
LETTER Communicated by Friedemann Zenke

Learning the Synaptic and Intrinsic Membrane
Dynamics Underlying Working Memory
in Spiking Neural Network Models

Yinghao Li
yil574@ucsd.edu
Computational Neurobiology Laboratory, Salk Institute for Biological
Studies, La Jolla, CA 92037, U.S.A.

Robert Kim
r8kim@health.ucsd.edu
Computational Neurobiology Laboratory, Salk Institute for Biological
Studies, La Jolla, CA 92037, and Neurosciences Graduate Program
and Medical Scientist Training Program, University of California
San Diego, La Jolla, CA 92093, U.S.A.

Terrence J. Sejnowski
terry@salk.edu
Computational Neurobiology Laboratory, Salk Institute for Biological
Studies, La Jolla, CA 92037, and Institute for Neural Computation
and Division of Biological Sciences, University of California
San Diego, La Jolla, CA 92093, U.S.A.

Recurrent neural network (RNN) models trained to perform cognitive
tasks are a useful computational tool for understanding how cortical cir-
cuits execute complex computations. However, these models are often
composed of units that interact with one another using continuous sig-
nals and overlook parameters intrinsic to spiking neurons. Here, we de-
veloped a method to directly train not only synaptic-related variables
but also membrane-related parameters of a spiking RNN model. Train-
ing our model on a wide range of cognitive tasks resulted in diverse yet
task-specific synaptic and membrane parameters. We also show that fast
membrane time constants and slow synaptic decay dynamics naturally
emerge from our model when it is trained on tasks associated with work-
ing memory (WM). Further dissecting the optimized parameters revealed
that fast membrane properties are important for encoding stimuli, and
slow synaptic dynamics are needed for WM maintenance. This approach
offers a unique window into how connectivity patterns and intrinsic neu-
ronal properties contribute to complex dynamics in neural populations.

Neural Computation 33, 3264–3287 (2021) © 2021 Massachusetts Institute of Technology
https://doi.org/10.1162/neco_a_01409

mailto:yil574@ucsd.edu
mailto:r8kim@health.ucsd.edu
mailto:terry@salk.edu
https://doi.org/10.1162/neco_a_01409


Synaptic and Membrane Dynamics Underlying Working Memory 3265

1 Introduction

Neurons in the cortex form recurrent connections that give rise to the com-
plex dynamic processes underlying computational functions (Goldman-
Rakic, 1995; Chen & Aihara, 1995; Douglas & Martin, 2007; Wang, 2008).
Previous studies have used models based on recurrent neural networks
(RNNs) of continuous-rate units to characterize network dynamics behind
neural computations and to validate experimental findings (Sompolinsky,
Crisanti, & Sommers, 1988; Sussillo & Abbott, 2009; Rajan, Abbott, & Som-
polinsky, 2010; Mante, Sussillo, Shenoy, & Newsome, 2013; Mastrogiuseppe
& Ostojic, 2018; Rajan, Harvey, & Tank, 2016). However, these models do
not explain how intrinsic membrane properties could also contribute to the
emerging dynamics.

Rate-based encoding of information has been reliably observed in ex-
perimental settings (Mante et al., 2013). However, recent studies demon-
strated that membrane potential dynamics along with spike-based coding
are also capable of reliably transmitting information (VanRullen, Guyon-
neau, & Thorpe, 2005; Sippy, Lapray, Crochet, & Petersen, 2015; Pala & Pe-
tersen, 2018). In addition, the intrinsic membrane properties of inhibitory
neurons, including the membrane time constant and rheobase (minimum
current required to evoke a single action potential), were different in two
higher-order cortical areas (Medalla, Gilman, Wang, & Luebke, 2017). These
findings strongly indicate that neuronal intrinsic properties, often ignored
in previous computational studies employing rate-based RNNs, are crucial
for better understanding how distinct subtypes of neurons contribute to in-
formation processing.

Rate-based RNNs can be easily trained by stochastic gradient descent to
perform specified cognitive tasks (Rumelhart, Hinton, & Williams, 1988).
However, similar supervised learning methods cannot be used to train
spiking RNNs due to the nondifferentiable behavior of action potentials
(Tavanaei, Ghodrati, Kheradpisheh, Masquelier, & Maida, 2018). Thus, sev-
eral methods have introduced differentiable approximations of the non-
differentiable spiking dynamics (Lee, Delbruck, & Pfeiffer, 2016; Huh &
Sejnowski, 2018; Zhang & Li, 2019; Neftci, Mostafa, & Zenke, 2019). These
studies directly applied backpropagation to tune synaptic connections for
task-specific computations. Other methods that do not rely on gradient
computations have been also utilized to train spiking networks. One such
method is based on the first-order reduced and controlled error (FORCE) al-
gorithm previously developed for rate RNNs (Sussillo & Abbott, 2009). The
FORCE-based methods are capable of training spiking networks, but train-
ing all the parameters including recurrent connections could become com-
putationally inefficient (Kim & Chow, 2018; Thalmeier, Uhlmann, Kappen,
& Memmesheimer, 2016; Nicola & Clopath, 2017). Finally, recent studies
successfully converted rate-based networks trained with a gradient-descent



3266 Y. Li, R. Kim, and T. Sejnowski

method to spiking networks for both convolutional and recurrent neural
networks (Sengupta, Ye, Wang, Liu, & Roy, 2019; Kim, Li, & Sejnowski,
2019). Since these models are built on rate-coding networks, the resulting
spiking models do not take advantage of the rich spiking dynamics. More-
over, these previous models assume that all the units in a trained network
are equivalent, even though experimental evidence shows that neurons in
biological neural networks are highly heterogeneous. Such diversity has a
vital role in efficient neural coding (Chelaru & Dragoi, 2008).

Here, we present a new approach that can directly train not only re-
current synapses but also membrane-related parameters of a spiking RNN
model. Our method utilizes mollifier functions (Ermoliev, Norkin, & Wets,
1995) to approximate the nondifferentiable gradient computation for dis-
crete spiking dynamics, and a gradient-descent method is applied to tune
the model parameters. These parameters are composed of synaptic parame-
ters including recurrent connections and several important spiking-related
parameters, such as membrane time constant and action potential thresh-
old. Neurons with diverse and heterogeneous intrinsic parameters emerged
from training our spiking model on a wide range of cognitive tasks. Fur-
thermore, we observed that both synaptic and spiking parameters worked
in a synergistic manner to perform complex tasks that required information
integration and working memory.

2 Results

Here, we provide an overview of the method that we developed to directly
train spiking recurrent neural network (RNN) models (for more details see
section 4). Throughout the study, we considered recurrent network models
composed of leaky integrate-and-fire (LIF) units whose membrane voltage
dynamics were governed by

τm,i
dvi

dt
= − (vi(t) − vresti ) + RiIi(t), (2.1)

where τm,i is the membrane time constant of unit i, vi(t) is the membrane
voltage of unit i at time t, vrest,i is the resting potential of unit i, and Ri is the
input resistance of unit i. Ii(t) represents the current input to unit i at time
t, which is given by

Ii(t) =
N∑

j=1

si j(t) + Iexti (t), (2.2)

where N is the total number of units in the network, si j(t) is the synaptic
input from unit j to unit i at time t, and Iext,i(t) is the external current source



Synaptic and Membrane Dynamics Underlying Working Memory 3267

Table 1: Parameter Values Used for This Study.

Parameter Name Symbol Minimum Maximum

Input resistance R 5 M� 1000 M�

Membrane time constant τm 5 ms 50 ms
Action potential threshold ϑ −50 mV −30 mV
Resting potential vrest −80 mV −60 mV
Reset voltage value vreset vrest − 10 mV vrest − 1 mV
Synaptic decay time τ 5 ms 100 ms

Note: To keep the constraint vrest > vreset, we trained the afterhyper-
polarization (AHP) potential with range from −10 mV to −1 mV, so
the value of vreset is dependent on the value of vrest.

into unit i at time t. We used a single exponential synaptic filter to model
the synaptic input (s),

τi j
dsi j

dt
= −si j(t) +

∑
t(k)

j <t

wi jδ(t − t(k)
j ), (2.3)

where τi j is the decay time constant of the synaptic current from unit j to
unit i, wi j is the synaptic strength from unit j to unit i, t(k)

j denotes the time
of the kth action potential of unit j, and δ(x) is the Dirac delta function. Once
the membrane voltage of the unit i crosses its action potential threshold (ϑi),
its membrane voltage is brought back down to its reset voltage (vreset,i).

Each LIF unit is characterized by five distinct parameters: membrane
time constant (τm,i), resting potential (vrest,i), input resistance (Ri), action po-
tential threshold (ϑi), and reset potential (vreset,i). In addition, there are two
trainable synaptic parameters: synaptic strength (wi j) and synaptic decay
time constant (τi j) from unit j to unit i.

In order to tune all the parameters described above to produce func-
tional spiking RNNs capable of performing cognitive tasks, we employed
the commonly used gradient-descent method known as backpropagation
through time (BPTT; Werbos, 1990) with a few important modifications. We
utilized mollifier gradient approximations to avoid the nondifferentiabil-
ity problem associated with training spiking networks with backpropaga-
tion (Ermoliev et al., 1995). Furthermore, we optimized each of the model
parameters (except for the synaptic connectivity weights) in a biologically
plausible range (see section 4). We also employed the weight parameteriza-
tion method proposed by Song et al. to impose Dale’s principle (Song, Yang,
& Wang, 2016a; see section 4). All the spiking RNN models trained in the
study used the parameter value ranges listed in Table 1 unless otherwise
noted.



3268 Y. Li, R. Kim, and T. Sejnowski

2.1 Units with Diverse Parameter Values Emerge after Training. We
applied our method to train spiking networks to perform the context-
dependent input integration task previously employed by Mante et al.
(2013). Briefly, Mante et al. trained rhesus monkeys to flexibly integrate
sensory inputs (color and motion of randomly moving dots presented
on a screen). A contextual cue was given to instruct the monkeys which
sensory modality (color or motion) they should attend to. The monkeys
were required to employ flexible computations as the same modality could
be either relevant or irrelevant depending on the contextual cue. Several
previous modeling studies have successfully implemented a simplified ver-
sion of the task and reproduced the neural dynamics present in the experi-
mental data with both continuous-rate RNNs and spiking RNNs converted
from rate RNNs (Song et al., 2016a; Miconi, 2017; Kim et al., 2019). With
our method, we were able to directly train the first, to our knowledge, spik-
ing RNNs with heterogeneous units whose parameters were within biolog-
ically plausible limits.

In order to train spiking RNNs to perform the input integration task, we
employed a task paradigm similar to the one used by previous computa-
tional studies (Mante et al., 2013; Song et al., 2016a; Miconi, 2017; Kim et al.,
2019). A recurrently connected network received two streams of noisy input
signals along with a constant-valued signal that encoded the contextual cue
(see Figure 1A). The input signals were sampled from a standard gaussian
distribution (i.e., with zero mean and unit variance) and then shifted by a
positive or negative “offset” value to simulate the evidence presented in the
input modalities. The network was trained to produce an output signal ap-
proaching either +1 or −1 depending on the cue and the evidence present
in the input signal: if the cued input had a positive mean, the output signal
approached +1, and vice versa (see Figure 1B, top). The input signal, 150
ms in duration, was given after a fixation period (300 ms), and the network
was trained to produce an output signal immediately after the offset of the
input signal.

We trained 20 spiking RNNs to perform the context-based input inte-
gration task. All of the trainable parameters were initialized with random
numbers drawn from a standard gaussian distribution and rescaled to the
biologically plausible ranges (see section 4 and Table 1). Each network was
trained until the training termination criteria were satisfied (see section 4).
On average, 508 ± 46 training trials were needed for a network to meet the
training termination conditions. After training, a wide distribution of the
parameters emerged for both excitatory and inhibitory populations (see
Figure 1C, top).

Consistent with the previous experimental recordings from cortical neu-
rons, the inhibitory units in our trained RNNs fired at a higher rate com-
pared to the excitatory units (Peyrache et al., 2012). The higher average
firing rates of the inhibitory units were largely due to the intrinsic prop-
erties that resulted from training. Compared to the excitatory population,



Synaptic and Membrane Dynamics Underlying Working Memory 3269

Figure 1: Biologically realistic spiking network performing a context-
dependent input integration task. (A) Schematic diagram of the RNN model
trained for the context-dependent integration task. Two streams of noisy input
signals (green and magenta lines) along with a context signal were delivered
to the LIF RNN. The network was trained to integrate and determine if the
mean of the cued input signal (i.e., cued offset value) was positive (+ choice)
or negative “−” choice) without or with a delay period at the end of the noisy
input signals. (B) Example input and output signals from example RNNs
trained to perform the task without (top row; INT) or with a delay period
(bottom row; Dly. INT). (C) Distributions of the optimized parameters for the
excitatory (red) and inhibitory (blue) units across all 20 models trained for the
INT task. Top: Distributions pooled from all the units from 20 models. Bottom:
Each dot represents the average value from one network. (D) Distributions of
the optimized parameters for the excitatory (red) and inhibitory (blue) units
across all 20 models trained for the Dly. INT task. Top: Distributions pooled
from all the units from 20 models. Bottom: Each dot represents the average
value from one network.



3270 Y. Li, R. Kim, and T. Sejnowski

the inhibitory units in the trained RNNs had significantly larger input re-
sistance, smaller membrane time constants, and more depolarized resting
potential (see Figure 1C; P < 0.0001, two-sided Wilcoxon rank-sum test).
The action potential thresholds and the reset potentials were significantly
more depolarized for the inhibitory group. Furthermore, the time constants
of the inhibitory synaptic current variable were significantly larger than the
excitatory synaptic decay time constants (see Figure 1C).

2.2 Working Memory Requires Distinct Parameter Distributions. The
context-dependent input integration task considered in the previous section
did not require complex cognitive skills such as working memory (WM)
computations. In order to explore what parameter values are essential for
WM tasks, we modified the paradigm to incorporate a WM component by
adding a delay period after the delivery of the input signals. The RNN
model was trained to integrate the noisy input signals, sustain the inte-
grated information throughout the 300 ms delay period, and produce an
output signal (see Figure 1B, bottom). We again trained 20 models for the
modified integration task with the same training termination criteria (see
section 4). This task required more training trials (on average 1618 ± 346),
but all the models were successfully trained within 2000 training trials.

Overall, the distributions of the trained parameters were similar to those
observed from the RNNs trained on the non-WM version of the task (see
Figure 1D). The parameters that were significantly different between the
two RNN models were the membrane time constant and the synaptic de-
cay time constant. The inhibitory units from the WM model displayed much
faster membrane dynamics and slower synaptic decay compared to the in-
hibitory population of the non-WM model (P < 0.0001, two-sided Wilcoxon
rank-sum test).

To ensure that the patterns of the trained parameters and the distinct dis-
tributions of the two parameters (τm and τ ) observed from the delayed inte-
gration model were indeed associated with WM computations, we trained
RNNs on two additional WM-related tasks: delayed matched-to-sample
(DMS) and delayed discrimination (DIS) tasks. For each task, we again
trained 20 RNNs. Both task paradigms included two sequential stimuli sep-
arated by a brief delay period. For the DMS task, the two input stimuli were
either +1 or −1; if the two sequential had the same sign (i.e., +1/+1 or
−1/−1), the network was trained to have an output signal approaching
+1, while if the two stimuli had different signs (i.e., +1/−1 or −1/+1), the
output signal approached −1 (see Figure 2A; see section 4). The two input
stimuli for the DIS task were sinusoidal waves with different frequencies,
modeled after the task used by Romo, Brody, Hernández, and Lemus (1999)
where monkeys were trained to discriminate two vibratory stimuli. If the
first stimulus had a higher (lower) frequency, our RNN model was trained
to produce a positive (negative) output signal (see Figure 2B; see section 4).



Synaptic and Membrane Dynamics Underlying Working Memory 3271

Figure 2: RNNs trained for two additional WM tasks. (A) Schematic illustrat-
ing the task paradigm for the delayed match-to-sample (DMS) task (top) and in-
put and output signals from an example-trained RNN (bottom). (B) Schematic
illustrating the task paradigm for the delayed discrimination (DIS) task (top)
and input and output signals from an example-trained RNN (bottom). (C) Dis-
tributions of the optimized parameters for the excitatory (red) and inhibitory
(blue) units across all 20 models trained for the DMS task. Top: Distributions
pooled from all the units from 20 models. Bottom: Each dot represents the av-
erage value from one network. (D) Distributions of the optimized parameters
for the excitatory (red) and inhibitory (blue) units across all 20 models trained
for the DIS task. Top: Distributions pooled from all the units from 20 models.
Bottom: Each dot represents the average value from one network.

It took longer to train our model on these two tasks compared to the de-
layed integration task (7104 ± 3739 trials for the DMS task and 6985 ± 2112
trials for the DIS task). The distributions of the tuned parameters from the
two WM tasks were similar to the distributions obtained from the delayed



3272 Y. Li, R. Kim, and T. Sejnowski

Figure 3: RNNs initialized with fixed parameter values were trained to per-
form the DMS task. We initialized all the trainable parameters to constant
values (i.e., the average value of each parameter from previously trained mod-
els: Rinit = 628.44 M�, τminit = 21.92 ms, θinit = −42.32 mV, Vrest,init = −67.63 mV,
Vreset,init = −74.49 mV, τinit = 64.16 ms) and trained a group of RNNs (n = 15) to
perform the DMS. Distributions of the optimized parameters for the excitatory
(red) and inhibitory (blue) units across all 15 models trained for the DMS task.
Top: Distributions pooled from all the units from 15 models. Bottom: Each dot
represents the average value from one network.

integration task (see Figures 2C and 2D). More important, we again ob-
served significantly faster membrane voltage dynamics and slower synap-
tic decay from the inhibitory units in the DMS and DIS models compared
to the inhibitory units from the non-WM task. These findings strongly sug-
gest that the two parameters (τm and τ ) of the inhibitory group contribute
to important dynamics associated with WM.

To ensure that the random initialization did not contribute to the het-
erogeneous distributions after training, we trained another group of RNNs
with fixed initial values for the trainable parameters. The trained param-
eters from the RNNs trained with fixed initial parameter values still dis-
played heterogeneous values for each trained parameter, indicating that
our initialization did not significantly contribute to the heterogeneity (see
Figure 3).

2.3 Shared Intrinsic Properties across Different Working Memory
Tasks. Prefrontal cortex and other higher-order cortical areas have been
shown to integrate information in a flexible manner and switch between
tasks seamlessly (Mante et al., 2013). Along this line of thought, we hy-
pothesized that the intrinsic properties optimized for one WM task should
be generalizable to other tasks that also require WM. In order to test this
hypothesis, we retrained all the RNNs that were trained in the previous
sections to perform the DMS task without tuning the intrinsic parameters.
For example, given a network trained on the non-WM integration task, we
froze its intrinsic (R, τm, vrest, vreset ϑ) along with the synaptic decay time



Synaptic and Membrane Dynamics Underlying Working Memory 3273

constant (τ ) and optimized the recurrent connections (W) only using BPTT
(see section 4). Therefore, each of the 20 RNNs trained for each of the four
tasks (non-WM integration, delayed integration, DMS, and DIS tasks) was
retrained to perform the DMS task. As expected, the average number of
trials required to successfully retrain the RNNs previously trained for the
DMS task was low at 4409 ± 3596 (see Figure 4A). The number of trials re-
quired to retrain the RNNs from the DIS task was also low at 4180 ± 2693.
The RNNs trained for the delayed integration task took longer to retrain,
at 5392 ± 2198. The non-WM RNNs required the most number of training
trials to perform the DMS task (9648 ± 2933). These findings indicate that
the intrinsic properties from one WM model are transferable to other WM
models.

Based on these previous results, the membrane time constant (τm) and the
synaptic decay (τ ) variables appeared to be the two most important param-
eters for the transferability of WM. To test this, we repeated the retraining
procedure with both τm and τ either fixed (“frozen”) or optimized (“tuned”)
for the non-WM RNNs (see section 4). For the frozen condition (i.e., τm and τ

frozen while the other parameters optimized), the number of trials required
to retrain the non-WM RNNs to perform the DMS task was high and not
significantly different from the number of trials it took with the intrinsic pa-
rameters fixed (see Figure 4B). On the other hand, retuning only τm and τ

with the other parameters fixed (i.e., tuned condition) resulted in a signif-
icant reduction in training time (see Figure 4B), suggesting that these two
parameters are indeed critical for performing WM. Optimizing both τm and
τ resulted in a significant decrease in τm for both excitatory and inhibitory
populations (see Figure 4C). The synaptic decay values decreased for the
excitatory units after retuning (see Figure 4D left). For the inhibitory popu-
lation, τ was significantly increased (see Figure 4D right).

2.4 Membrane and Synaptic Decay Time Constants Critical for WM
Maintenance. Pyramidal excitatory neurons and parvalbumin (PV) in-
terneurons make up the majority of the neuronal cell population in the cor-
tex, and they have been shown to specialize in fast and reliable encoding of
information with high temporal precision (Tremblay, Lee, & Rudy, 2016). To
further investigate if the fast membrane and slow synaptic dynamics of the
units from our WM RNNs are aligned with previous experimental findings
and to probe how they contribute to WM maintenance, we manipulated τm

and τ during different epochs of the DMS task paradigm.
For each of the RNNs trained from the DMS task, we first divided the

population into two subgroups based on their τm values (see section 4). The
short τm group contained units whose τm was smaller than the lower quar-
tile value, while the long τm group contained units whose τm was greater
than the upper quartile. During each of the four epochs (fixation, first stim-
ulus, delay, and second stimulus), we then inhibited the two τm subgroups
separately by hyperpolarizing them and assessed the task performance (see



3274 Y. Li, R. Kim, and T. Sejnowski

Figure 4: Retraining RNN models to perform the DMS task. (A) Number of
training trials required to retrain the models previously trained for the INT, Dly.
INT, DMS, or DIS tasks to perform the DMS task. (B) Number of training trials
required to retrain the Dly. INT RNNs to perform the DMS task with the mem-
brane time constant (τm) and synaptic decay time constant (τ ) frozen or tuned.
(C) Distribution of the membrane time constant values for the excitatory (red)
and inhibitory (blue) units for the two conditions (frozen and tuned). Each dot
represents the average value from one network. (D) Distribution of the synaptic
decay time constant values for the excitatory (red) and inhibitory (blue) units
for the two conditions (frozen and tuned). Each dot represents the average value
from one network.

section 4). As shown in Figure 5, inhibiting the short τm subgroup during
the two stimulus windows significantly impaired task performance (see
Figures 5B and 5D), while disrupting the long τm group did not result in
significant changes in task performance in all four task epochs.



Synaptic and Membrane Dynamics Underlying Working Memory 3275

Figure 5: Membrane and synaptic time constants important for encoding stim-
uli and WM maintenance. (A–D) DMS task performance when short τm, long
τm, short τ , or long τ units were inhibited during the fixation (A), first stimulus
window (B), delay period (C), or second stimulus window (D).

We repeated the above analysis with two subgroups derived from a quar-
tile split of the synaptic decay time constant (τ ; see section 4). Suppressing
the synaptic connections in the long τ subgroup during the first stimulus
window and the delay period significantly impaired task performance (see
Figures 5B and 5C). Inhibiting the short τ group at any of the four epochs
did not affect the task performance.

Therefore, the units with the fast membrane voltage dynamics (τm) were
important for encoding of stimuli, while the slow synaptic dynamics (τ )
were critical for maintaining the first stimulus information throughout the
period spanning from the first stimulus window to the end of the delay
window.

3 Discussion

In this study, we presented a new method for directly training spiking
RNNs with a gradient-based supervised training algorithm. Our approach



3276 Y. Li, R. Kim, and T. Sejnowski

allows optimizing not only the synaptic variables but also parameters in-
trinsic to spiking dynamics. By optimizing a wide range of parameters,
we first demonstrated that units with diverse features emerged when the
model was trained on a cognitive task (see Figures 1 and 2). We also showed
that fast membrane dynamics combined with a slow synaptic property are
critical for performing WM tasks (see Figures 4 and 5). Diversity is a basic
biological principle that emerged here as a basic computational principle in
spiking neural models.

Previous modeling studies have trained RNNs to perform cognitive
tasks (Mante et al., 2013; Song, Yang, & Wang, 2016b; Miconi, 2017). Al-
though some of these studies were able to train spiking RNN models,
the intrinsic parameters of spiking neurons were not included as train-
able variables. By using the mollifier approximation (Ermoliev et al., 1995),
we developed a comprehensive framework that can tune both connec-
tivity and spiking parameters using a gradient-descent method. Training
spiking RNNs on multiple tasks using our method revealed functional
specialization of excitatory and inhibitory neurons. More important, our
approach allowed us to identify fast membrane voltage dynamics as an
essential property required to encode incoming stimuli robustly for WM
tasks.

Previous computational studies employing RNNs assumed that all the
units in a network shared the same intrinsic parameters and optimized only
synaptic connectivity patterns during training. Recent studies developed
models that give rise to units with heterogeneous intrinsic properties. For
example, a new activation function that is tunable for each neuron in a net-
work has been proposed (Ramachandran, Zoph, & Le, 2017). In addition,
we recently trained synaptic decay time constants in a rate RNN model
(Kim et al., 2019). Although these methods produce heterogeneous units,
they do not incorporate parameters inherent in spiking mechanisms. Our
method not only allows direct training of synaptic weights of spiking RNNs
that abide by Dale’s principle but also enables training of synaptic and in-
trinsic membrane parameters for each neuron.

Although our method was successful at training spiking RNNs with bi-
ological constraints, the gradient-based method employed in the present
study is not biologically plausible. In cortical neural networks, local learn-
ing rules, such as spike-timing-dependent plasticity (STDP), were observed,
but the gradient-descent algorithm used in our method is not local to
synapses or local in time (Tavanaei et al., 2018). However, this nonlo-
cality allowed our method to train intrinsic membrane and connectivity
parameters, creating biologically plausible neural architectures that solve
specified problems. The learning algorithm for spiking neurons makes it
possible to uncover neural dynamics hidden in experimental data (Mante
et al., 2013; Song et al., 2016a; Remington, Narain, Hosseini, & Jazayeri,
2018), thus emphasizing that a biologically realistic model can be con-
structed by non-biological means.



Synaptic and Membrane Dynamics Underlying Working Memory 3277

Another limitation of our framework arises from our spiking neuron
model. Although we were able to train models with heterogeneous neu-
rons, the leaky integrate-and-fire model used in our study can only capture
the dynamics of fast-firing neurons due to the lack of adaptation (Gerst-
ner, Kistler, Naud, & Paninski, 2014). In particular, several other types of
neurons, such as regular-firing and bursting neurons, are also common in
cortical networks (Connors & Gutnick, 1990). Applying our method to spik-
ing neuron models with adaptation dynamics, such as the model proposed
by Bellec, Salaj, Subramoney, Legenstein, and Maass (2018), will be an in-
teresting next step to further investigate the role of neurons from various
firing classes in information processing.

In summary, we provide a novel approach for directly training both
connectivity and membrane parameters in spiking RNNs. Training con-
nectivity and intrinsic membrane parameters revealed distinct populations
identifiable only by their parameter values, thus enabling investigation of
the roles played by specific populations in the computation processes. This
lays the foundation for uncovering how neural circuits process information
with discrete spikes and building more power-efficient spiking networks.

4 Methods

4.1 Spiking Network Structure and Discretization. Our spiking RNN
model consisted of N integrate-and-fire (LIF) units is governed by

τm,i
dvi

dt
= − (vi(t) − vresti ) + RiIi(t) + ξ, (4.1)

where τm,i is the membrane time constant of unit i, vi(t) is the membrane
voltage of unit i at time t, vrest,i is the resting potential of unit i, and Ri is
the input resistance of unit i, and ξ is the membrane voltage spontaneous
fluctuation. Ii(t) represents the current input to unit i at time t, which is
given by

Ii(t) =
N∑

j=1

si j(t) + Iexti (t), (4.2)

where N is the total number of units in the network, si j(t) is the filtered spike
train of unit j to unit i at time t, and Iexti (t) is the external current source into
unit i at time t. For this study, N = 400 for all tasks and networks trained.

The external current Iext(t) encodes the task-specific input at time t,

Iext(t) = Winu(t), (4.3)



3278 Y. Li, R. Kim, and T. Sejnowski

where the time-varying stimulus signals bmu(t) ∈ R
Nin×1 are fed into the

network via Win ∈ R
N×Nin , which can be viewed as presynaptic connections

to the network that convert analog input into firing rates. Nin corresponds
to the number of channels in the input signal.

We used a single exponential synaptic filter

τi j
dsi j

dt
= −si j(t) +

∑
t(k)

j <t

wi jδ(t − t(k)
j ), (4.4)

where τi j is the synaptic decay time constant from unit j to unit i, wi j is the
synaptic strength from unit j to unit i, t(k)

j denotes the time of the kth action
potential of unit j, and δ(x) is the Dirac delta function. Once the membrane
voltage of the unit i crosses its action potential threshold (ϑi), its membrane
voltage is brought back down to its reset voltage (vreset,i).

The output of our spiking model at time t is given by

o(t) = Woutr(t), (4.5)

where Wout ∈ R
1×N are the readout weights, and r(t) ∈ R

N×1, which can be
interpreted as the firing rate of units, are given by

τr,i
dri

dt
= −ri(t) +

∑
t(k)
i <t

δ(t − t(k)
i ), (4.6)

where τr,i is the synaptic decay time constant of firing rate estimate for unit i.
We converted the continuous-time differential equations to discrete-time

iterative equations and used numerical integration (Euler’s method) to
solve the equations. The membrane voltage v ∈ R

1×N at step n + 1 is given
by

v(n+1) = ṽ(n) + �t
τm

(
−

(
ṽ(n) − vrest

)
+ I(n+1) � R

)
+ cN (0,�t), (4.7)

where �t is the sampling rate (or step size), which was set �t = 1 ms for
this study, τm ∈ R

1×N is the membrane time constant, vrest ∈ R
1×N is the

resting potential, � refers to Hadamard operation (element-wise multipli-
cation), ·

· refers to the element-wise division, and R ∈ R
1×N is the input

resistance. The term cN (0,�t) injects spontaneous membrane fluctuations,
where N (0,�t) ∈ R

1×N is a gaussian random vector consisting of N inde-
pendent gaussian random variables with mean 0 and variance �t, and c is
the scaling constant for the amplitude of fluctuations, set as c = 5 through-
out the study.



Synaptic and Membrane Dynamics Underlying Working Memory 3279

There are two time-varying terms in equation 2.7, the membrane voltage
after reset (ṽ(n)) and input current (I(n+1)). The voltage reset in the LIF model
after action potentials at step n is formulated as

ṽ(n+1) = v(n+1) +
(
vreset − v(n+1)

)
� H

(
v(n+1) − ϑ

)
, (4.8)

where vreset ∈ R
1×N is the reset potential, ϑ ∈ R

1×N is the action potential
thresholds, and H(x) is the element-wise Heaviside step function. The term
H

(
v(n+1) − ϑ

)
represents the spiking output activities at step n + 1. The in-

put current at step n + 1 is given by

I(n+1) = S(n) · 1 + Winu(n+1), (4.9)

where 1 ∈ R
1×N is the column vector with all ones and S(n) is the filtered

spike train matrix at step n, which follows the iteration

S(n) = S(n−1) + �t
T

(
−S(n−1) + W � H

(
v(n) − ϑ

))
, (4.10)

where T ∈ R
N×N is the matrix of synaptic decay time constants and W ∈

R
N×N is the matrix of synaptic strengths. Here, W ∈ R

N×N is a matrix, and
H

(
v(n) − ϑ

) ∈ R
1×N is a row vector. The notation A � v refers to element-

wise multiplication of matrix A row by row with the row vector v.
The output at step n + 1 is computed by

o(n+1) = Woutr(n+1), (4.11)

in which

r(n+1) = r(n) + �t
τr

(
−r(n) + H

(
v(n+1) − ϑ

))
, (4.12)

where τr ∈ R
1×N is the synaptic decay time constants of firing rate estimate.

4.2 Training Details. In this study, we used only the supervised back-
propagation of errors learning algorithm. The loss function (L) is defined in
terms of the root mean square error (RMSE) with respect to a task-specific
target signal (z) and the network output signal (o),

L :=
√√√√(

M∑
n=1

(
z(n) − o(n)

)2

)
. (4.13)

where M is the total time steps.



3280 Y. Li, R. Kim, and T. Sejnowski

We used adaptive moment estimation (ADAM) stochastic gradient de-
scent algorithm (Kingma & Ba, 2014) with mini-batch training. The mollifier
gradient approximations were employed to address non-differentiability
problem associated with the spiking process (see section 4.3). The learn-
ing rate was set to 0.01, the batch size was set to 10, and the first and second
moment decay rates were 0.9 and 0.999, respectively. The trainable param-
eters include input weights (Win), synaptic strengths (W), readout weights
(Wout), synaptic decay time constants (T), membrane time constants (τm),
input resistances (R), resting potentials (vrest), reset voltages (vreset), action
potential thresholds (ϑ), and synaptic decay time constants for firing rate
estimates (τr).

A nonlinear projected gradient method was used to constrain parame-
ters within the biologically realistic ranges described in Table 1. A linear
projection map forces some solutions to be projected on the boundary. That
is, there are always some units whose parameters take the min and max val-
ues of the constraint. On the other hand, a nonlinear projection guarantees
that no values are on the boundary almost surely, a more realistic situation
to consider. Specifically, to bound a parameter p at iteration i + 1 into the
range [pmin, pmax], we have

p̃i+1 = σ (pi+1) · (pmax − pmin) + pmin, (4.14)

where p̃i+1 is the projected solution of parameter p at iteration i + 1, pi+1
is the unconstrained solution given by the gradient descent algorithm at
iteration i + 1, pmax and pmin are the maximum and minimum values of pa-
rameter p, and σ (x) is the sigmoid function, defined as

σ (x) := 1
1 + exp(−x)

. (4.15)

We initialized all parameters, except the input weights (Win), as sam-
ples from the standard gaussian distribution with zero mean and unit vari-
ance, whereas the input weights were drawn from gaussian distribution
with zero mean and variance 400. This is because our input signals were
bounded within the range [−1, 1], insufficient to bring the membrane volt-
age from the resting potential above the action potential threshold. Hence,
to accelerate training, it was necessary to make sure units were excited by
the input signals in the first place. The synaptic strength matrix (W) was
also initialized sparse, with the percentage of connectivity being only 20%.
We say the network successfully did the task if the output signal hits above
+0.8 (or below −0.8) if the target output is +1 (or −1). We stopped training
when the loss (L) is less than 15 and the accuracy over 100 trials is above
95%.



Synaptic and Membrane Dynamics Underlying Working Memory 3281

The method proposed by Song et al. (2016a) was used to impose Dale’s
principle with separate excitatory and inhibitory populations. The synaptic
connectivity matrix (W) in the model was parameterized by

W̃i+1 = [Wi+1]+ · D, (4.16)

where W̃i+1 is the resulting matrix that encoded separate populations at up-
date step i + 1, Wi+1 is the solution given by the gradient descent algorithm
at step i + 1, and [·]+ is the rectified linear unit (ReLU) operation applied at
the end of each update step. The ReLU operation is to ensure that entries
of the matrix are always nonnegative before being multiplied by the matrix
D, as the negative weight connections updated from gradient descent are
pruned by the end of each update. The diagonal matrix (D ∈ R

N×N) encodes
+1 for excitatory units and −1 for inhibitory units. The value of matrix (D)
was randomly assigned before training according to a preset proportion be-
tween inhibitory and excitatory units, and the value D was fixed through
the whole training process. The I/E units proportion in this study was 20%
to 80%.

In order to capture the biologically realistic dynamics of SNNs, the tem-
poral resolution (�t) was set to be no longer than the duration of absolute
refractory period to ensure that the spiking activities are not affected by the
numerical integration process. Therefore, we set �t = 1 ms during train-
ing. Due to the vanishing gradient problem occurring in training RNNs
(Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001), with � = 1 ms, it is
impossible to train tasks with duration longer than 1 second (i.e., M > 1000).
It is notable that in the above formulation, only membrane time constant
(τm) and synaptic time decay (τ ) are dependent on the sampling rate (�t; see
equations 4.7 and 4.10). Hence, after the models are trained, we can make
sampling rate (�t) smaller (i.e., having finer temporal resolution) while still
keeping the same dynamics of the trained networks. Increasing �t by a fac-
tor is equivalent to decreasing τ and τm altogether by the same factor, as τ

and τm are inversely proportional to �t in equations 4.7 and 4.10. Hence, to
train a network performing tasks with duration longer than 1 second, we
need to make the temporal resolution coarser (i.e., increasing �t by a factor
s) so that with the same trainable range of time steps (i.e., a fixed M ≤ 1000),
the duration of task becomes longer by the same factor s. This “decrease in
temporal resolution” can be interpreted as shortening τ and τm instead of
an actual decrease in temporal resolution. Applying this trick enables us to
train tasks with arbitrary duration by rescaling the ranges of τ and τm into
a smaller one while still making the spiking activities biologically realistic.
In practice, we simply scaled down τ and τm by a factor s = 3 with a fixed
number of time steps (M), and later during the testing stage, we rescaled
M, τ and τm up by the same factor s.



3282 Y. Li, R. Kim, and T. Sejnowski

4.3 Mollifier Gradient Approximations. In the above formulation, the
Heaviside step function H(x) is not continuous. As a result, the loss function
L is not differentiable. This poses a major problem when applying the tra-
ditional backpropagation algorithm for training neural networks because
the backpropagation algorithm uses gradient descent methods that require
the function being minimized to be differentiable, or at least to be continu-
ous. However, the derivative of Heaviside step function H(x) is Dirac delta
function δ(x), which is 0 everywhere except at 0, where the function value
is ∞. It is difficult to use this derivative for the gradient descent methods
because the value of the gradients is 0 almost everywhere.

To address the discontinuity problem, we employed mollifier gradient
method proposed by Ermoliev et al. (1995). The method can be applied
to any strongly lower semicontinuous functions to find local minima fol-
lowing an iterative gradient descent in which the gradients change over
iterations based on averaged functions derived from the original objective
function. The family of averaged functions fε of function f is defined by
convolution of f with a mollifier: ψε

fε(x) :=
∫
Rn

f (x − z)ψε(z)dz =
∫
Rn

f (x)ψε(x − z)dz = f ∗ ψε(x), (4.17)

where ψε ∈ {ψε : Rn → R+, ε > 0}, a family of compactly supported (gener-
alized) functions named mollifiers that satisfy

∫
Rn

ψε(x) dx = 1, lim
ε→0

ψε(x) = lim
ε→0

ε−nψε(x/ε) = δ(x). (4.18)

It was shown that for any strongly lower semicontinuous functions f , the
averaged functions fε epi-converge to f as ε → 0, a type of convergence that
preserves the local minima and minimizers. Therefore, it is possible to use
the gradients of averaged functions to minimize the original lower semi-
continuous functions and find the local minima. We used the conventional
family of mollifiers obtained by normalizing a probability density function
ψ :

ψε(z) := ψ (z/ε)
εn

. (4.19)

In our case, n = 1 as the domain of H(x) is the real line:

Hε(x) := 1
ε

∫ ∞

−∞
H (x − z) ψ (z/ε) dz. (4.20)

For any ε > 0, the gradient of Hε (g(x)) with respect to parameter p is given
by



Synaptic and Membrane Dynamics Underlying Working Memory 3283

∇pHε (g(x)) = 1
ε
ψ (g(x)/ε) ∇pg(x) = ψε (g(x)) ∇pg(x), (4.21)

where ψ is some symmetric density function and g(x) is any function with
R as its codomain. Since our goal was not to find a local minimum x∗ that
satisfies the optimality condition lim

ε→0
‖∇ fε(x∗)‖ = 0 as defined by Ermoliev

et al. (1995), but rather to minimize the loss function for its value to be suffi-
ciently small so that the network can perform the task correctly, we did not
vary the gradients during the minimization process. Instead, we fixed an
approximation of the gradient and used the approximation throughout the
training process. We chose the normalized box function, that is, the density
function of uniform distribution U (−ε/2, ε/2), as the kernel,

ψ (x) :=
⎧⎨
⎩

1
ε

for x ∈ [−ε/2, ε/2]

0 otherwise
(4.22)

and fixed ε = 5.
We found no difference in the trained models with different choices of

ε as long as the value was large enough to keep the gradients active so
that they did not vanish through time steps. There was also no difference
between models trained with fixed ε and those trained with the original
scheme in Ermoliev et al. (1995) where ε → 0 as the number of iterations
increases. The purpose for fixing the value of ε was to compare the training
epochs (iterations) among the retraining paradigms (see Figure 3) with the
same gradient.

4.4 Retraining Models for DMS Task. To test whether intrinsic prop-
erties optimized for one WM task are generalizable to other tasks that also
require WM, we retrained our models to perform the DMS task with all in-
trinsic properties fixed. In contrast to the training paradigm described in the
previous sections, the trainable parameters for retraining only include in-
put weights (Win), synaptic strengths (W), and readout weights (Wout). Each
of the 20 RNNs trained for each of the four tasks (non-WM integration, de-
layed integration, DMS, and DIS tasks) used in this study was retrained to
perform the DMS task.

To test whether synaptic decay time constants (τ ) and membrane time
constants (τm) are the most crucial parameters for transferability of WM
tasks, we repeated the retraining procedure with both τm and τ either fixed
or optimized for the non-WM RNNs. The RNNs optimized to perform the
context-based input integration task were used for retraining under two
schemes: the tuned scheme and the frozen scheme. For the tuned scheme,
the trainable parameters include input weights (Win), synaptic strengths
(W), readout weights (Wout), synaptic decay time constants (T), membrane



3284 Y. Li, R. Kim, and T. Sejnowski

time constants (τm), and synaptic decay time constants for firing rate esti-
mates (τr). For the frozen scheme, the trainable parameters include input
weights (Win), synaptic strengths (W), readout weights (Wout), input resis-
tances (R), resting potentials (vrest), reset voltages (vreset), and action poten-
tial thresholds (ϑ).

4.5 Units Function Analysis. For Figure 4, we manipulated τm and τ

during different epochs of the DMS task paradigm to investigate if fast
membrane and slow synaptic dynamics are responsible for WM mainte-
nance. For each of the RNNs trained from the DMS task, we first divided
the population into two subgroups based on their τm values. The short τm

group contained units whose τm was smaller than the median value of τm

of all units in the RNN, while the long τm group contained units whose τm

was greater than the median value. The average median value of τm across
all 20 models was 19.64 ± 2.45 ms. During each of the four epochs (fixa-
tion, first stimulus, delay, and second stimulus), we inhibited the two τm

subgroups separately by hyperpolarizing them and then assessed the task
performance. The hyperpolarization was done by setting the membrane
voltage v = −100 mV for the intended subgroup of units. Similar to the
training stage, we say that the network successfully did the task if the out-
put signal hits above +0.8 (or below −0.8) if the target output is +1 (or −1).
If the target output is between −0.8 and +0.8, the network is considered
having no response. If the output signal is above +0.8 (or below −0.8) while
the target output is −1 (or +1), we say that the network gives an incorrect
response.

We conducted a similar analysis based on two subgroups of synapses
derived from a quartile split of synaptic decay time constant (τ ). The short
τ group contained synapses whose τ was smaller than the 25th percentile
of all τ in the RNN, while the long τ group contained synapses whose τ

was greater than the 75th percentile. The average 25th percentile across
all 20 models was 25.36 ± 2.40 ms, and the average 75th percentile was
66.18 ± 1.17 ms. The targeted subgroup of synapses was suppressed by set-
ting the connection strength w = 0 during each of the four epochs of DMS
task.

Code Availability

The implementation of our framework and the codes to generate all the fig-
ures in this work are available at https://github.com/y-inghao-li/SRNN/.

Data Availability

The trained models used in this study are available as Matlab-formatted
data at https://github.com/y-inghao-li/SRNN/.

https://github.com/y-inghao-li/SRNN/
https://github.com/y-inghao-li/SRNN/


Synaptic and Membrane Dynamics Underlying Working Memory 3285

Acknowledgments

We are grateful to Jorge Aldana for assistance with computing resources.
This research was funded by DARPA (W911NF1820259 to T.J.S.), the Office
of Naval Research (N00014-16-1-2829 to T.J.S.), and the National Institute of
Mental Health (F30MH115605-01A1 to R.K.). We also gratefully acknowl-
edge the support of NVIDIA Corporation with the donation of the Quadro
P6000 GPU used for this research. The funders had no role in study design,
data collection and analysis, decision to publish, or manuscript preparation.

References

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., & Maass, W. (2018). Lon short-
term memory and learning-to-learn in networks of spiking neurons. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, K., N. Cesa-Bianchi, N., & R. Garnett
(Eds.), Advances in neural information processing systems, 21. Red Hook, NY:
Curran

Chelaru, M. I., & Dragoi, V. (2008). Efficient coding in heterogeneous neuronal pop-
ulations. In Proceedings of the National Academy of Sciences, 105(42), 16344–16349.
10.1073/pnas.0807744105

Chen, L., & Aihara, K. (1995). Chaotic simulated annealing by a neural net-
work model with transient chaos. Neural Networks, 8(6), 915–930. 10.1016/
0893-6080(95)00033-V

Connors, B. W., & Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical
neurons. Trends in Neurosciences, 13(3), 99–104. 10.1016/0166-2236(90)90185-D,
PubMed: 1691879

Douglas, R. J., & Martin, K. A. (2007). Recurrent neuronal circuits in the neocortex.
Current Biology, 17(13), R496–R500. 10.1016/j.cub.2007.04.024, PubMed: 17610826

Ermoliev, Y. M., Norkin, V. I., & Wets, R. J. (1995). The minimization of semicontin-
uous functions: Mollifier subgradients. SIAM Journal on Control and Optimization,
33(1), 149–167. 10.1137/S0363012992238369

Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge: Cambridge Univer-
sity Press.

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477–
485. 10.1016/0896-6273(95)90304-6, PubMed: 7695894

Hochreiter, A., Bengio, Y, Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in re-
current nets: The difficulty of learning long term dependencies. In J. F. Kolen & S. C.
Kremer (Eds.), A field guide to dynamical recurrent neural networks (pp. 237–243).
Piscataway, NJ: IEEE Press.

Huh, D., & Sejnowski, T. J. (2018). Gradient descent for spiking neural networks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett
(Eds.), Advances in neural information processing systems, 31 (pp. 1433–1443). Red
Hook, NY: Curran.

Kim, C. M., & Chow, C. C. (2018). Learning recurrent dynamics in spiking networks.
eLife, 7.

https://doi.org/10.1073/pnas.0807744105
https://doi.org/10.1016/0893-6080(95)00033-V
https://doi.org/10.1016/0166-2236(90)90185-D
https://www.ncbi.nlm.nih.gov/pubmed/1691879
https://doi.org/10.1016/j.cub.2007.04.024
https://www.ncbi.nlm.nih.gov/pubmed/17610826
https://doi.org/10.1137/S0363012992238369
https://doi.org/10.1016/0896-6273(95)90304-6
https://www.ncbi.nlm.nih.gov/pubmed/7695894


3286 Y. Li, R. Kim, and T. Sejnowski

Kim, R., Li, Y., & Sejnowski, T. J. (2019). Simple framework for constructing func-
tional spiking recurrent neural networks. In Proceedings of the National Academy of
Sciences, 116(45), 22811–22820. 10.1073/pnas.1905926116

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Lee, J. H., Delbruck, T., & Pfeiffer, M. (2016). Training deep spiking neural networks
using backpropagation. Frontiers in Neuroscience, 10, 508.

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474), 78.
10.1038/nature12742, PubMed: 24201281

Mastrogiuseppe, F., & Ostojic, S. (2018). Linking connectivity, dynamics, and compu-
tations in low-rank recurrent neural networks. Neuron, 99(3), 609–623. 10.1016/
j.neuron.2018.07.003, PubMed: 30057201

Medalla, M., Gilman, J. P., Wang, J.-Y., & Luebke, J. I. (2017). Strength and di-
versity of inhibitory signaling differentiates primate anterior cingulate from
lateral prefrontal cortex. Journal of Neuroscience, 37(18), 4717–4734. 10.1523/
JNEUROSCI.3757-16.2017, PubMed: 28381592

Miconi, T. (2017). Biologically plausible learning in recurrent neural networks re-
produces neural dynamics observed during cognitive tasks. eLife, 6, e20899.
10.7554/eLife.20899, PubMed: 28230528

Neftci, E. O., Mostafa, H., & Zenke, F. (2019). Surrogate gradient learning in spiking
neural networks. CoRR, abs/1901.09948.

Nicola, W., & Clopath, C. (2017). Supervised learning in spiking neural net-
works with force training. Nature Communications, 8(1), 2208. 10.1038/s41467-017-
01827-3, PubMed: 29263361

Pala, A., & Petersen, C. C. (2018). State-dependent cell-type-specific membrane po-
tential dynamics and unitary synaptic inputs in awake mice. eLife, 7, e35869.
10.7554/eLife.35869, PubMed: 30052198

Peyrache, A., Dehghani, N., Eskandar, E. N., Madsen, J. R., Anderson, W. S.,
Donoghue, J. A., . . . Destexhe, A. (2012). Spatiotemporal dynamics of neocor-
tical excitation and inhibition during human sleep. In Proceedings of the National
Academy of Sciences, 109(5), 1731–1736. 10.1073/pnas.1109895109

Rajan, K., Abbott, L., & Sompolinsky, H. (2010). Stimulus-dependent suppression
of chaos in recurrent neural networks. Physical Review E, 82(1), 011903. 10.1103/
PhysRevE.82.011903

Rajan, K., Harvey, C. D., & Tank, D. W. (2016). Recurrent network models of sequence
generation and memory. Neuron, 90(1), 128–142. 10.1016/j.neuron.2016.02.009,
PubMed: 26971945

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions.
arXiv:1710.05941.

Remington, E. D., Narain, D., Hosseini, E. A., & Jazayeri, M. (2018). Flexible sensori-
motor computations through rapid reconfiguration of cortical dynamics. Neuron,
98(5), 1005–1019. 10.1016/j.neuron.2018.05.020, PubMed: 29879384

Romo, R., Brody, C. D., Hernández, A., & Lemus, L. (1999). Neuronal correlates of
parametric working memory in the prefrontal cortex. Nature, 399(6735), 470–473.
10.1038/20939, PubMed: 10365959

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by
back-propagating errors. Cognitive Modeling, 5(3), 1.

https://doi.org/10.1073/pnas.1905926116
https://doi.org/10.1038/nature12742
https://www.ncbi.nlm.nih.gov/pubmed/24201281
https://doi.org/10.1016/j.neuron.2018.07.003
https://www.ncbi.nlm.nih.gov/pubmed/30057201
https://doi.org/10.1523/JNEUROSCI.3757-16.2017
https://www.ncbi.nlm.nih.gov/pubmed/28381592
https://doi.org/10.7554/eLife.20899
https://www.ncbi.nlm.nih.gov/pubmed/28230528
https://doi.org/10.1038/s41467-017-01827-3
https://www.ncbi.nlm.nih.gov/pubmed/29263361
https://doi.org/10.7554/eLife.35869
https://www.ncbi.nlm.nih.gov/pubmed/30052198
https://doi.org/10.1073/pnas.1109895109
https://doi.org/10.1103/PhysRevE.82.011903
https://doi.org/10.1016/j.neuron.2016.02.009
https://www.ncbi.nlm.nih.gov/pubmed/26971945
https://doi.org/10.1016/j.neuron.2018.05.020
https://www.ncbi.nlm.nih.gov/pubmed/29879384
https://doi.org/10.1038/20939
https://www.ncbi.nlm.nih.gov/pubmed/10365959


Synaptic and Membrane Dynamics Underlying Working Memory 3287

Sengupta, A., Ye, Y., Wang, R., Liu, C., & Roy, K. (2019). Going deeper in spiking
neural networks: VGG and residual architectures. Frontiers in Neuroscience, 13.
10.3389/fnins.2019.00095, PubMed: 30899212

Sippy, T., Lapray, D., Crochet, S., & Petersen, C. C. (2015). Cell-type-specific senso-
rimotor processing in striatal projection neurons during goal-directed behavior.
Neuron, 88(2), 298–305. 10.1016/j.neuron.2015.08.039, PubMed: 26439527

Sompolinsky, H., Crisanti, A., & Sommers, H.-J. (1988). Chaos in random neu-
ral networks. Physical Review Letters, 61(3), 259. 10.1103/PhysRevLett.61.259,
PubMed: 10039285

Song, H. F., Yang, G. R., & Wang, X.-J. (2016a). Training excitatory-inhibitory recur-
rent neural networks for cognitive tasks: A simple and flexible framework. PLOS
Computational Biology, 12(2), e1004792.

Song, H. F., Yang, G. R., & Wang, X.-J. (2016b). Training excitatory-inhibitory recur-
rent neural networks for cognitive tasks: A simple and flexible framework. PLOS
Computational Biology, 12(2), e1004792.

Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63(4), 544–557. 10.1016/j.neuron.2009.07.018,
PubMed: 19709635

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2018).
Deep learning in spiking neural networks. Neural Networks, 111, 47–63. 10.1016/
j.neunet.2018.12.002, PubMed: 30682710

Thalmeier, D., Uhlmann, M., Kappen, H. J., & Memmesheimer, R.-M. (2016). Learn-
ing universal computations with spikes. PLOS Computational Biology, 12(6),
e1004895. 10.1371/journal.pcbi.1004895, PubMed: 27309381

Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neo-
cortex: From cellular properties to circuits. Neuron, 91(2), 260–292. 10.1016/
j.neuron.2016.06.033, PubMed: 27477017

VanRullen, R., Guyonneau, R., & Thorpe, S. J. (2005). Spike times make sense. Trends
in Neurosciences, 28(1), 1–4. 10.1016/j.tins.2004.10.010, PubMed: 15626490

Wang, X.-J. (2008). Decision making in recurrent neuronal circuits. Neuron, 60(2), 215–
234. 10.1016/j.neuron.2008.09.034, PubMed: 18957215

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it.
In Proceedings of the IEEE, 78(10), 1550–1560. 10.1109/5.58337

Zhang, W., & Li, P. (2019). Spike-train level backpropagation for training deep re-
current spiking neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E, Fox, & R. Garnett (Eds.), Advances in neural information process-
ing systems, 32 (pp. 7800–7811). Red Hook, NY: Curran.

Received November 3, 2020; accepted March 15, 2021.

https://doi.org/10.3389/fnins.2019.00095
https://www.ncbi.nlm.nih.gov/pubmed/30899212
https://doi.org/10.1016/j.neuron.2015.08.039
https://www.ncbi.nlm.nih.gov/pubmed/26439527
https://doi.org/10.1103/PhysRevLett.61.259
https://www.ncbi.nlm.nih.gov/pubmed/10039285
https://doi.org/10.1016/j.neuron.2009.07.018
https://www.ncbi.nlm.nih.gov/pubmed/19709635
https://doi.org/10.1016/j.neunet.2018.12.002
https://www.ncbi.nlm.nih.gov/pubmed/30682710
https://doi.org/10.1371/journal.pcbi.1004895
https://www.ncbi.nlm.nih.gov/pubmed/27309381
https://doi.org/10.1016/j.neuron.2016.06.033
https://www.ncbi.nlm.nih.gov/pubmed/27477017
https://doi.org/10.1016/j.tins.2004.10.010
https://www.ncbi.nlm.nih.gov/pubmed/15626490
https://doi.org/10.1016/j.neuron.2008.09.034
https://www.ncbi.nlm.nih.gov/pubmed/18957215
https://doi.org/10.1109/5.58337

