixed of direct interactions and indirect
interactions, it is feasible to use such indirect associa-
tion cleaning methods to remove indirect interactions in
this phase.

Although these association cleaning methods are devel-
oped from quite different starting points, their objectives
are the same: inferring the underlying unknown true
direct network from the the measured correlation matrix
that may be mixed of direct and indirect associations. The
basic idea of these methods is summarized as follows.

Suppose a network is represented as an observed pair-
wise correlation matrix G, which is derived from the
measurements of the total effect (both direct effect and
indirect effect) of each variable on every other variable.
If suppose S is the true matrix of direct associations,
then each entry of correlation measurement in G can
be obtained by summing up the direct effects mediated
through the direct neighbors of the corresponding vari-
able in the true network S. Based on this relationship, both
the network deconvolution method [18] and the Silencer
method [19] provide an approximate closed-form solution
for S in terms of G. Note that actually both approaches
are related to the partial correlation [20], which is the
correlation between two variables when the effects of

Table 1 The relevant statistics on three AP-MS data sets used in
the experiments

Gavin Krogan Combined
Number of purifications 2166 4332 6498
Number of distinct baits 1993 2294 2296
Number of distinct preys 2671 5333 5405
Total number of proteins 2761 5364 5444
Number of bait-prey pairs 22165 79738 101903

For each data set, the number of distinct bait proteins, the number of distinct prey
proteins, the number of total proteins, and the number of all bait-prey pairs are
listed in the table
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Fig. 2 The performance comparison on the Gavin data set when SA, PE, Hart and DC are used as the scoring method in the initial phase and BGS,
PCA and Y2H are used as the reference set. To obtain a filtered network, we use both ND and Silencer as the indirect interaction removal method in
the second phase. For each reference set and scoring method, we report a set of top-ranked interactions (x-axis) to check how many interactions

other variables are removed. These two methods scale the
inverse correlation matrix in different manners.

Results and discussion

To demonstrate the efficacy and utility of our framework,
we conduct a series of tests with several real data sets. The
experimental settings, data sets used and performance
evaluation results are given in the following sub-sections.

Experimental settings

In the experiments, we use SA, PE, Hart and DC methods
as the scoring methods in the first phase to construct an
initial PPI network. All the interaction scores for each
algorithm are generated using the ProCope software [21]
(https://drupal.bio.ifi.lmu.de/Complexes/ProCope/) with

the default parameter settings. To obtain a filtered
network in the second phase, we use the network
deconvolution (ND) method [18] (http://compbio.mit.
edu/nd/code.html) and the Silencer method [19] (https://
figshare.com/articles/Nature_Biotechnology_Silencing_Sup
plementary_Software/1348220) respectively as the indi-
rect interaction removal method, which are executed
with their default parameters.

Data sets and reference sets

We use two public large-scale yeast AP-MS data sets:
Gavin [4] and Krogan [22], whose raw experimental data
sets were downloaded from http://interactome-cmp.ucsf.
edu/. In addition, we also use a larger combined data set,
which is generated from the integration of purifications
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Fig. 3 The performance comparison on the Krogan data set when SA, PE, Hart and DC are used as the scoring method in the initial phase and BGS,
PCA and Y2H are used as the reference set. To obtain a filtered network, we use both ND and Silencer as the indirect interaction removal method in
the second phase. For each reference set and scoring method, we report a set of top-ranked interactions (x-axis) to check how many interactions
are contained in the the reference set (y-axis)

from the above two data sets. The relevant information on
these three data sets are summarized in Table 1.
Although many databases have been constructed for
storing PPIs from different species (e.g. [23-25]), there
are still no comprehensive gold standard sets for direct
protein interactions in the literature. Here we follow
Schelhorn et al. [16] to use three reference sets of
experimentally validated binary protein interactions for
the performance assessment in the experiments. These
reference sets are denoted by Y2H, PCA, and BGS,
respectively. The first two sets are collections of binary
protein interactions experimentally determined from the
Y2H technique [26] and the PCA technique [27]. The
third reference set is composed of manually curated
yeast interactions supported by literature and is taken

from an extensive validation of the Y2H method [26].
The Y2H reference set and BGS reference set are
downloaded from http://www.sciencemag.org/content/
322/5898/104/suppl/DC1 and the PCA reference set is
obtained from http://www.sciencemag.org/cgi/content/
full/1153878/DC1.

Performance evaluation results

To quantify the effectiveness of such an initialization-and-
refinement framework, we compare the initial network
and filtered network to check if more direct interac-
tions are reported on each data sets. The experimental
results on Gavin data, Krogan data, and Combined data
are given in Figs. 2, 3, and 4, respectively. As shown in
these figures, our two-step method is able to identify
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Fig. 4 The performance comparison on the Combined data set when SA, PE, Hart and DC are used as the scoring method in the initial phase and
BGS, PCA and Y2H are used as the reference set. To obtain a filtered network, we use both ND and Silencer as the indirect interaction removal
method in the second phase. For each reference set and scoring method, we report a set of top-ranked interactions (x-axis) to check how many

interactions are contained in the the reference set (y-axis)

more experimentally validated direct interactions than the
corresponding initial scoring method in most cases. In
order to quantitatively illustrate this fact, we calculate
the normalized AUC (area under the curve) value as an
overall performance indicator for each method. Here the
normalized AUC value is defined as the quotient between

the AUC value and X405 X Ymax, Where x,,,, and yyax
are the maximal value of x-axis and y-axis, respectively.
The experimental results on three data sets in terms of
normalized AUC values are summarized in Tables 2, 3,
and 4, respectively. As shown in these tables, the pro-
posed procedure is able to boost the performance of

Table 2 The performance comparison on the Gavin data set in terms of normalized AUC values

BGS PCA Y2H
Initial Filtered(ND) Filtered(Silencer) Initial Filtered(ND) Filtered(Silencer) Initial Filtered(ND) Filtered(Silencer)
SA 0.78 0.794 0.791 0.76 0.76{ 0.76{ 0.77 0.801 0811
PE 063 0.774 0734 0.62 0.741 0.71% 0.54 0.764 0.684
DC 0.71 0.744 0.774 0.64 0.701 0.72¢4 0.73 0.80¢ 0.82¢
Hart 0.75 0.774 0774 073 073} 0.74¢ 0.77 0.82¢ 0834

In the table, the symbol 1 highlights the case that the normalized AUC value is increased in the curve derived from the filtered network . If there is no improvement, then | is

used instead
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Table 3 The performance comparison on the Krogan data set in terms of normalized AUC values

BGS PCA Y2H
Initial Filtered(ND) Filtered(Silencer) Initial Filtered(ND) Filtered(Silencer) Initial Filtered(ND) Filtered(Silencer)
SA 0.82 081} 0.78] 0.80 0.78} 0.76} 0.73 073} 0.764
PE 062 0.764 0.744 0.63 0.774 0.744 049 0.724 0.661
DC 047 0631 0.631 0.56 0.641 0.641 0.38 0714 0.681
Hart 075 0.774 0.774 0.76 0.794 0.794 0.71 0.764 0.764

In the table, the symbol 1 highlights the case that the normalized AUC value is increased in the curve derived from the filtered network. If there is no improvement, then |, is

used instead

initial networks in terms of normalized AUC values in
most cases.

To make the discussion easier to follow, we take the
experimental results on the Gavin data set as an exam-
ple for a brief illustration. Table 2 shows the performance
comparison between different methods, where total 24
pairs of comparative normalized AUC values are listed.
In the table, 1 highlights the cases that the normalized
AUC value is increased in the curve induced from our
proposed framework. In contrast, | corresponds to the
case without any improvements. Notably, among the 24
pairs of experiments for both ND and Silencer, 21 pairs
demonstrate the positive promotion induced by the fil-
tered network, versus only 3 pairs of results with no
improvement. Accordingly, our two-step framework can
facilitate us to identify more direct interactions compared
to the traditional scoring methods.

Similar conclusions can be drawn from the experimen-
tal results on the Krogan data set and the Combined
data set. More precisely, ND and Silencer can provide at
least 19 enhanced cases in both Tables 3 and 4. More-
over, compared to traditional scoring methods in terms
of normalized AUC, the worst improvements of the fil-
tered network are 0.02 in Table 3 and 0.01 in Table 4, and
the best improvements are 0.33 and 0.27, correspondingly.
Meanwhile, in the cases that we cannot achieve perfor-
mance improvement, the decrease on the performance is
almost negligible. This means that it is safe to apply our
framework to boost the performance of existing scoring
methods for inferring direct PPI networks. In other words,

the proposed procedure is able to improve the robustness
(i.e., reduce the variance) of final results across a variety of
scoring methods.

To check the overlap among the PPIs generated from
the same data set by different PPI scoring methods (SA,
PE, DC and Hart) after the indirect interaction removal
procedure, we plot three Venn diagrams in both Figs. 5
and 6 when ND and Silencer are respectively used as the
refinement algorithm. As shown in Fig. 5, we let each
scoring method report approximately 10,000 PPIs on each
data set. Among these PPIs, the number of PPIs that
are reported by all four methods is 4029 (Gaivn), 1732
(Krogan) and 1953 (Combined data), respectively. More-
over, the number of PPIs that are only reported by one
method ranges from 1427 to 4622. Therefore, the results
obtained by different methods are very diverse. Similar
conclusions can be drawn from the Venn diagrams in
Fig. 6 as well. This indicates that our proposed framework
is applicable to different scenarios.

To illustrate why significant improvements are observed
when some scoring methods are used in the first phase,
we present the top-10 ranked PPIs and other related
details in Additional file 1: Tables S1-S24. When we use
ND in the second phase, it is clearly visible that we can
always achieve a significant performance improvement
over the PE method after the refinement procedure from
Tables 2, 3, and 4. This is because many “true PPIs” with
low ranks (initial ranks) in Additional file 1: Tables S2, S6, S8
and S10 are re-ranked to be the 10 highest ranked interac-
tions. In contrast, the initial top-10 PPIs and those top-10

Table 4 The performance comparison on the Combined data set in terms of normalized AUC values

BGS PCA Y2H
Initial Filtered(ND) Filtered(Silencer) Initial Filtered(ND) Filtered(Silencer) Initial Filtered(ND) Filtered(Silencer)
SA 0.81 0.80{ 0.79 0.76 0.73} 0.73] 0.76 0.774 0.784
PE 0.63 0.774 0.764 0.59 0.744 0.72¢ 0.55 0.774 0.73¢4
DC 0.54 0.674 0.684 0.57 0674 0.65% 044 0714 0.70¢
Hart 0.72 0.774 0.784 0.70 0.75% 0.75% 0.65 0.744 0.75¢

In the table, the symbol 1 highlights the case that the normalized AUC value is increased in the curve derived from the filtered network. If there is no improvement, then | is

used instead
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Fig. 5 The overlap among the sets of PPls in the filtered networks derived from the same data set when ND is used in the refinement phase. The
results on Gavin, Krogan and Combined data sets are presented in the sub-figure (a), (b) and (), respectively
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ones after refinement are almost the same when the SA
method is used in the initialization phase. As a result, the
performance improvement is less visible in Tables 2, 3,
and 4 when SA is used as the initial scoring method. When
Silencer is used in the second phase, similar conclusions
can be drawn from Additional file 1: Tables S13—S24 as well.

Overall, our two-step method generally has better per-
formance than the corresponding component scoring
methods for each data set. This indicates that the pro-
posed framework is effective in inferring direct PPIs from
AP-MS data. Moreover, the refinement step will provide
significant performance gain when the results generated
from the first step are not good enough. Hence, the two-
step framework is of practically considerable value and
provides us a new door to conduct the unmixed direct PPI
network discovery.

Conclusion

As AP-MS experiments have generated large amounts
of data, it is critical to establish the genuine PPI net-
work from the experimental data. Our two-step frame-
work combines existing PPI scoring methods and network
deconvolution techniques, which achieves better perfor-
mance than the traditional scoring methods on several
AP-MS data sets. This framework is sufficiently general
to incorporate any feasible methods in each step so as to
have potential for handling different types of AP-MS data
in the future applications.

In the future work, we will work on optimization mod-
els that can infer the direct PPI networks from the AP-MS
data in a single procedure. In addition, it is also very crit-
ical to develop fast algorithms that can solve the network
inference problem in linear time.

PE(10000)

Hart(10000) PE(10000)

Hart(10000) PE(10000) Hart(10000)

DC(10000)

Fig. 6 The overlap among the sets of PPIs in the filtered networks derived from the same data set when Silencer is used in the refinement phase.
The results on Gavin, Krogan and Combined data sets are presented in the sub-figure (a), (b) and (c), respectively
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Additional file

Additional file 1: Supplementary Tables. This file provides the supplementary
tables (Tables S1-524) that illustrate why significant improvements are
observed when some scoring methods are used in the first phase. We
present the top-10 ranked PPIs detected from three data sets after the
refinement procedure. Meanwhile, we also record the initial ranks of these
top-10 ranked PPIs in these tables. Note that we list more than 10 PPIs in
some tables such as Table S3 and Table S5 because there are top-k
ranked PPIs (k>10) that have the same ranking score. (PDF 67 kb)
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