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Abstract

Many bivalve species have two types of mitochondrial DNA passed independently through the female line (F genome) and

male line (M genome). Here we study the cytochrome oxidase I protein in such bivalve species and provide evidence for

differences between the F and M proteins in amino acid property values, particularly relating to hydrophobicity and helicity.

The magnitude of these differences varies between different regions of the protein and the change from the ancestor is most

marked in the M protein. The observed changes occur in parallel and in the same direction in the different species studied. Two

possible causes are considered, first relaxation of purifying selection with drift and second positive selection. These may

operate in different ways in different regions of the protein. Many different amino acid substitutions contribute in a small way

to the observed variation, but substitutions involving alanine and serine have a quantitatively large effect. Some of these

substitutions are potential targets for phosphorylation and some are close to residues of functional importance in the catalytic

mechanism. We propose that the observed changes in the F and M proteins might contribute to functional differences

between them relating to ATP production and mitochondrial membrane potential with implications for sperm function.
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Introduction

Animal mitochondrial DNA (mtDNA) shows considerable di-

versity, including variation in size, structure, and gene content,

which might have adaptive significance (Breton et al. 2014).

Many species of bivalves have two types of mitochondria, one

passed through the female line of descent (F type) and the

other through the male line (M type) (Skibinski et al. 1994;

Zouros et al. 1994). In this system (doubly uniparental

inheritance [DUI]), females pass the F type to the progeny of

both sexes, whereas males pass the M type to sons only.

Females have F type mitochondria in both soma and germ

line, whereas in males the germ line is homoplasmic for the M

type with somatic tissues showing varying levels of hetero-

plasmy (Zouros 2013). There is ongoing research into the evo-

lutionary and functional significance of the two genomes and

their link with sex determination (Breton, Stewart, et al. 2011;

Zouros 2013). Of potential relevance is that the F and M

genomes show a variety of sequence differences. They can

be highly diverged, exceeding 50% in some freshwater

mussels and often show major structural differences and rear-

rangements (Ghiselli et al. 2013; Zouros 2013; Breton et al.

2014). Moreover, M and F type specific mtORFans of putative

viral origin and with a proposed role in DUI have been discov-

ered (Breton, Ghiselli, et al. 2011; Ghiselli et al. 2013; Milani

et al. 2013). Sequence differences between M and F genomes

located in the intergenic regions and in the RNA-coding genes

can affect mtDNA transcription and translation, potentially

resulting in sex-specific mitochondrial expression, especially

in conditions where the two mtDNAs are in homoplasmy,

namely, in gonads and gametes (Milani et al. 2014).

Although major structural differences between the F and

M genomes may be biologically important, functional differ-

ences could also be sought in normal sequence variation in

mitochondrial proteins. Amino acid substitution is influenced

by a variety of structural and functional constraints (Chelliah

et al. 2004). These relate to the physicochemical properties of

amino acids and are consistent with evidence that substitu-

tions within chemical groups (conservative) are more
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prevalent than those between groups (radical) (Hughes et al.

1990). The latter are more likely to have deleterious effects on

structure and function and be removed by purifying selection

(Zhang 2000). Information on protein structure and amino

acid properties can augment DNA and protein sequence in-

formation in evolutionary studies in a variety of ways.

Evolutionary trees built from atomic distances in superim-

posed known protein tertiary structures can be compared

with those built from aligned sequences (Johnson et al.

1990; Balaji and Srinivasan 2007). Amino acid substitution

tables can be built from different structural environments,

for example, solvent accessible and inaccessible regions within

proteins of known tertiary structure, and be used for con-

structing refined and better supported evolutionary trees

(Overington et al. 1990; Thorne et al. 1996; Gong and

Blundell 2008). In addition, if the tertiary structure is known

for one of the sequences in an amino acid alignment it can be

used to infer the structural environments for the other

sequences (e.g., Mizuguchi et al. 1998; Melvin et al. 2008;

Puslednik et al. 2012).

The chemical and physical properties of amino acids can

also be used to improve evolutionary models for a variety of

purposes (e.g., Koshi and Goldstein 1997; Xia and Li 1998; Liu

and Wang 2006), for example, to define patches with func-

tional regions on the surface of proteins (Pettit et al. 2007).

Metrics, obtained by substituting amino acid physicochemical

property values for the nominal amino acid symbols, can be

summed up over the different amino acids within a region of

a protein (McClellan and McCracken 2001; Atchley et al.

2005; McClellan 2013). This can aid the identification of

causal components underlying the sequence variation in dif-

ferent regions of the protein by using approaches based on

analysis of variance (ANOVA) to partition the variation

(Atchley et al. 2005).

The aim of this study is to compare the structural features

and differences in amino acid property values in the cyto-

chrome oxidase I (COI) protein from the F and M mtDNA

genomes. This protein is responsible for the transfer of elec-

trons from cytochrome c to reduce molecular oxygen to

water and is the final step in the electron transport chain.

In the reaction, eight protons come from the mitochondrial

matrix, four of which make water and four protons are re-

leased into the intermembrane space. This results in an elec-

trochemical gradient across the membrane, which ATP

synthase uses to make ATP (Chen 1988). COI is widely stud-

ied both in relation to the action of natural selection (Garvin

et al. 2015) and in taxonomic studies (Hebert et al. 2003),

and its mechanism of action is well understood (e.g.,

Tsukihara et al. 2003), though some details are not

completely elucidated (Popovic 2013). We provide evidence

that the F and M COI proteins show differences in the values

of amino acid properties in relation to structural environ-

ment, which are concordant in four bivalve species with

DUI. The differences include changes in hydrophobicity

and helicity in the intermembrane space and mitochondrial

matrix regions of the M protein. We suggest that these

changes may affect ATP production and the mitochondrial

membrane potential with consequent effects on sperm

function and implications for DUI and discuss the evolution-

ary forces that might be responsible.

Materials and Methods

Sequences Used in Analysis

To select representative sequences for analysis, 44 bivalve F

and M COI amino acid sequences were aligned and a maxi-

mum likelihood (ML) tree constructed (supplementary fig. S1,

Supplementary Material online). Four species each with F and

M genomes were chosen within each of the three orders,

Mytiloida, Veneroida, and Unionoida. No part of the lineages

separating the F and M COI sequences through their common

ancestor within each of the chosen species overlaps with the

corresponding lineages separating F and M genomes in the

other species. In other words, the F and M genomes form

monophyletic groups within each species (fig. 1A). This ap-

proach allows statistically independent comparisons of the F

and M genomes in line with a proposal for the comparative

method (Felsenstein 1985). Sequences from the Mytilus edulis

group (M. edulis, M. trossulus, and M. galloprovincialis) were

not chosen because of the complication of role reversals and

rearrangements (Zouros 2013), Mytilus californianus was cho-

sen instead. Musculista senhousia was added as a fourth spe-

cies because it also satisfies the above criterion of

nonoverlapping lineages, and the F and M COI sequences

are sufficiently diverged to merit inclusion. The eight sequen-

ces used in analysis with NCBI accession numbers are M.

californianus (Cal) (F: ACV65353 M: ACV65365), M. senhou-

sia (Sen) (F: ACY00212 M: ACY00224), Pyganodon grandis

(Gra) (F: ACQ91058 M: ACQ91071), and Ruditapes philippi-

narum (Phi) (F: BAB83795 M: BAB83782).

The eight bivalve sequences were aligned with a sequence

from a known bovine structure (PDB ID: 1V54, Tsukihara et al.

2003) using T-coffee (Notredame et al. 2000). Terminal

regions and a few internal sites with gaps were removed

from the alignment. The terminal regions comprise on aver-

age 22 amino acids per sequence and are similar in length and

amino acid sequence between genomes within species. The

resulting alignment is 501 amino acid sites long, 13 sites less

than the number of amino acids in 1V54 COI. To reconstruct

predicted ancestral sequences of the F and M COI sequences

within each species, the alignment without gaps was submit-

ted to the FASTML server, which implements ML algorithms

for this purpose (Ashkenazy et al. 2012).

Residue and Site-Specific Attributes

Residue-specific and site-specific attributes are used for the

comparative analysis of the F and M COI proteins. In the
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alignment of the eight bivalve sequences used, there are 8�
501¼ 4,008 individual amino acid residues to which residue-

specific attributes can be assigned, and 501 alignment sites to

which site-specific attributes can be assigned.

Residue-Specific Attributes

The residue-specific attributes are chemical and physical

amino acid property values for the 20 amino acids, derived

from several studies, which capture information about the

amino acid in a metric value (Sneath 1966; Grantham 1974;

Kidera et al. 1985; Haig and Hurst 1991; Xia and Li 1998;

Atchley et al. 2005). We have given abbreviated names to

these properties, which with brief description in brackets are

cc (side chain composition), pp (polarity), vv (volume), arom

(aromaticity), Atch1 (polarity), Atch2 (secondary structure),

Atch3 (volume), Atch4 (amino acid composition), Atch5

(charge), Kid1 (bulk), Kid2, Kid3, Kid4 (hydrophobicity),

Kid5, Kid6 (beta structure preference), Kid7 (alpha helix pref-

erence), Kid8, Kid9 (bend structure preference), HH1 (polar-

ity), HH2 (hydropathy), and HH3 (isoelectric point). Further

information on the properties is given in supplementary table

FIG. 1.—Amino acid properties, structural environments and evolution of bivalve COI proteins. (A) ML tree of F and M COI sequences in four

bivalve sequences with ancestors constructed with MEGA (Kumar et al. 2016) using the general reversible mtDNA amino acid substitution model and

gamma-distributed rate variation among sites (Adachi and Hasegawa 1996). Around 501 ungapped aligned sites were used. Branch lengths are in number

of substitutions per site. Support values are based on 1,000 bootstrap samples. Species names abbreviated as in text. The numbers of amino acid differences

of F and M proteins from their common ancestor within each species are shown on the terminal branches in brackets. (B) Dendrogram obtained by

hierarchical clustering of amino acid properties based on values for 20 amino acids using average linkage between groups. Details of the properties are given

in Materials and Methods (see Residue-Specific Attributes) with further information in supplementary table S1, Supplementary Material online. (C)

Dendrogram obtained by hierarchical clustering of structural environments based on category assignments for 1V54 sequence. Details of the environments

are given in Materials and Methods (see Site-Specific Attributes) with further information in supplementary table S1, Supplementary Material online. (D)

Calculation of F�M and False–True for small made-up data set. Amino acid property values for Kid3 are used. (E) Example of breakdown of F�M into

deviations from the ancestor in two categories (False and True). Numerical values are taken from table 4A for Hmamide group A. Note distances are not

to scale.

Structure-Related Differences between Cytochrome Oxidase I Proteins GBE

Genome Biol. Evol. 9(12):3265–3281 doi:10.1093/gbe/evx235 Advance Access publication November 14, 2017 3267

Deleted Text: 8 
Deleted Text: x
Deleted Text:  
Deleted Text: residue 
Deleted Text: ; <xref ref-type=
Deleted Text: :
Deleted Text: ). 


S1, Supplementary Material online. A high value on the metric

scale would indicate a tendency toward the specified descrip-

tion. Thus for vv (volume), tryptophan, a bulky amino acid has

the highest value whereas glycine has the lowest value.

Clustering of these 21 properties (fig. 1B) broadly reflects

differences and similarities described in the cited studies.

Many of the properties are derived by factor analysis and

thus represent a combination of many individual physico-

chemical properties. Correlation and coefficient of determi-

nation values among the properties are given in

supplementary table S2, Supplementary Material online.

Most of the values of coefficient of determination are less

than 0.5, suggesting some but not necessarily high redun-

dancy between the properties.

Site-Specific Attributes

To assign the site-specific attributes, the bivalve protein

sequences are partitioned into different spatial regions called

“structural environments,” which a priori are expected to re-

flect functional differences. Because the structures of the bi-

valve proteins are unknown, structural environment was

estimated for COI using the known bovine structure 1V54.

The program JOY (Mizuguchi et al. 1998) was used for this

purpose, partitioning COI into categories for 11 structural

environments. For illustration, consider an environment relat-

ing to main chain to main chain hydrogen bonding. Using a

known or estimated protein structure, JOY would classify each

amino residue as belonging to category “True” if it partici-

pated in such bonding and category “False” if it did not. We

have given abbreviated names to these JOY environments,

which with brief description in brackets are SecStrucPhi (sec-

ondary structure and phi angle), SolAcc (solvent accessibility),

HmainCO (hydrogen bond from side chain to main chain CO

group), HmainNH (hydrogen bond from side chain to main

chain NH group), Hotherhet (hydrogen bond to nonstandard

residue), Hhet (hydrogen bond to nonstandard residue), cov-

het (covalent bond to nonstandard residue), Hmamide (main

chain to main chain hydrogen bond involving NH of specified

residue), HmCO (main chain to main chain hydrogen bond

involving CO of specified residue), DSSP (secondary structure

using DSSP algorithm), and PosPhi (positive phi angle). The

environment categories for SecStrucPhi and DSSP refer to par-

ticipation in different types of secondary structure such as helix

or coil. Further information on the environments is given in

supplementary table S1, Supplementary Material online.

The COI protein was additionally partitioned into catego-

ries based on four environments, which potentially relate to

selective constraint and purifying selection. The first of these is

total amino acid diversity per site in the sample of eight

sequences. The second and third relate to evolutionary con-

servation values derived using the programs ConSurf (Celniker

et al. 2013) and FuncPatch (Huang and Golding 2015). As an

exploratory approach, root mean square distance values for

atomic distances within superimposed COI structures includ-

ing 1V54 were also calculated as the fourth constraint envi-

ronment (see supplementary methods S1, Supplementary

Material online), on the basis that higher constraint may be

related to lower molecular distances in the superimposed

structures. Contrasting categories based on these environ-

ments did not reveal the significant differences that are

reported below for the JOY structural environments and are

not considered further. A dendrogram showing clustering of

the JOY structural environments, based on the category

assignments for all sites over the 501 sites of 1V54 that align

with the bivalve sequences, is given in figure 1C, with corre-

lation values between environments in supplementary table

S3, Supplementary Material online. Some clustering is

expected, for example, of SecStrucPhi and DSSP, which reflect

secondary structure. The application of JOY revealed that 7 of

the 11 structural environments gave only small numbers of

sites differing between F and M COI proteins in one of the

contrasting categories, and preliminary analysis was not infor-

mative and so these structural environments were excluded

from further analysis. The remaining four structural environ-

ments, SecStrucPhi, SolAcc, Hmamide, and HmCO, are the

focus of further investigation. As illustration of the spatial lo-

cation of category regions, these are shown marked on an

image of COI for three of these environments, Hmamide and

HmCO in figure 2A and SolAcc in figure 2B. Hmamide and

HmCO are combined as they have some overlapping sites

with significant but not high correlation (supplementary table

S3, Supplementary Material online). These three environ-

ments feature most prominently in the later analysis. The

Hmamide and HmCO True category residues are located in

a hydrophobic region within the membrane. The False cate-

gory residues are located toward the aqueous intermembrane

space and mitochondrial matrix. These hydrophilic regions

have a greater number of side-chain oxygen and nitrogen

atoms available for hydrogen bonding with other molecules

as compared with the True category (fig. 2C). The SolAcc True

residues are on the external parts of the protein, the False

residues are buried. Confirmation that JOY is effective in gen-

erating categories having differences potentially reflecting

structure and function was obtained by comparing the amino

acid distributions between categories for the pooled data set

of eight bivalve sequences (supplementary table S4,

Supplementary Material online). Chi-square contingency anal-

ysis reveals highly significant differences in amino acid distri-

bution between categories for the four environments tested.

Calculation of F�M and False–True Differences

Much of the analysis is based on the comparison of mean

property values between the contrasting categories of the

different structural environments. To facilitate this approach,

the difference in property values between F and M COI pro-

teins (F2M) was calculated for each species for each
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alignment site. Use of F2M corrects for variation between

sites analogous to the approach in a paired t-test. A simple

example of the calculation of F2M is given in figure 1D for a

small made-up data set for aligned F and M sequences. The

figure also shows the computation of the quantity False–True,

the difference between categories, which is used in further

calculations as described below. A diagrammatic representa-

tion of F2M for two categories for an environment is illus-

trated in figure 1E. In the example shown, F2M is positive for

category False (F>M) and negative for category True (F<M).

The values of F2M are also broken down into the deviations

from the ancestors derived from FASTML. In different subse-

quent analyses, the averaging of F2M over sites is done in two

ways, first over the 281 sites that differ between the F and M

proteins, and second over all the 2,004 sites in the alignment

for which the F and M proteins can be compared (4 species�
501 sites¼ 2,004). The first method gives a mean value for

only those sites that are variable, which may be more pertinent

if many of the sites within a category region are invariant, the

second for the entire physical region of a category.

Results

Sequence Differences and Sources of Variation

The alignment of the eight sequences used for analysis is 501

sites long. Around 291 sites show variation, that is having at

FIG. 2.—COI subunit (bovine 1V54 and bivalve molluscs) with annotations made in Chimera (Pettersen et al. 2004). The IV54 COI protein is 514

amino acids long, but residues 1–7, 16, 139, 177–178, 287, 514 have been trimmed from the alignment. The orientation is the same in all images with the

intermembrane space at the top and the matrix at the bottom. The transmembrane region is delimited by horizontal lines in A and D. The heme a and a3

centers with Fe and Cu are present in some images but partly obscured because of the orientation. (A) Environments Hmamide and HmCO regions. Yellow,

category False for either environment; Pink, category True for both environments. (B) Environment SolAcc regions. Blue, category True, exterior residues;

Yellow, category False, interior buried residues. (C) Location of side chain oxygen (in red) and nitrogen (in blue) atoms showing preponderance in hydrophilic

regions at top and bottom. (D) Sites with radical differences between F and M marked on 1V54 in color. Numbers of differences are summed over species

and over nine properties of Taylor (1986) (small, tiny, negative, positive, polar, charged, hydrophobic, aromatic, and aliphatic). Yellow, 1 or more differences;

Orange, >4 differences; Red, >5 differences. (E) Environment SolAcc regions with subunit interface residues indicated. Cyan, category True, exterior

residues; Yellow, category False, interior buried residues; Blue, SolAcc category True sites, which are also at mtDNA–mtDNA subunit interfaces; Black, SolAcc

category True sites, which are also at mtDNA–nuclear subunit interfaces; Red, SolAcc category False sites, which are at any type of subunit interface. (F)

Alanine to Serine (A in F genome, S in M genome) or Serine to Alanine (SA) substitutions made visible in relation to functional important sites including the D

and K proton entry pathways, the heme a and heme a3 sites, putative proton and water exit pathways, and electron transfer pathway derived from the NCBI

entry for 1V54 taking account of Tsukihara et al. (2003). The eight bivalve sequences have been modelled and superimposed on the 1V54 known structure

as template using Modeller (Webb and Sali 2014; see supplementary methods S2, Supplementary Material online, for further details), and residue side-chains

are revealed. Blue, heme with Fe (red) and Cu (brown); Dumbbells, AS or SA substitutions with oxygen of serine (red) and carbon of serine and alanine (gray);

Pink or Cyan, functionally important residues; Cyan, functionally important residues within 5 Å of any AS or SA substitution.
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least two different amino acids in the alignment of eight

sequences. The numbers of sites in which COI sequences dif-

fer between F and M genomes within species for 1, 2, 3, or all

4 species are respectively 135, 56, 10, and 1. Multiplying

these vectors and summing gives 281 sites differing between

genomes within species out of 291� 4¼ 1,164, a proportion

of 0.24. Because each amino acid residue can be substituted

by property values, a three-way ANOVA can be used to gauge

the relative overall effect of the factors, genome, species, and

environment. Mean partial eta squared values, the percent-

age of the total variation in the dependent variable attribut-

able to a specified independent variable, over all properties

and environments are given in table 1. The error is large be-

cause it reflects amino acid differences between sites. All

factors have small effect as judged by the value of partial

eta squared (%), and that for genome is smaller than that

for species and environment. More optimistically, the genome

effect is about 6% of the species value, and the interaction of

genome and species is also higher, suggesting that the ge-

nome effect may in part be species dependent.

F�M for Entire Protein Alignment

The difference in property values between the F and M COI

proteins was first examined over the entire protein alignment.

Confidence intervals (CIs) of F2M were computed for the 281

site and 2,004 site data sets. For all 21 properties, the CIs

overlap zero for both data sets (supplementary table S5,

Supplementary Material online), and the means over proper-

ties are �0.181 (95% CI �0.549, 0.188) and �0.025 (95%

CI �0.078, 0.027), respectively. The second data set has

lower absolute mean values because it includes many sites

where F�M¼ 0 and has narrower CIs because the sample

size is greater. These results suggest no difference between

the F and M COI proteins in property values over the whole

COI protein. However, this averaging may hide differences in

the value of F�M between the categories of structural

environments.

F�M Compared between Categories for Each Property

Further analysis thus focused on comparing the value of F�M

between different regions of the protein, that is, between the

True and False categories for the different structural environ-

ments (see fig. 1D for illustration of computation of F�M, and

fig. 1E for further clarification). For each property for each

environment, the value of F�M was compared between

categories averaging over all the alignment sites within

categories and using either ANOVA or the nonparametric

Kruskal–Wallis test. The resulting P-values for each amino

acid property were then combined over environments

using Fisher’s combining probabilities test (table 2 with

further details in supplementary table S6, Supplementary

Material online). The properties that have significant P-values

in table 2 are retained for further analysis. Some of these are

combined into groups that reflect the closeness of their clus-

tering (fig. 1B). The groups are named Group A (comprising

Kid8, Kid9, Atch2, and cc), Group B (Kid3, Kid4, Kid5, and

HH2), and Group C (pp, Atch1, and HH1). In subsequent

analyses, mean values for Groups A, B, and C are obtained

by averaging over properties within groups. Properties with

nonsignificant P-values in table 2 are not considered further.

Concordance of Category Differences across Species

Concordant and parallel changes between the F and M pro-

teins across species would provide evidence of a general

Table 1

Summary of Partial Eta Squared Values for Structural Environments

Source of Variation Partial Eta Squared (%)

Species 0.18

Genome 0.01

Environment 1.37

Species � Genome 0.03

Species � Environment 0.21

Genome � Environment 0.02

Species � Genome � Environment 0.04

NOTE.—Values given are averages of all environments and amino acid properties
derived from a three-way ANOVA on data set of 501 sites � 8 sequences.

Table 2

Amino Acid Properties Ranked According to Significance in Comparison of

F�M between Structural Environment Categories

Amino Acid Property Fisher P-Value

Kid9 0.000

Kid8 0.000

cc 0.000

HH2 0.000

Atch2 0.000

Kid7 0.000

Kid5 0.000

HH1 0.000

Kid4 0.000

pp 0.000

Kid2 0.004

Atch1 0.005

Kid3 0.024

HH3 0.370

Atch4 0.466

vv 0.494

Atch3 0.737

Kid6 0.875

Atch5 0.914

Kid1 0.914

arom 0.941

NOTE.—Summary of P-values for different amino acid properties are from
Fisher’s combining probabilities test over structural environments. Color fill in amino
acid property column marks clustered groups of individual properties in figure 1B.
Pink fill, P-values �0.05. Further information is given in supplementary table S6,
Supplementary Material online.
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rather than species-specific evolutionary effect. To test for

this, the mean values of F�M for the retained properties

were calculated for the categories for each environment, sep-

arately for each of the four species. These F�M values were

then compared between categories across the four species

using a paired t-test. An example to illustrate the concordant

differences between False and True across species is given in

table 3 for the environment HmCO and the Group A and

Group B properties. For the Group A property values, the

mean F�M is higher for category False than True. A similar

pattern occurs for Group B with True higher than False,

though one of the species (Sen) is different for Kid4 and

Kid5. The corresponding values for all properties and environ-

ment categories are given in supplementary table S7,

Supplementary Material online, and the P-values from all

the paired t-tests in supplementary table S8, Supplementary

Material online. The structural environment SecStrucPhi does

not show as good concordance or as many low P-values as

SolAcc, Hmamide, and HmCO and is excluded from further

consideration. The values of False–True are plotted for SolAcc,

Hmamide, and HmCO in figure 3A from which the concor-

dance between the four species is clearly evident.

Mean F�M Values and Deviation from Ancestor

Summary mean values of F�M for the False and True cat-

egories are given in table 4A with a further statistical in-

terpretation in table 5. Of the 15 mean values for False in

table 4A, 9 are significantly different from zero (bold and

underlined in table 4A). None of the True values are sig-

nificant. For eight of these significant values, all four spe-

cies are concordant with the same sign for the difference

between F�M for False and for True (indicated by a “4” in

the concordance rows). For Hmamide and HmCO that

show a similar pattern of variation, for all 10 paired

False and True mean values, the absolute value of False

is >True (row b, table 5). SolAcc does not show this effect

so clearly (row a). In 12 of the 15 paired False and True

mean values, the sign of the mean is different (row c). This

suggests that a change in evolution that makes F>M in

one category is accompanied by an opposite change mak-

ing M> F in the other category consistent with the

absence of a difference between F and M over the protein

as a whole (see above and supplementary table S5,

Supplementary Material online).

The value of F�M has also been broken down into devia-

tion from the ancestor (shown as D¼ F�A and D¼M�A in

fig. 1E). In this illustration, the ancestor is positioned between

F and M though it is also possible in evolution for the ancestor

to have the most extreme value. The values of D are given in

table 4A with statistical interpretation in table 5. The absolute

value of M�A is more often greater than F�A particularly for

category False (rows d and f, table 5). The signs of F�A

and M�A are more often different within categories

(rows e and g). For Hmamide and HmCO the absolute value

of F�A (or M�A) is more often greater for False than True

(rows i and l, table 5). SolAcc does not show this effect so

clearly (rows h and k). There is more often a difference in

sign for F�A between False and True (row j) and also for

M�A (row m) consistent with the absence of a difference

between F and M over the protein as a whole (supplemen-

tary table S5, Supplementary Material online). Finally, the

table 5 data can be broken down into 15 2 � 2 tables for

each property and environment combination. The cell

with the highest absolute value is recorded and summed

over tables (row n). The False and (M�A) cell has highest

value in 11 of the 15 tables.

The (F�A) and (M�A) values in table 4A are the means

over four species. A multiway ANOVA with sources of

variation Property (5 classes), Environment (3), Category

(2), Genome (2), and Species (4) on the absolute values

was carried out. Genome and Category are both highly

significant (P¼ 0.000) as is Genome � Category

(P¼ 0.007) consistent with the analysis from table 5. No

significant result is obtained in the corresponding ANOVA

of the real values, again consistent with observations of

different signs (table 5). Values of deviation from the an-

cestor for F and M proteins and for False and True cate-

gories are illustrated in figure 3B and confirm that the

observed trends are consistent across species.

Table 3

Species Concordance for F�M for HmCO Groups A and B

Amino Acid Property

Group A

Species Category cc Kid8 Kid9 Atch2

Cal False 0.231 0.873 0.591 0.461

True �0.096 0.132 0.140 0.040

Sen False 0.160 0.129 0.201 0.289

True �0.099 �0.192 �0.164 �0.349

Phi False 0.301 0.336 0.333 0.295

True �0.050 �0.022 0.047 0.168

Gra False 0.118 0.338 0.377 0.325

True �0.230 �0.313 �0.161 �0.261

Paired t-test P-value 0.001 0.016 0.005 0.031

Group B

Species Category Kid3 Kid4 Kid5 HH2

Cal False �0.121 �0.503 �0.341 �1.973

True 0.004 �0.111 �0.094 �0.200

Sen False �0.187 �0.001 �0.156 �0.657

True �0.040 �0.081 �0.190 �0.188

Phi False �0.109 0.025 �0.296 0.200

True 0.106 0.045 0.160 0.472

Gra False �0.155 �0.297 �0.222 �0.731

True �0.028 0.013 0.042 0.309

Paired t-test P-value 0.005 0.250 0.104 0.078

NOTE.—Shading indicates the higher of each paired value of False and True for a
property.
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Physicochemical Interpretation of Mean Category Values

For a physicochemical interpretation of the values of F�M, it is

necessary to establish the meaning of high and low values on

the amino acid property scales. This has been done using the

interpretation of the scales made by the authors who devised

them (supplementary table S1, Supplementary Material on-

line), supplemented by two other classification systems (from

Taylor 1986 and Malkov et al. 2008) and also taking into

consideration the amino acid chemical groups. The amino

acids are sorted according to the property values from high

to low values and lined up with these classification systems

(supplementary table S9, Supplementary Material online). This

allows a summary headline classification to be assigned to

high or low property values. Whichever of the F or M COI

proteins has the higher property value as judged by the F�M

mean value in table 4A is assigned as best match to the head-

line classification as shown in table 4B. The entries in table 4B

give a consistent picture showing greater helicity and hydro-

phobicity (or nonpolarity) for the M protein in external resi-

dues or those in the matrix or intermembrane space

FIG. 3.—Amino acid property differences between categories and species. (A) Histograms for False–True for three structural environments for the

data set of 281 variable sites. The amino acid property values are from the left in order cc, Kid8, Kid9, Atch2, Kid3, Kid4, Kid5, HH2, pp, HH1, Kid2, Kid7,

with species in the order Cal (blue), Sen (red), Phi (green), and Gra (purple). Plotted values are derived from those in supplementary table S7, Supplementary

Material online. For clarity, some high and low values are truncated on the graphs. (B) Histograms derived from data underlying table 4A but shown

separately for each species. I: Absolute deviation from ancestor for F genome (F�A, left blue fill) and M genome (M�A, right yellow fill) averaged over

properties and environments. II–IV: Absolute value of deviation from ancestor for False (left blue fill) and True (right orange fill) for environments SolAcc,

Hmamide, and HmCO averaged over properties.
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(Hmamide and HmCO False, and SolAcc True). By contrast the

F protein shows greater helicity for buried residues (SolAcc

False). To get an overall picture of hydrophobicity and helicity

in the categories prior to divergence of F and M proteins, the

mean property values over all residues were calculated for the

ancestral sequences at the sites, which differ between F and

M (table 4C). The buried residues (SolAcc False, and Hmamide

and HmCO True) have greater helicity and hydrophobicity as

expected, compared with the alternative categories repre-

senting external residues or those in the matrix or intermem-

brane space.

A summary of the more marked changes in the F and M

proteins from table 4 are mapped onto a diagram of COI

(fig. 4). Of general significance is that the changes in the M

protein, which tend to be larger (see also fig. 3BI), are in a

direction to minimize the difference between the categories.

Thus, for Hmamide and HmCO, the M protein has a higher

hydrophobicity change in the False category (fig. 4B), which is

the more hydrophilic part of the protein. The F protein shows

a smaller change in the opposite direction. All the five direc-

tional changes in the M protein and the four directional

changes in the F protein in figure 4 show this same tendency,

which is that M changes toward the mean of the two cate-

gories, whereas F changes to increase the difference between

the two categories.

Influence of Individual Amino Acids on Variation in F�M

To gauge the influence of individual amino acids on variation

in F�M, the mean category values have been partitioned into

separate contributions from each amino acid. The F�M values

associated with individual amino acids in the F and M sequen-

ces are summed for each amino acid over all sites in the F

sequence and separately over all sites in the M sequence. The

absolute values of the F�M are also summed over all amino

acids. The individual amino acid contributions are then

Table 4

Summary of Statistics and Analysis of F�M Values for Amino Acid Properties for Three Structural Environments

Environment Group A Group B Group C Kid2 Kid7

False True False True False True False True False True

(A) Mean amino acid properties (F�M) for three structural environments

SolAcc Mean 20.288 0.180 0.055 �0.181 0.015 0.161 0.010 �0.052 0.342 �0.181

Ancestor D¼F�A �0.065 0.030 0.039 �0.061 �0.078 0.113 0.042 �0.005 0.091 �0.015

D¼M�A 0.223 �0.151 �0.017 0.120 �0.093 �0.049 0.032 0.047 �0.251 0.167

Concordance False–True 4 4 2 2 4

Hmamide Mean 0.352 �0.038 �0.268 �0.054 0.250 0.050 0.099 �0.044 20.439 0.083

Ancestor D¼F�A 0.070 �0.022 �0.125 �0.016 0.227 0.032 0.011 0.006 �0.095 0.060

D¼M�A �0.282 0.016 0.143 0.039 �0.023 �0.018 �0.088 0.050 0.345 �0.023

Concordance False–True 4 3 2 2 4

HmCO Mean 0.335 �0.088 20.345 0.014 0.361 �0.033 20.254 0.088 20.285 0.069

Ancestor D¼F�A 0.109 �0.033 �0.108 �0.005 0.134 0.025 �0.041 0.030 �0.091 0.037

D¼M�A �0.226 0.055 0.238 �0.019 �0.228 0.058 0.213 �0.059 0.194 �0.032

Concordance False–True 4 4 4 4 3

(B) Protein best matching the headline classification

Headline classification Helical Hydrophobic Nonpolar Hydrophobic Helical

SolAcc F M 5 (F) M 5 (M) M 5 (F) ¼ (M) F M

Hmamide M ¼ (F) M ¼ (M) M ¼ (M) 5 (F) ¼ (M) M ¼ (F)

HmCO M ¼ (F) M ¼ (F) M ¼ (F) M ¼ (F) M ¼ (F)

(C) Ancestral values for properties

SolAcc 20.372 �0.189 0.936 0.814 0.156 0.323 0.246 0.158 0.217 0.009

Hmamide 0.210 20.355 0.144 1.048 1.230 0.018 0.029 0.233 �0.166 0.116

HmCO �0.129 20.314 0.682 0.966 0.436 0.161 0.041 0.267 �0.027 0.127

NOTE.— (A) Mean; values of F�M for False and True categories for three environments (SolAcc, Hmamide, and HmCO) for amino acid properties (groups A, B, C and Kid2 and
Kid7) averaged over sites and four species for the data set of 281 variable sites. The values for groups A, B, and C are arithmetic mean values of the individual properties forming
each group. False and True: structural environment categories. Bold underline: 95% CIs for F�M do not overlap the test value ¼0. Broadly similar patterns of significance and
concordance are obtained for the 2,004 site data set. Ancestor: D¼ F�A and D¼M�A, deviations from ancestor. Concordance: the number of species having the same sign for the
difference False–True. Sample sizes of sites for categories for 281 and 2,004 site data sets are SolAcc (False¼84, 912; True¼ 197, 1,092), Hmamide (False¼ 59, 364; True¼222,
1,640), HmCO (False¼ 98, 536; True¼ 183, 1,468). (B) Protein best matching the headline classification, depending on relative values on property scales. Decisions for False in
bold.¼ (F),¼ (M): decision given but difference between F and M proteins small. In comparison with supplementary table S9, Supplementary Material online, where high values of
Group A indicate non-helicity, the Group A scale is reversed so that the headline classifications of Group A and Kid7 match. Similarly, the Group C scale is reversed to match Group
B and Kid2. (C) Ancestral mean values for properties averaged across the four species for sites differing between F and M proteins. Bold underline: False or True have greater
helicity (for Group A and Kid7) or greater hydrophobicity (for Group B, Group C, and Kid2). Note that as in supplementary table S9, Supplementary Material online, a more
negative value of Group A indicates greater helicity and a more negative value for Group C indicates greater polarity.
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computed by dividing the sum for each amino acid by the

overall sum of absolute values. A demonstration of the

method is given in supplementary table S10A,

Supplementary Material online, using the made-up data set

of figure 1D. In the interpretation, focus is on those values

which are large and have the same sign as the overall F�M

value thus contributing to the excess of F over M or vice-versa.

A summary of the results of this analysis is given in figure 5

where amino acids with high contributions are indicated, with

the underlying data analysis in supplementary table S10B,

Supplementary Material online. A high contribution in abso-

lute terms will be favored when the amino acid has a high

value on the amino acid property scale and when it has a high

frequency, and will also be a function of the specific pairings

of amino acids at sites in the alignment.

Amino acids showing the most marked contributions

are the aliphatic amino acids (G, A, V, L, I) and the aliphatic

hydroxyl amino acid serine (S). Contingency tests for asso-

ciation were carried out to compare the amino acid fre-

quency distributions of F and M given in figure 5 (further

details in supplementary table S10B, Supplementary

Material online). Some significant results were obtained

for individual amino acids: SolAcc False (alanine A,

P¼ 0.031), Hmamide True (A, P¼ 0.028), HmCO True

(A, P¼ 0.023, serine S, P¼ 0.042), and for the entire con-

tingency table for True (P¼ 0.029). The analysis of figure 5

was extended by calculating the contributions for precise F

with M amino acid pairings in the alignment, of which

there are 96 (supplementary table S10C, Supplementary

Material online). Contributions of more than 10% are

flagged in supplementary table S10C, Supplementary

Material online, and these are AS (i.e., A in F protein and

S in M protein), for SolAcc False Groups A, B, and Kid7 and

Table 5

Analysis of F�M and Deviations from Ancestor

(A) Mean F2M Compared between False and True Categories Yes No

a Absolute value SolAcc False > True 2 3

b Hmamide/HmCO False > True 10 0

c Sign False 6¼ True 12 3

(B) M2A Compared With F2A Within the False and Within the True Categories

d Absolute value False (M�A)> (F�A) 12 3

e Sign False (M�A) 6¼ (F�A) 13 2

f Absolute value True (M�A)> (F�A) 10 5

g Sign True (M�A) 6¼ (F�A) 12 3

(C) The Value of F2A (or M2A) Compared Between False and True

h Absolute value SolAcc F�A False>True 3 2

i Hmamide/HmCO F�A False>True 10 0

j Sign F�A False 6¼ True 10 5

k Absolute value SolAcc M�A False>True 3 2

l Hmamide/HmCO M�A False>True 10 0

m Sign M�A False 6¼ True 11 4

(D) Highest Absolute Value Within 2 3 2 Tables (False, True) Versus ((F2A),(M2A))

False and (F�A) False and (M�A) True and (F�A) True and (M�A)

n 1 11 1 2

NOTE.—Analysis of table 4A values. Yes and No: number of values from table 4 in accordance with the specified condition (e.g., False>True for category). (F�A) and (M�A):
deviations of the F and M values from their ancestor within species, see figure 1D. Row labels a–n: see text. (A) Analysis of the 15 paired False and True values in the three rows
labelled “Mean” in table 4A. (B) Analysis of the 15 paired (M�A) and (F�A) values for False and True separately. Analysis based on the absolute values and, in a separate test, the
sign. (C) Analysis of the 15 paired False and True values separately for (F�A) and (M�A). Analysis based on the absolute values and, in a separate test, the sign. (D) Comparison of
the four values in the 15 2 � 2 tables (False, True) versus ((F�A), (M�A)), for example, the four values �0.065, 0.030, 0.223, �0.151 for SolAcc Group A is one such table.

FIG. 4.—DiagrammaticrepresentationofCOIwithquantitatively

largest amino acid property value changes derived from table 4. (A)

and (C): inner circle delimits category False for SolAcc. (B) and (D): top and

bottom regions cut off by arcs delimit category False for Hmamide and

HmCO. Hi and Lo: high or low hydrophobicity and helicity in the ancestors

of F and M. The representation is based on combining property values for

Group A and Kid7 as helicity and Group B, Group C, and Kid2 as hydro-

phobicity. Up and down solid arrows: value has increased or decreased in

that category region compared with ancestor, with bold and gray letters

indicating the larger and smaller absolute changes, respectively.
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for Hmamide and HmCO True Group A and Kid7, and AG

for SolAcc False Group A. Thus, all these analyses support

the conclusion that alanine (A) and serine (S) make a rel-

atively large contribution to the difference between F and

M proteins compared with other amino acids, particularly

when S is in the M protein. However, in quantitative terms

other amino acids make a larger contribution when

summed overall.

Site-Specific and Further Regional Analysis of COI

The number of sequences available is unlikely to provide suf-

ficient power for assessment of individual sites considered in

isolation. Nevertheless, the four species-specific F�M values

at each site were tested against the null hypothesis that

F�M¼ 0 using a paired t-test. Only one site generated an a

priori P-value�0.05. This underlines that combining data

from different sites into a single metric, as in this study, pro-

vides greater power to detect differences between the F and

M genomes. An analysis of the underlying DNA alignment

gave nonsynonymous/synonymous ratios (Ka/Ks) between F

and M within species ranging between 0.03 and 0.22, gen-

erally consistent with selective constraint and purifying selec-

tion acting on COI in the underlying DNA alignment. This may

hide regions with positive selection, though the power to

detect these will be limited given the number of sequences.

A site by site analysis using HyPhy (Pond and Frost 2005)

found no evidence of positive selection acting at individual

sites. A further DNA analysis was carried out to test the

hypothesis that the parallel changes in amino acid property

values are caused by parallel changes in DNA base composi-

tion arising from mutational bias. For example, studies using

mutation accumulation lines provided evidence for mtDNA

mutational bias from G/C to A/T in Caenorhabditis elegans

(Konrad et al. 2017) and an excess of nonsynonymous G to A

mutations in Drosophila melanogaster (Haag-Liautard et al.

2008). The DNA base composition was analyzed in the

codons for the 281 amino acid sites, which have an amino

acid difference between F and M. The counts for A, C, G, T

were compared in 4� 2 tables between F and M within each

species and between F and M within each environment cat-

egory for SolAcc, Hmamide, and HmCO within each species.

The count distributions appear similar for the F and M

genomes and not a single a priori significant result at

P� 0.05 was obtained out of 28 separate tests.

The numbers of radical amino acid changes between the F

and M proteins were summed over the four species and over

the nine properties of Taylor (1986). A total of 191 of the 501

sites show such radical differences between F and M in one or

more species. These are mapped onto a view of the 1V54

structure in figure 2D. Sites showing radical amino acid differ-

ences are scattered throughout the protein, consistent with

the evidence (previous section) that many amino acids con-

tribute to the category differences.

In a study of Drosophila cytochrome oxidase, which also

took advantage of the known bovine structure, Melvin et al.

FIG. 5.—Contribution of individual amino acids to property differences. Relative contributions of individual amino acids to the average F�M value

of False and True for three structural environments for the 281 site data set. Amino acids are sorted in the first column by chemical group indicated with color

fill: Aliphatic (G, A, V, L, I, P), Sulphur containing (M, C), Aromatic (F, Y, W), Aliphatic hydroxyl (S, T), Acidic (D, E), Basic (R, K, H), Amide derivatives of acids (N,

Q). Column headers: category (Fa¼ False, Tr¼ True), amino acid property group (A, B, C, Kid2, Kid7), genome (F, M). Under each Fa and Tr header the left

column indicates the F protein, the right column the M protein (see supplementary table S10B, Supplementary Material online). Color fill indicates those

amino acids that make the largest quantitative contribution to, and in the same direction as, the category mean values: red, highest contribution; salmon,

second highest; light salmon, third highest. The final four columns for each environment give the amino acid frequencies (counts): Color fill, higher to lower

frequencies.
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(2008) used alteration of physical and chemical properties or

change in a contact site with another subunit as evidence of a

likely change in cytochrome oxidase activity. Six of nine ob-

served amino acid mutations were concluded to have poten-

tially changed activity. By this approach, some of the many

radical amino acid differences observed here between the F

and M COI proteins may be of functional significance. A clas-

sification of the residues in 1V54 was made using information

derived from its NCBI entry taking account of the study of

Tsukihara et al. (2003). This identifies residues functionally

important in the catalytic mechanism, as well as mtDNA-

encoded subunit interface residues (i.e., COI with COII and

COIII) and COI with nuclear DNA–encoded subunit interfaces.

Subunit interface residues are mapped onto 1V54 in figure

2E. Seventy-one out of 76 interface sites occur near the sur-

face of the protein, and of these 30 showed radical amino

acid differences. The three mitochondrial coded subunits play

an important catalytic function in the complex. They are reg-

ulated by their own redox state (Allen 2015) as well as being

regulated by the nuclear encoded subunits (Ludwig et al.

2001). Studies of Ka/Ks ratios may throw light on whether

selection and constraint differ between different types of

interfaces perhaps to optimize interactions between residues

coded by the mtDNA and nuclear genomes, but a consistent

picture has not yet emerged (Schmidt et al. 2001; Aledo et al.

2014). In this study, no consistent differences are found com-

paring F and M COI proteins in the value of Ka/Ks between

mtDNA–mtDNA and mtDNA–nuclear DNA interfaces.

Following the approach used for comparing between struc-

tural environment categories (table 4A), no significant differ-

ences were observed in F�M for property values for

hydrophobicity or helicity between the two types of interface

sites, or between interface and noninterface sites.

The functionally important residues are mapped onto 1V54

in figure 2F. For those F and M COI sites aligning with the

residues functionally important in the catalytic mechanism of

1V54 (31 identified here), the Ka/Ks ratio between F and M is

0.004 indicating high conservation as expected of such sites.

Twenty-three of these 31 are buried within the COI protein

(SolAcc False), and of these only one showed an amino acid

difference between F and M and then in only one species. The

bivalve sequences as targets were also modelled on the 1V54

structure as template using Modeller (Sali and Blundell 1993;

Webb and Sali 2014) and the models and 1V54 structure

superimposed in Chimera (Pettersen et al. 2004; see supple-

mentary methods S2, Supplementary Material online, for fur-

ther information). This allows the calculation of the distances

of specific residues in the bivalve models from functional res-

idues in 1V54. Following the approach used for table 4A, no

significant differences were observed in F�M for property

values for hydrophobicity and helicity between bivalve model

sites closer to and further away than either 2 or 4 Å from the

1V54 functionally important sites shown in figure 2F. Further

focus was thus on the substitutions between alanine (A) and

serine (S), which are found to play a relatively large quantita-

tive role in the amino acid property differences between the F

and M proteins (fig. 5). The 13 AS and 7 SA substitutions

together with the functional important 1V54 residues alone

are made visible in figure 2F. The substitutions are scattered

throughout the protein but many are close to functional sites

(e.g., within 5 Å). There is a preponderance of such substitu-

tions within the more hydrophobic regions of the protein

(SolAcc False, Hmamide/HmCO True). In silico analysis using

the program NetPhos (Blom et al. 1999) suggested that 13 of

the 20 substitutions had serine residues, which had potential

to be phosphorylated with associated potential kinase

binding sites.

Discussion

The amino acid properties considered here differ signifi-

cantly in value between the categories of structural envi-

ronments representing different regions of the protein

(table 2). For environments Hmamide and HmCO, the cat-

egories contrast the more hydrophilic regions associated

with the matrix and intermembrane space (False) with the

region within the membrane (True) (figs. 2A and 4). For

SolAcc, the contrast is between external regions (True)

and buried regions (False) (figs. 2B and 4). The calculated

difference between F and M proteins (F�M) is frequently

significantly different from zero in individual categories

(table 4A), and the value of F�M itself differs between

categories consistently across species (fig. 3A). When the

property changes are broken down into deviations of F

and M from the ancestor (M�A and F�A, fig. 1E), greater

change in the absolute value is observed for the M protein

and the category False (tables 4A and 5, fig. 3B). In addi-

tion, although some amino acids make a relatively large

contribution to the variation (e.g., alanine and serine)

many other amino acids have small individual effects but

which sum to a large value overall (fig. 5 and supplemen-

tary table S10, Supplementary Material online).

Category differences are to a great extent concordant in

the four species studied (fig. 3A, table 3, supplementary table

S7, Supplementary Material online). The absolute values of

False and True also differ concordantly (fig. 3BII–IV). The ab-

solute value of deviation from the ancestor is also greater for

the M than F COI protein in all four species (fig. 3BI). The

concordant changes give confidence that there may be

shared causes occurring in parallel in the four species. One

possible shared parallel cause of faster evolution of the COI M

protein could be a higher mutation rate in the M genome

resulting from oxidative damage in sperm or a higher number

of mitotic divisions in the male germ line (Zouros 2013). This is

consistent with some evolutionary studies of F and M genome

sequences in Mytilus (Quesada et al. 1998), though Stewart

et al. (1996) found no evidence of faster synonymous substi-

tution in the M genome.
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The changes in hydrophobicity and helicity, particularly in

the M protein (tables 4 and 5, fig. 4) can be considered from a

functional viewpoint. In anthropoid primates, Schmidt et al.

(2005) found relatively many charged to uncharged amino

acid substitutions in COI at the cytochrome c binding site

on the intermembrane side of the protein. It was proposed

that these would increase hydrophobicity and affect electron

transfer from cytochrome c to COI. It was further proposed

that this might be an adaptive change to reduce and hinder

OXPHOS activity and consequent free radical damage in the

brain, which uses a relatively large amount of oxygen in the

anthropoids. In a comparison of COI between marine and

freshwater copepods, McClellan (2013) found 11 radical

amino acid changes consistent with a decrease in hydropho-

bicity around the proton input channel and possibly a less

energetically expensive route for proton transfer during adap-

tation to freshwater. By analogy to these studies, the changes

in hydrophobicity and helicity in the M protein (fig. 4) might

have functional consequences as a result of effects on the

movement of protons, electrons, or water molecules or alter-

ation of the mitochondrial membrane potential. This could in

turn affect ATP production by ATP synthase. Sperm uses ATP

for movement, the acrosome reaction, and a variety of met-

abolic functions (Visconti 2012). Thus, reduction in ATP out-

put could have negative consequences for sperm carrying the

M genome. In humans, there is evidence that mtDNA muta-

tions reducing ATP production may cause reduced sperm mo-

tility (Ruiz-Pesini et al. 2000). Conversely higher ATP

production might lead to increased swimming speed or en-

durance, which in turn may lead to higher chance of success-

ful fertilization. Changes in helicity might also have impact on

protein stability because of requirements associated with hy-

drogen bonding (Pace et al. 2014). Proteins can only tolerate

small changes in conformation operating under conditions of

marginal stability, which may be of advantage in evolution

(Taverna and Goldstein 2002). However, because of the

effects of stability loss in a structure that is already marginally

stable, a large proportion of missense mutations in proteins

are likely to affect function (Tokuriki and Tawfik 2009). Thus,

the decrease in helicity in buried residues (fig. 4C, SolAcc

False) may have consequences for M COI protein stability

and thence function.

Relaxation of selective constraint and purifying selection

with increased genetic drift and fixation of nearly neutral

mutations (Ohta 1992) as the cause of the changes in amino

acid property values in the M protein would be consistent

with the observed directional changes in property values.

The False and True categories (see fig. 2A and B) have ances-

tral physicochemical differences reflected in their overall prop-

erty values (table 4C). The changes in the M protein tend to be

such as to decrease these differences with a difference in sign

of M�A for both the False and True categories (tables 4A and

5). For example, the regions of the M protein that are less

hydrophobic in the ancestor evolve to become more

hydrophobic, the less helical regions tend to become more

helical, and the more helical regions tend to become less he-

lical (fig. 4). Given that the maintenance of these differences is

important for normal functioning, their erosion by fixation of

nearly neutral mutations would be expected to affect function

adversely, altering mitochondrial membrane potential and

ATP production with consequent biological effects, for exam-

ple, a reduction in sperm performance. Other studies also

indicate faster evolution of the M genome as a result of lower

functional constraint and less purifying selection (Stewart

et al. 1996; Zouros 2013). A contributory factor may be a

lower effective population size for the M than F genome,

for example, due to a narrower bottleneck of mtDNA copy

number in sperm (Stewart et al. 1996) compared with eggs.

There is no evidence however that the M genome is nonfunc-

tional. In sperm of R. philippinarum, one of the species used

here, there is experimental evidence for the existence of mem-

brane potential consistent with OXPHOS activity (Milani and

Ghiselli 2015). The M genome is abundant in somatic tissues

of R. philippinarum (Ghiselli et al. 2011) and transcriptionally

active in male tissues (Milani et al. 2014). The M genome is

also expressed in male but less so in female tissues of Mytilus

species (Dalziel and Stewart 2002; Obata et al. 2011). It has

been suggested that selective constraint may be lower in the

M genome because it functions in fewer tissues (Stewart et al.

1996; Zouros 2013), but the relative influences of selective

pressures in different tissues are unknown.

Given the importance of mitochondrial function in gonads

and sperm of these broadcast spawning species (Ghiselli et al.

2013; Zouros 2013), parallel positive selection, for example,

toward improved sperm performance through enhanced ATP

production, can also be considered as a cause of the changes

in amino acid property values. The associated high membrane

potential could also be used as a signal for preferential parti-

tioning of sperm-derived mitochondria into the primordial

germ cells in males of DUI species (Milani 2015). However,

in this study the Ka/Ks ratio is less than 1 for comparisons

between F and M proteins and a site-specific analysis with

HyPhy provides no evidence of positive selection. This is con-

sistent with evidence of high conservation of the COI protein

in general across eukaryotes (Pierron et al. 2012) and in

bivalves specifically (Plazzi et al. 2016), though meta-

analyses have revealed examples of positive selection in al-

most all mtDNA-encoded proteins (Garvin et al. 2015;

James et al. 2016). Consideration could also be given to the

possibility that the positive selection acts at linked regions in

the mtDNA molecule (genetic draft or hitchhiking), which

may be highly prevalent in mtDNA (Bazin et al. 2006). Such

an explanation would require that positive selection in an-

other mtDNA-encoded protein would cause the same parallel

amino acid property changes between F and M COI proteins

in all four of the studied species. In the F COI protein, the

changes in property values away from the ancestral values

tend to increase the difference between False and True
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categories. For example, for SolAcc the category False com-

prises buried residues in a highly helical region and the F pro-

tein shows an increase of helicity in this region (fig. 4C). The

changes are small in magnitude, but are difficult to explain by

relaxation of selection and drift, and are more in line with an

adaptive change enhancing the function of the F protein. The

difference in sign of F�M in the False and True categories

(tables 4A and 5) is consistent with the absence of differences

between the F and M protein overall (supplementary table S5,

Supplementary Material online). This could reflect compensa-

tory evolution (Ivankov et al. 2014) with stabilizing selection

maintaining the overall F�M property value within a tolerable

range and deleterious mutations in one category being bal-

anced by advantageous mutations in the other category.

Individual amino acid substitutions may also have a

context-dependent functional influence on the catalytic

mechanism. Because the radical differences between F and

M are scattered throughout the protein (fig. 2D), many fulfil a

criterion for potential influence, being close to functionally

important sites (Schmidt et al. 2005; Melvin et al. 2008).

Many of these substitutions involve alanine and serine, which

play a relatively large quantitative role in the amino acid prop-

erty differences between the F and M COI proteins (fig. 5).

Serine residues occur quite frequently in functional centers

because the OH side chain group can form hydrogen bonds

with other residues or substrates. In a study of different iso-

lates of the nematode C. elegans, Dingley et al. (2014) dis-

covered a single A to S substitution in COI, which had a

significant effect on cytochrome oxidase activity with other

phenotypic consequences. The serine was close to the binding

site for a kinase known to affect mitochondrial membrane

potential and ATP synthase. In this study, the in silico analysis

also suggested potential for serine phosphorylation.

Phosphorylation of enzymes involved in OXPHOS may play

an important role in its regulation (Acin-Perez et al. 2009).

Tyrosine phosphorylation by kinases is involved in sperm ca-

pacitation and the acrosome reaction (Naz and Rajesh 2004).

Thus, this frequently occurring substitution may be a good

potential candidate in the search for functional effects.

Chapman et al. (2008) evaluated physicochemical proper-

ties in a specific extension of the M genome COII protein in

unionoidean bivalves, and although purifying selection was

dominant, the properties helical contact area and partial spe-

cific amino acid volume showed evidence of positive selection.

Similarly, relaxation of selection and drift and positive selec-

tion might together be combined in an integrated explanation

of the change in the M COI protein. Residues in the external

regions of proteins are generally less conserved than buried

sites in the core or important functional residues (Toth-

Petroczy and Tawfik 2011), and the distribution of selection

coefficients for mtDNA shows a peak at near neutrality but

with many values greater or less than zero (Tamuri et al.

2012). Thus, given a lower effective population size in males

(Stewart et al. 1996), the many substitutions in the external

regions of the protein associated with the category differen-

ces (table 4A and fig. 4) might have smaller selection coeffi-

cients, some decreasing and some increasing amino acid

properties, and be nearly neutral. Their fixation by drift would

degrade the variation in hydrophobicity between the different

regions of the M protein and adversely affect function. A

consequent strong selective pressure to maintain membrane

potential and ATP production could result in compensating

adaptive substitutions with larger selection coefficients in the

slower evolving protein core, such as those involving alanine

and serine, to enhance the catalytic mechanism. This could

involve an additive effect on fitness of the spatially separated

sites or involve epistatic interactions, which are generally as-

sumed to be widespread in protein evolution (Starr and

Thornton 2016). Examples of studies providing approaches

to mechanistic understanding of such interactions are the

analysis of compensatory interactions between mutations

around a heme pocket in the protein CY51 affecting resis-

tance to azoles (Mullins et al. 2011) or the analysis of the

restoration of channel activity involving allosteric interaction

between extra-membrane and transmembrane domains in

viruses (To et al. 2017).

Apart from phylogenetic and molecular evolution

approaches, a variety of experimental techniques are available

for investigating the functional and biological effects of ge-

netic variation in cytochrome oxidase, and some of these may

be applicable in the analysis of F and M genome proteins in

future. Mutations in COI are known to cause genetic condi-

tions in humans (Zhen et al. 2015) or affect cytochrome ox-

idase activity in mouse cells (Acin-Perez et al. 2003).

Performance of mtDNA genomes can be compared on the

same or different nuclear backgrounds in cell cybrids (Kenyon

and Moraes 1997) or in whole organisms obtained by back-

crossing (Dingley et al. 2014). Such techniques are difficult at

present in bivalves that are more difficult to breed in the lab-

oratory. However measurements of swimming speed on

sperm carrying different mtDNA genomes have been made

in M. edulis (Everett et al. 2004; Jha et al. 2008) and this could

be pursued in the species studied here, with the hypotheses of

relaxed versus positive selection having different predictions

on performance of F and M carrying sperm. Many spectro-

photometric and cyto-histochemical methods are available for

measuring cytochrome oxidase activity in isolated mitochon-

dria, cells or tissue sections (Lanza and Nair 2009) and which

can be extended with the use of cytochrome oxidase inhib-

itors (Pacelli et al. 2011). Techniques are also available for

measuring ATP production directly or making accurate meas-

urements of respiration in mitochondria or cells (Lanza and

Nair 2009; TeSlaa and Teitell 2014). Such approaches seem

more feasible for bivalves. Experimental techniques could be

supplemented with molecular modelling to identify novel res-

idue interactions or structural changes (Mullins et al. 2011; To

et al. 2017) or with molecular dynamics simulations which

have been used to study cytochrome oxidase function
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(Arnarez et al. 2013), and identify water exit pathways in

bovine cytochrome oxidase (Sugitani and Stuchebrukhov

2009).

In future, mtDNA will be sequenced in many other species

with DUI, and it could be possible to extend the use of metrics

in the place of amino acid codes as in this study to test more

refined hypotheses on regional variation in the protein com-

bined with the diverse experimental and simulation techni-

ques outlined above. If the F and M COI proteins are

structurally and functionally different, it will be important to

investigate how the different proteins maintain the same pri-

mary function (OXPHOS) while adapting to different cellular

environments (e.g., spermatozoon and egg). In this study, the

changes in amino acid property values in the F and M COI

proteins are frequently different in sign and direction within

categories (rows e and g, table 5 and fig. 4). This could sug-

gest an interaction due to physical proximity of the two pro-

teins and their genomes, so that evolution in one direction in

the F protein favors compensatory adaptive evolution in the

opposite direction in the M protein to conserve some as yet

unidentified property or function. This proximity could occur

most readily in males with DUI, perhaps in the fertilized egg,

or in heteroplasmic mitochondria. The natural coexistence of

two diverged mtDNAs in the same organism in DUI also opens

new areas of investigation into mito-nuclear interactions and

co-evolution, for example, of proteins involved in fertilization

and sex determination and identified through genomics and

proteomics (Ghiselli et al. 2012; Diz et al 2013). This could be

through interactions with different alleles of the same nuclear

genes in different tissues, in accordance with growing evi-

dence of tissue- and environment-specific modulation of

intraindividual mito-nuclear interactions in animals (Wolff

et al. 2014).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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