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Abstract: A wide variety of viruses exploit furin and other proprotein convertases (PCs) of the
constitutive protein secretion pathway in order to regulate their cell entry mechanism and infectivity.
Surface proteins of enveloped, as well as non-enveloped, viruses become processed by these proteases
intracellularly during morphogenesis or extracellularly after egress and during entry in order to
produce mature virions activated for infection. Although viruses also take advantage of other
proteases, it is when some viruses become reactive with PCs that they may develop high pathogenicity.
Besides reacting with furin, some viruses may also react with the PCs of the other specificity group
constituted by PC4/PC5/PACE4/PC7. The targeting of PCs for inhibition may result in a useful strategy
to treat infections with some highly pathogenic viruses. A wide variety of PC inhibitors have been
developed and tested for their antiviral activity in cell-based assays.
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1. Introduction

The regulation of viral cell entry by proteases is a control mechanism common among viruses
(Table 1). The proteolytic processing of viral proteins is often required for virus maturation and
infectivity. A critical group of host-cell proteases exploited by a variety of viruses is the family of
proprotein convertases (PCs), which includes furin, PC4, PC5, PACE4, and PC7 [1,2]. Although other
types of proteases besides PCs can also perform the proteolytic maturation of viruses, it has been
observed that when PCs process viral proteins, some viruses become comparatively more infective
and pathogenic. Most of the research done on the maturation of viruses by PCs has focused on furin.
However, there is evidence of the involvement of other PCs in the regulation of virus maturation [3].
The scattered information about the role of PCs in the life cycle of a wide variety of viruses [4,5],
in addition to the new developments on PC activity regulation and reaction specificity [6–9], calls for
an effort to integrate this knowledge, analyze the relevance of PCs in the pathogenicity of viruses,
and evaluate the feasibility of inhibiting PCs as a sound strategy for antiviral therapy. This review
will discuss the importance of differences of PC reactivity and selectivity, and the PC gene expression
profile of infected cells, in determining virus infectivity and tropism.

The proteolytic maturation of viruses by PCs generally involves the processing of proteins localized
on the surface of viral particles, either of non-enveloped or enveloped viruses [10]. The cleavage of
the surface viral proteins mostly occurs inside the host cells during virus morphogenesis and before
egress, although cleavage by the target-cell PCs can occur extracellularly or during cell entry with some
viruses. The proteolytic processing by PCs promotes binding and fusion of viral particles to target cells.
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Table 1. Families of pathogenic viruses that are PC dependent. Many families of viruses exploit the
host-cell PCs to regulate their cell entry mechanism.

Familiy Virus Capsid Genome

Papillomaviridae HPV Naked Circular dsDNA

Herpesviridae Herpes, Cytomegalovirus, Epstein-Barr,
Varicella-zoster Enveloped Linear dsDNA

Flaviviridae Dengue, Zika, Yellow fever, West Nile Enveloped Linear ssRNA+

Togaviridae Chikungunya, Semliki forest Enveloped Linear ssRNA+

Coronaviridae MERS Enveloped Linear ssRNA+

Retroviridae HIV, Leukemia viruses Enveloped Linear ssRNA−-RT
Hepadnaviridae Hepatitis B Enveloped Linear ssDNA−-RT

Filoviridae Ebola, Marburg Enveloped Linear ssRNA−

Paramyxoviridae Measles, RSV, Newcastle disease, Nipah Enveloped Linear ssRNA−

Orthomyxoviridae Avian influenza H5N1 Enveloped Linear ssRNA−
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Figure 1. X-ray crystal structure of human furin. The PC catalytic domain (red) shared by all PCs has 
the structural fold typical of the subtilin family of serine proteases. The position of the catalytic triad 
residues is marked in cyan. The P domain (blue) regulates catalytic activity. The PCs differ in their 
additional domains. PDB ID code 5JXH. . 

PCs are eukaryotic serine proteases classified in the MEROPS Peptidase Database within the S8B family. 
Furin, PC4, PC5, PACE4, and PC7 are part of the Kexin-like subfamily of PCs and localize to the organelles of 
the constitutive protein secretion pathway [1]. These PCs perform the proteolytic post-translational modification 
of a large variety of peptides and proteins in the trans-Golgi network, endosomes, and pericellular environment, 
and are critical regulators of central cellular processes, such as growth, proliferation, and differentiation [11–13]. 
The gene expression profile of the Kexin-like PCs is cell-type dependent, but most cells express some or all of 
them, except for PC4 whose expression is restricted to cell types in the testes, ovaries and the placenta. PCs are 
large-size multidomain proteins composed of conserved catalytic and regulatory P domains that share 50%–65% 
amino acid sequence homology (Figure 1). Furin, PC5, and PC7 are type I membrane-bound proteins, and furin 

Figure 1. X-ray crystal structure of human furin. The PC catalytic domain (red) shared by all PCs has
the structural fold typical of the subtilin family of serine proteases. The position of the catalytic triad
residues is marked in cyan. The P domain (blue) regulates catalytic activity. The PCs differ in their
additional domains. PDB ID code 5JXH.

PCs are eukaryotic serine proteases classified in the MEROPS Peptidase Database within the S8B
family. Furin, PC4, PC5, PACE4, and PC7 are part of the Kexin-like subfamily of PCs and localize to
the organelles of the constitutive protein secretion pathway [1]. These PCs perform the proteolytic
post-translational modification of a large variety of peptides and proteins in the trans-Golgi network,
endosomes, and pericellular environment, and are critical regulators of central cellular processes, such
as growth, proliferation, and differentiation [11–13]. The gene expression profile of the Kexin-like PCs
is cell-type dependent, but most cells express some or all of them, except for PC4 whose expression is
restricted to cell types in the testes, ovaries and the placenta. PCs are large-size multidomain proteins
composed of conserved catalytic and regulatory P domains that share 50–65% amino acid sequence
homology (Figure 1). Furin, PC5, and PC7 are type I membrane-bound proteins, and furin and PC5 can
be shed extracellularly; in contrast, PACE4 is a secreted protein. Kexin-like PCs cleave their substrates
at sites specified by a motif composed of P4Arg—P3X—P2X—P1Arg—P1′X, where X is any amino acid
residue, and cleavage occurs between the P1Arg and P1′X residues. This sequence motif is found in
many viral surface proteins and determines cleavage by PCs [3]. The Kexin-like PCs are divided into
two specificity groups, one represented by furin, and the other by PC4/PC5/PACE4/PC7 [9]. Furin is
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more reactive than the other PCs, and the differences in reaction specificity between the two groups are
based on active-site and exosite determinants of reactivity.

Kexin-like PCs are considered potential pharmacological targets for the treatment of viral infections
by blocking virus maturation and infectivity. Other uses for the targeting of these PCs include the
inhibition of the activation of bacterial toxins such as Shiga, anthrax, Clostridium, Pseudomonas, and
diphtheria; and also, for the treatment of degenerative diseases such as metastatic cancer, Alzheimer’s,
and osteoarthritis [2,4,5]. The only known natural inhibitors of PCs are serpins, which are slow-binding
type inhibitors that form covalently-linked inhibitory complexes with their target proteases [14]. Serpin
B8, currently the only PC inhibitory serpin identified in vertebrates, has higher specificity for furin
than for PC4/PC5/PACE4/PC7 [9,15,16]. More PC inhibitory serpins have been characterized in other
organisms as well [17–19]. A variety of synthetic PC inhibitors have been developed based on small
molecules, peptides and their mimetic derivatives, and larger proteins [5,20]. However, the main
obstacle for their therapeutic use has been their toxicity, and their lack of PC selectivity. An important
research tool is the PC inhibitor α1PDX, which is a derivative of the serpin α1-antitrypsin with an
engineered PC cleavage site motif at its reactive loop [21]. This engineered serpin inhibits all the
Kexin-like PCs with the same specificity. More recently, we developed two α1PDX-serpin B8 chimeras
that selectively target each of the two PC specificity groups. One is α1ORD that specifically inhibits
furin, and the other is α1MDW that specifically inhibits PC4/PC5/PACE4/PC7 [8,9].

The literature on the proteolytic processing of viral surface proteins by PCs and the role that PCs
play on the maturation of viruses will be reviewed, and finally, the development of PC inhibitors and
their antiviral properties will be discussed.

2. Papillomaviruses

The human papillomavirus (HPV) infects the basal cells of stratified epithelium, and virion
replication depends on the infected basal cells progressing into differentiated squamous cells.
HPV infects by reaching the lower layers of the stratified epithelium through micro-wounds in
the tissue. There, the viral particles bind to heparin sulfate proteoglycan receptors localized either
on the extracellular matrix of the basement membrane or the cell surface [22,23]. HPV particles are
constituted by a naked nucleocapsid, and work done with pseudovirion particles has suggested that
conformational changes in the nucleocapsid proteins L1 and L2, that are induced upon binding of
the virus to cell-surface proteoglycans, prime L2 for cleavage by extracellular or pericellular PCs
at the Arg12 residue [24]. The cleavage of L2 modifies the conformation of the coat proteins and
allows the virion to engage another receptor, and that leads to cell internalization and infection [25,26].
The inhibition of the target-cell PCs blocks HPV infection, but the treatment of the pseudovirion
particles with furin beforehand bypasses the inhibition. In contrast, the cleavage of live native HPV16
virions by PCs occurs during virion morphogenesis, so infectivity becomes independent from the
target-cell PCs [27–29]. Also, the proteolytic processing seems to be HPV-type dependent, as evidenced
by the native HPV18 virions being poorly processed during morphogenesis, and their infectivity being
mostly dependent on the PCs of the target cells [27].

L1 and L2 in HPV16 and HPV18 contain more PC cleavage site motifs besides the commonly
studied L2-Arg12. Two PC cleavage site motifs, one at L1-Arg74 and the other at L2-Arg305, are
conserved in many HPV types (Table 2). Mutagenesis of the L1-Arg74 site has been reported to affect
pseudovirion morphogenesis [30]. The L2-Arg305 site is located in a region of L2 involved in the
regulation of retrograde trafficking of the L2-viral genome complex from the trans-Golgi network and
into the nucleus [31,32]. Surprisingly, low-risk HPV types have Lys at the L1-74 position instead of the
Arg of high-risk types (Table 2). If cleavage at the L1-74 site is required for virus morphogenesis, low-
and high-risk types may use different proteases, unless their morphogenesis is different. If the cleavage
at the L1-Arg74 and L2-Arg305 sites takes place during cell entry, the cleavage sites may be hidden
inside the folded protein and protected from being accessed by the PCs in the intact virion. However,
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the virions undergo controlled unfolding during entry and trafficking, so that the PC cleavage sites
may become exposed and cleaved along their cell internalization route.

The potential diverse expression of the PC genes in keratinocytes at different anatomical sites of
HPV infection may contribute to the restricted cell tropism by HPV types, which is especially different
between the skin and mucosal types [33]. HPV16 is commonly found in the stratified epithelium of
the ectocervix and tonsilar crypts, and HPV18 is mainly found in the glandular epithelium of the
endocervix. Their differences in PC reactivity may play a role in determining their particular tropism.

Table 2. PC cleavage site motifs in the coat proteins L1 and L2 of HPV types. The cleavage site numbers
correspond to those in the HPV16 sequences. The P4Arg and P1Arg residues are denoted in red.

HPV
type

L1-P1Arg74 L2-P1Arg12 L2-P1Arg305 

6 VSGYQYRVFK VVLPDP MAHSRARRRKR ASATQL SRRGLVRYSR IGQRGS

11 VSGYQYRVFK VVLPDP MKPRARRRKR ASATQL SRRGLVRFSR IGQRGS

13 VSGYQFRVFK VVLPDP MAHSRARRRKR ASATQL SRRGLVRFSR IGQRGS

16 VSGLQYRVFR IHLPDP MRHKRSAKRTKR ASATQL SRRTGIRYSR IGNKQT

18 VSAYQYRVFR VQLPDP MVSHRAARRKR ASVTDL SRRGTVRFSR LGQRAT

31 VSGLQYRVFR VRLPDP MRSKRSTKRTKR ASATQL SRRNTVRYSR LGNKQT

33 VSGLQYRVFR VRLPDP MRHKRSTRRKR ASATQL SRRHTVRFSR VGQKAT

42 VSGLQYRVFR VRLPDP MPPQRSRRRKR ASATQL SKQGSVRVSR IGQRLS

44 VSGFQYRVFK MVLPDP MAHSRARRRKR ASATQL SRRGRVRFSR IGQRGS

52 VSGLQYRVFR IKLPDP MRYRRSTRHKR ASATQL SRRGTVRFSR LGNKAT

58 VSGLQYRVFR VRLPDP MRHKRSTRRKR ASATQL SRRGTVRYSR VGQKAT

59 VSAYQYRVFR VNLPDP MVSHRAARRKR ASATDL SRRSTVRFSR LGQRAT

66 VSAYQYRVFR VRLPDP MVAHRATRRKR ASATQL TRRTGVRFSR LGKKAT

68 VSAYQYRVFR VSLPDP MVSHRAARRKR ASATEL SRRGTVRFSR VGKKAT

72 VSGYQYRVFR VKLPDP MTQAVRRRKR ASATDL ARQGTVRVSR LGQRAT

94 VSAYQYRVFR VRLPDP MVAHRARRRKR ASATQL SRRGAVRFSR LGQKFS

Table 2. PC cleavage site motifs in the coat proteins L1 and L2 of HPV types.
The cleavage site numbers correspond to those in the HPV16 sequences. The
P4Arg and P1Arg residues are denoted in red.

3. Herpesviruses

The envelope glycoprotein B (gB) is the most conserved protein among all herpes viruses, and its
function is to regulate virus to cell membrane fusion. gB is synthesized as a precursor protein, and
PCs cleave it at a loop, which is located in domain II of the ectodomain and at a distance from the
fusion loop at domain I. The cleavage site loop is highly variable in length and amino acid sequence
among herpes viruses (Table 3). The cleavage of gB by PCs has been demonstrated [34]. Most herpes
viruses have at least one PC cleavage site motif in the cleavage loop, although, HHSV1 is an exception
by having no PC motifs at all. In contrast, other viruses have more than one PC cleavage site, which
may be cleaved sequentially [35]. The experimental inactivation of the PC cleavage site of several
herpes viruses did not severely affect viral cell entry into cells growing in vitro; however, the lack
of PC cleavage reduced virus spread and replication in vivo [36,37]. The cleavage of gB promotes
virus-to-cell and cell-to-cell fusion [36,38]. Although much is still needed to consolidate our knowledge
of the cleavage of gB by PCs, there is no doubt that the presence of PC cleavage site motifs in gB is the
result of selective evolutionary pressure [39].
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Table 3. PC cleavage site motifs in the glycoprotein B of herpes viruses. A highly variable loop in the
viral glycoprotein B (residues in blue) contains PC cleavage site motifs (P4Arg and P1Arg residues
are red). HHSV, human herpes simplex virus; SHSV, suid herpes simplex virus; GHSV, gallid herpes
simplex virus; CpHSV, caprine herpes simplex virus; CaHSV, canid herpes simples virus; BHSV, bovine
herpes simplex virus; EHSV, equide herpes simplex virus; EBV, Epstein-Barr virus; VZV, varicella-zoster
virus; HCMV, human cytomegalovirus; PRV, pseudorabies virus.

HHSV1:    QPLLSNTLAELY VREHLREQSRKPPNPTPPPPGASANASVERIK TTSSIEFARLQF

HHSV2:    QPLLSNTLAELY VREYMREQDRKPRNATPAPLREAPSANASVERIK TTSSIEFARLQF

HHSV3:    QPLLSNSLARLY LQELVRENTNHSPQKHPTRNTRSRRSVPVELRANRTIT TTSSVEFAMLQF

HCMV:     QGIKQKSLVELE RLANRSSlNLTHNRTKRSTDGNNATHLSNM EVHNLVYAQLQF

HHSV6:    QPLVQKSLMFLE QGSEKIRRRRDVGDVK SRHDILYVQLQY

HHSV7:    QPLIQRKLTVLE NFSNASRKRRKRELE TNKDIVYVQLQY

SHSV1:     RPLISNELAQLY ARELER[10]SPAAARRARRSPGP[11]TGHLRI     TTGSAEFARLQF
GHSV1:    QKLMHGLAEMY LEEAQRQNHLPRGRERRQAAGRRTASLQSGPQGDRIT THSSATFAMLQF

CpHSV1:  RPLLSNELAKLY LQELARSNRT[18]LRRARRAAPGGGGGAGRVT TVSSAEFAALQF

CnHSV1:  RPMISNELAKLY INELVRSNRT[14]ARKRRSVEENKRSKRNI[12]TK TTSSVHFAMLQF

BHSV1:    RPMLSNELAKLY LQELARSNGT[5]AAAAPKPGPRRARRAAPS[19]RVT TVSSAEFAALQF
EHSV1: RPMLSNELARLY LNELVRSNRTYDLK[8]NNNNTTRRRRSLL[43]LIK TTSSIEFAMLQF

EBV:         LPLTPRSLATVK NLTELTTPTSSPPS[15]AAVLRRRRRDA[14]SLG   TLNNPATVQIQF
VZV:         QPLLSNSLARLY LQELVRENTNHSPQKHPTRNTRSRRSVPVELRANRTIT TTSSVEFAMLQF

PRV:         RPLISNELAQLY ARELER[9]ASPAAARRARRSPGPA[7]VNGTGHLRI TTGSAEFARLQF

Table 3. PC cleavage site motifs in the glycoprotein B of herpes viruses. A highly
variable loop in the viral glycoprotein B (residues in blue) contains PC cleavage site
motifs (P4Arg and P1Arg residues are red). HHSV, human herpes simplex virus; SHSV,
suid herpes simplex virus; GHSV, gallid herpes simplex virus; CpHSV, caprine herpes
simplex virus; CaHSV, canid herpes simples virus; BHSV, bovine herpes simplex virus;
EHSV, equide herpes simplex virus; EBV, Epstein-Barr virus; VZV, varicella-zoster virus;
HCMV, human cytomegalovirus; PRV, pseudorabies virus.

4. Flaviviruses

Two proteins predominate in the envelope of flaviviruses, prM, and glycoprotein E [40].
The association between the two proteins (prM-E) in the immature virus changes upon cleavage of
prM by PCs during egress. The pr segment is removed to render the mature virions (M-E) (M-E) [41].
All flaviviruses contain a PC cleavage site motif at the pr-M junction (Table 4).

A peculiar case is the maturation of the Dengue virus (DENV). Its proteolytic processing is
known to be very inefficient, and virions are produced in the prM-E form in high proportion. It was
initially suspected that maturation might not be necessary for infectivity but later demonstrated that
it is indeed needed [42]. The inefficient maturation of the DENV agrees with studies that show that
anti-prM antibodies represent a significant proportion of the immune response to DENV and that
these antibodies are responsible for the development of antibody-dependent enhancement (ADE) of
infection in individuals suffering from recurrent DENV infections [43]. These observations suggest
that the DENV PC reactivity is weaker compared to that of other flaviviruses, which seem to mature
more efficiently.

The PC site sequence alignment presented in Table 4 shows that the four DENV types have Asp
or Glu residues at the P3 position of the cleavage site, compared to Ser or Thr in most other flavivirus
sequences, including that of the zika virus (ZIKV). Acidic residues at this position in the substrate
sequence are detrimental to reactivity with PCs [9]. Based on these differences, it is expected that
DENV reacts with a dramatically lower reactivity toward the PCs compared to other flaviviruses and
that higher rates of PC reactivity align with the strong virulence and broad cell tropism observed
with other flaviviruses such as [44]. Therefore, it is not surprising that ZIKV can even reach the fetus
and remain in bodily fluids of asymptomatic patients for more extended periods when compared
to DENV [45]. Variations of the PC gene expression profile may be a key factor determining the
difference of tropism to testes between ZIKV and DENV. PC4 is the primary PC expressed in testes [46].
A vigorous reactivity of ZIKV with PC4 would explain why the testes suffer the highest loads of ZIKV
compared to other organs and the sexual transmission of the virus. The viral PC reactivity and the
cell PC gene expression profile both probably play a role in determining the cell tropism differences
observed with flaviviruses [47–49].
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Table 4. Alignment of flavivirus PC cleavage sites.

Table 4. Alignment of flavivirus PC cleavage sites.

5. Togaviruses

Viruses of the genus Alphavirus like Chikungunya (CHIKV), Semliki forest (SFV), Sindbis, and Ross
River, all are arboviruses structurally related to flaviviruses [50]. Their glycoprotein precursor E3E2 is
cleaved by PCs in order to regulate its interaction with the glycoprotein E1, which promotes virus to
cell fusion and infection [51,52]. The information available about the processing of togavirus proteins
by PCs is scant, but it reveals the existence of amino acid sequence variability in the PC cleavage
sites between the CHIKV Asian and African strains, and that this variability probably determines the
observed differences of PC selectivity [52].

6. Coronaviruses

The family of coronaviruses includes viruses of relevance to human and veterinary health. Like
other enveloped viruses that rely on surface glycoproteins for binding and fusion, coronaviruses have
the Spike (S) protein, which is cleaved by proteases during virion biosynthesis, as well as during entry
into target cells [53]. The proteolytic regulation of coronaviruses is probably one of the best-studied
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systems, and a complete picture of the regulatory system mechanism has been developed compared to
other families of viruses that are less well-studied. The general principles of the proteolytic regulatory
mechanism of coronaviruses based on the accumulated evidence include: (1) these viruses are regulated
by a variety of proteases, (2) the protein S is cleaved sequentially at two cleavage sites, (3) viruses can
quickly adapt to the proteolytic environment of the infected cells, and (4) the compatibility between
the cleavage site-specificity and cell protease expression profile determines the cell and tissue tropism
and pathogenicity of the virus.

Furin is not the only protease that regulates the function of the coronavirus fusion protein.
Other proteases, such as the membrane-bound TMPRSS, the lysosomal cathepsins, elastase, and
coagulation factor Xa have also been implicated [54,55]. Protein S is cleaved at the S1–S2 junction
during biosynthesis to separate the two major domains of the protein. The S1 domain is involved in
receptor binding, and the S2 domain mediates the fusion step of the cell entry mechanism. During
cell entry, the cleavage at S1–S2 primes S for the second cleavage at the S2′ site [56–59]. In many
coronaviruses, the S1–S2 cleavage seems to be dispensable; however, the cleavage at S2′ is not.
The cleavage at S2′ has been suggested to serve as a virulence marker [53]. Predictions of the furin/PC
reactivity, based on the amino acid sequence surrounding the cleavage site, have been made based on
computer algorithms [13]; however, the dependency of furin/PC reactivity on the conformation of the
substrate and exosites lends uncertainty to those predictions.

The highly virulent MERS-CoV (Middle East respiratory syndrome coronavirus) is the only natural
virus known to have PC cleavage site motifs at both the S1–S2 and S2′ sites. Other viruses with two PC
sites are the result of laboratory selection by their serial passage in cell lines in vitro, one such virus
being the infectious bronchitis virus IBV-Beaudette strain [60]. MERS-CoV has an expanded tropism
compared to other coronaviruses, so it is considered polytropic [58]. Only the S2′ site in SARS-CoV
(severe acute respiratory syndrome coronavirus) has a PC cleavage site motif [54,55]. The fact that
MERS-CoV and SARS-CoV are highly pathogenic, and that IBV-Beaudette is apathogenic is in line
with these viruses reacting with proteases other than the PCs [61,62]. TMPRSS2 promotes SARS-CoV
and MERS-CoV infection in vivo [63].

The engineering of PC specificity at the cleavage sites of coronavirus S proteins can modify the
virus tropism and virulence [64,65]. The conversion of a monobasic cleavage site into a polybasic
site not only makes the virus susceptible to PC cleavage but also increases the chance of cleavage
by other proteases that target single arginine residues, so it is not surprising that MERS-CoV is so
pathogenic. Because coronaviruses are adapted to the different proteolytic environments of the many
cell types they infect, each virus may be activated by a specific set of proteases. It is crucial to define
the protease cleavage specificity of viruses that impact human or animal health. The use of the PC
inhibitor, dec-RVKR-cmk, has created some controversy as sometimes the inhibitor is used in excessive
concentrations. The inhibitor binds PCs with a very high affinity, at low nM concentrations; it slowly
forms covalent complexes with the enzymes, so it inhibits PCs in a stoichiometric manner. In our
hands, treating cells with this inhibitor at a concentration of 1 µM is enough to block HPV16 cell entry
completely. Concentrations up to 100µM reported in some studies should not be considered PC-specific;
such high inhibitor concentrations most probably inhibit other proteases besides PCs [58,64].

7. Retroviruses

Medically relevant retroviruses of the Retroviridae family have also been studied concerning
their proteolytic regulation. The most studied viruses are the bovine and murine leukemia viruses,
which are related to the human T-lymphotropic viruses. Their envelope glycoproteins are cleaved
by furin and other PCs [66]. Like the coronaviruses, leukemia virus glycoproteins are cleaved twice.
PCs perform the first cleavage, which induces conformational changes and disulfide isomerizations
that prime the protein for further proteolysis [67,68]. The second proteolytic event is performed by
a viral protease that fully activates the glycoprotein [69,70]. The human immunodeficiency virus (HIV)
Env glycoprotein gp160 precursor is cleaved by furin during biosynthesis into gp120 and gp41 in the
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trans-Golgi network (Figure 2). gp120 is further processed by furin into gp77 and gp53 after leaving the
TGN [71,72]. The Env glycoprotein is the only antigenic HIV protein, and furin cleavage-independent
forms stabilized in the native form have been produced for vaccine development purposes [73].
Interestingly, a polybasic region located upstream from the PC cleavage site at the gp120/gp41 junction
was shown to bind heparin and promote cleavage [74].
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C-terminal pg41 (gray). Residue in red denotes the end of gp120 and residue in blue the beginning of
gp41 after PC cleavage. PDB ID code 6MTJ.

8. Hepadnaviruses

The duck hepatitis B virus (DHBV) has been used as a model to study the hepatitis B virus (HBV).
The proteolytic events that regulate the cell entry mechanism of this hepadnavirus have not attracted
much attention, but there is evidence of the cleavage of the envelope proteins by PCs [75].

9. Filoviruses, Bunyaviruses and Arenaviruses

Single-stranded negative-sense RNA viruses of the Filoviridae and Arenaviridae families and the
new-order Bunyavirales are the causative agents of lethal hemorrhagic fever diseases. Despite the
seriousness of the health threat these viruses represent, the information about the proteolytic regulation
of their entry mechanism is scarce. The envelope glycoproteins of the Ebola (EBOV) and Marburg
(MBGV) viruses are processed by furin into two disulfide-linked subunits [76–78]. Except for the
Reston strain that has no PC cleavage site motifs, all other EBOV strains have one; the Reston strain is
less pathogenic than the other EBOV strains [76]. The glycoprotein of MBGV has two PC cleavage site
motifs that do not agree in their amino acid sequence and position compared to the single PC site in the
EBOV protein [78]. The cleavage by furin seems to be dispensable because the elimination of the PC site
in the EBOV protein does not affect the virus replication in cultured cells or the disease progression in
experimental animals [79–81]. EBOV requires further proteolytic processing of the glycoprotein binding
domain by endosomal cathepsins in order to gain binding activity [82–84]. Filoviruses are different
from other viruses in that they require additional factors or modifications of the glycoprotein in order
to gain infectivity [85,86]. The Crimean-Congo hemorrhagic fever bunyavirus (CCHFV) glycoprotein is
processed by furin and the proprotein convertase SKI-1, a PC of the pyrolysin-like type and also known



Viruses 2019, 11, 837 9 of 19

as S1P, which has a cleavage site specificity different from the polybasic specificity of the Kexin-like
PCs [87,88]. The cleavage by furin is not essential, but inactivating the cleavage site slows down virus
replication [89,90]. The lymphocytic choriomeningitis (LCMV) and the Lassa (LASV) arenaviruses are
known to also require SKI-1 activity for the cleavage of their envelope glycoproteins [89,90].

10. Paramyxoviruses

The Paramyxoviridae is a diverse family of viruses, and a variety of proteases activate their fusion
proteins. Some paramyxoviruses are highly pathogenic. Single proteolytic processing of the fusion
protein occurs for most of these viruses. PCs perform the cleavage in the parainfluenza and the
measles (MV) viruses [91–93]. There are several serotypes of the avian paramyxoviruses (APMV).
The glycoprotein of the highly pathogenic APMV-1, or Newcastle disease virus (NDV), is cleaved by
furin, and the proteins of other serotypes are cleaved by undetermined trypsin-like proteases [94,95].
The mutation of the trypsin-like sites into PC site motifs made the viruses replicate faster in cell
culture, but they remained non-virulent in vivo [96–98]. Conversely, the transformation of the PC
cleavage site of the virulent APMV-1 strain into a trypsin-like site induced the virus to become highly
attenuated [99]. The pathogenic respiratory syncytial virus (RSV) is unique among paramyxoviruses
in that its glycoprotein is cleaved at two sites by PCs [100]. The first cleavage takes place before the
virus enters the target cells, and the second occurs after entry into the endosomes [101]. Furin does
not activate the lethal Nipah (NiV) and Hendra (HeV) viruses for entry; instead, the viruses depend
on endosomal cathepsins [102,103]. These viruses produce systemic infections in several different
hosts. The glycoprotein of the Sendai virus (SeV) requires the participation of the homologous
attachment protein hemagglutinin-neuraminidase (HN), which binds the cell surface sialic acid
receptors. SeV glycoprotein has only one trypsin-like site, but by replacing it with the two RSV PC
sites, the dependency on HN for infection is reduced [104].

11. Orthomyxoviruses

The influenza viruses cause respiratory disease and occasional pandemics. The virus envelope
contains two glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Both proteins contribute to
the virus pathogenicity and the cleavage of HA0 precursor into HA1 and HA2 by the host cell PCs is
a significant contributor of virulence for avian influenza (Figure 3). The extent and diversity of the
cellular proteolytic activity is also an essential factor determining pathogenicity, spread, and tropism
of the influenza virus [105,106]. There are 16 HA types, but H1 and H2 are the most commonly present
types in seasonal human infections, other types are found in birds. The pandemics of 1957 and 1968
were caused by the H2N2 and H3N2 strains, respectively. The proteolytic cleavage of HA occurs in
a loop that varies in length and amino acid sequence depending on the strain (Table 5). The loop
usually contains one Arg residue that determines cleavage by trypsin-like proteases. The cleavage can
occur during synthesis, after release or before entry, and may depend on different proteases. The highly
pathogenic virus strain responsible for the Spanish 1918 influenza pandemic was of the H1N1 type
with only one Arg residue in its cleavage loop. Two proteases highly expressed in the respiratory tract,
especially in the lungs, TMPRSS2 and TMPRSS4, were shown to cleave the 1918 influenza HA [107].
HAT is a protease expressed in the airways, mostly in the larynx but not in lungs. It is also capable of
activating influenza viruses [108].

Multibasic cleavage sites in HA arise by single substitution mutations like in the case of some
H9N2 types, or by insertions that result in longer loops, as observed with the highly pathogenic H5 and
H7 types. Viruses that acquire multibasic cleavage sites become independent of trypsin-like proteases.
In low-pathogenic H9N2 strains carrying the cleavage site motif, R-S-K-R, cleavage is not performed
by PCs but by matriptase, which recognizes the same cleavage site motif of PCs and determines the
nephrotropism of the virus [109]. However, H9N2 can become reactive with PCs by the removal of
a glycosylation site near the cleavage site [110]. The long and multibasic loops in some H5 and H7
strains are highly reactive with furin [111–114]; this reactivity leads to high pathogenicity that causes
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systemic infections [115,116]. An outbreak of a highly pathogenic avian H5N1 strain that infected
humans occurred in 1997 in Hong Kong. In some highly pathogenic H5 and H7 types that have
the K-K-K-R motif, cleavage is carried out by the ubiquitous protease MSPL and its splice variant
MTPRSS13, which are also capable of cleaving at the PC cleavage site motif [117].

Table 5. Cleavage loop in the HA protein of influenza viruses. The variable region is blue with the
arrow denoting the cleavage site. The P4Arg and P1Arg residues are colored red.

Virus strain      Cleavage loop sequence      

H1N1 GLRN      IPSIQSR GLFGAIAGF   

H2N2 GLRN      VPQIESR GLFGAIAGF    

H3N2 GMRN       PEKQTR GIFGAIAGF    

H4N2 GMRN       PEKATR GLFGAIGF   

H5N1 GLRN  TPQRERRRKKR GLFGAIAGF  

H5N2 GLRN      VPQRETR GLFGAIAGF  

H5N3 GLRN      VPQRETR GLFGAIAGF  

H5N8 GLRN   SPLRERRRKR GLFGAIAGF  

H7N1 GMKN     VPEVPKGR GLFGAIAGF 

H7N1 GMKN VPEIPKGSRVRR GLFGAIAGF  

H7N1 GMKN  VPEPSKKREKR GLFGAIAGF 

H7N1 GMKN  VPEPSKKRKKR GLFGAIAGF 

H7N3 GMRN     VPENPKTR GLFGAIAGF  

H9N2 GLRN      VHARSSR GLFGAIAGF 

H9N2 GLRN      VPAASGR GLFGAIAGF  

Table 5. Cleavage loop in the HA protein of
influenza viruses. The variable region is blue
with the arrow denoting the cleavage site. The
P4Arg and P1Arg residues are colored red.
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12. Antiviral PC Inhibition

The search for effective PC inhibitors centers into finding the inhibitor with the best characteristics
of specificity, stability, and bioavailability [118]. Most PC inhibitors reported have been developed
against furin. Although these inhibitors are of high PC specificity, many of them still lack proper
characterization of their PC selectivity. Knowing the PC selectivity of an inhibitor is a critical issue as
PCs differ in substrate specificity, and viruses can be PC-selective. Synthetic PC inhibitors come in
several forms, from small molecules identified by high-throughput screening [119–122]; to peptide
substrates [123,124], or viral cleavage sites [125]; peptide mimetic derivatives that add unnatural
amino acids [126–135]; cyclic peptides [136]; polyarginine [137–139]; and larger engineered proteins
like the leech eglin C [140], turkey ovomucoid [141], α2-macroglobulin [142]; and the engineered
serpin α1-PDX [21]. Peptide derivatives seem more efficient at producing high-affinity PC inhibitors
compared to small molecules [118]. Due to the high density of negative charges at the PC active site,
highly basic peptides show strong specificity and bioavailability, but may also be highly toxic [133].
Larger proteins are poised to become the most effective PC inhibitors as they offer better opportunities
to build specificity and selectivity compared to small molecules. They can also be made bioavailable
through a variety of routes. Several of these PC inhibitors have been confirmed to have antiviral
activity in cell-based assays of viral propagation (Table 6).

Table 6. Inhibitors of PCs tested for their antiviral activity in cell-based assays of viral propagation.

Inhibitors Viruses References

SKI-1 inhibitors LCMV, LASV [89,90]

Peptides and peptidomimetics
CHIKV, SFV
WNV, DENV

H5 and H7 influenza

[52,134]
[133,135]

[123,128,129,131,132]
Polyarginines HIV [143]

Macrocyclic peptides RSV [136]

α1PDX
MV

EBOV, MBGV
HCMV

[92]
[144]
[145]

13. Conclusions

The ubiquitous presence of furin and related PCs throughout the cells of the body makes these
proteases vulnerable to being exploited by viruses. The location of furin and related PCs in the vesicles
of the constitutive protein secretion pathway, where viruses are assembled during morphogenesis or
disassembled during cell entry, explains why a diversity of virus types have evolutionarily converged
to depend on PCs. Viruses also use other types of proteases for the proteolytic regulation of the binding
and fusion functions; however, proteases are restricted to specific cell types, which limits the range of
the viral infection, so when some viruses mutate and acquire PC reactivity, they may expand their cell
tropism and become more pathogenic.

The targeting of PCs for inhibition as an antiviral strategy is a sound possibility. Probably the
major advantage of this approach is that by not targeting a viral component or function, it reduces
the chance of producing resistance. The main drawback is the ubiquitous distribution of PCs and the
potential toxicity and secondary effects that their inhibition may cause. In consequence, it is essential
to know the virus PC selectivity and to have PC inhibitors that are selective for one of the two PC
specificity groups, furin or PC4/PC5/PACE4/PC7 [9].
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