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ABSTRACT: Diverging from traditional target inhibition, proteasomal protein degradation approaches have emerged as novel
therapeutic modalities that embody distinct pharmacological profiles and can access previously undrugged targets. Small molecule
degraders have the potential to catalytically destroy target proteins at substoichiometric concentrations, thus lowering administered
doses and extending pharmacological effects. With this mechanistic premise, research efforts have advanced the development of
small molecule degraders that benefit from stable and increased affinity ternary complexes. However, a holistic framework that
evaluates different degradation modes from a catalytic perspective, including focusing on kinetically favored degradation
mechanisms, is lacking. In this Outlook, we introduce the concept of an induced cooperativity spectrum as a unifying framework to
mechanistically understand catalytic degradation profiles. This framework is bolstered by key examples of published molecular
degraders extending from molecular glues to bivalent degraders. Critically, we discuss remaining challenges and future opportunities
in drug discovery to rationally design and phenotypically screen for efficient degraders.

I. INTRODUCTION
Cellular processes are governed by both subcellular compart-
mentalization and molecular recognition. These molecular
interactions in turn provide a template to convey information
as cues that can impact signaling, biosynthesis, and degradation
pathways in live cells. Quantifying kinetic and thermodynamic
contributions inherent to these cooperative interactions is
essential to gain a deeper biological understanding and unlock
novel biology.1 Despite remarkable biological complexity,
hijacking and reprogramming these molecular recognition
patterns with chemically induced proximity (CIP) approaches
has been exploited to understand biological mechanisms and
leverage this knowledge to identify novel therapeutics.2−4 In
particular, proteasomal protein degradation has recently
emerged as a privileged therapeutic strategy that enables the
selective destruction of a protein of interest (POI) by
reprogramming proteostasis machinery.5,6

Productive proteasomal degradation relies on coordinated
steps that include (1) the recognition of POI and formation of
a ternary complex; (2, 3) charging and modification of POI
with ubiquitin (Ub); (4) polyubiquitination of POI; and (5)
release of poly-Ub POI followed by proteasomal destruction

(Figure 1a). This defined catalytic cycle has been efficient and
selectively commandeered by different modalities. Many recent
reviews provide detailed accounts on the identification and
development of proteolysis targeting chimeras, known as
PROTACs, as well as molecular glues.7−9 At first glance, both
degrader entities can showcase different energy landscapes and
degradation profiles (Figure 1b,c). However, the distinction
between bivalent degraders and molecular glues has blurred
over the last several years into a conceptual continuum,10,11 as
researchers build up molecular glues to affect the degradation
profile while conversely trimming down PROTACs to
optimize degradation and improve pharmacokinetic (PK)
properties. As new degradation mechanisms are discovered, the
detailed characterization of highly dynamic ternary complexes
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and corresponding catalytic implications will enable an
improved mechanistic understanding and selection of oppor-
tunities for future investment.
With exponential growth in targeted protein degradation

reports across academic and industry research,12 we believe
that this area presents a novel opportunity to employ concepts
from catalysis (chemical catalysis, enzymology, and pharmacol-
ogy) that enable the development of innovative chemical
probes and medicines. Here, we introduce the concept of
induced cooperativity to provide a framework by which
molecular glues and monovalent and bivalent degraders
exemplify a spectrum of degradation mechanisms. In Section
II, we highlight key examples from the literature with a focus
on leveraging the importance of kinetics to pursue privileged
ternary complexes and inform future degrader design. Section
III weaves these catalytic considerations into cellular contexts
to capitalize on cellular screening technologies and identify
improved starting points to develop efficient degraders. In this
Outlook, we use a catalysis lens to help contextualize
opportunities and tackle challenges in order to enable the
future discovery and development of efficient degraders.

II. INDUCED COOPERATIVITY AND PURSUIT OF
PRIVILEGED TERNARY COMPLEXES FOR
PROTEASOMAL DEGRADATION

Induced cooperativity through proximal recruitment of
artificial protein−protein interactions (PPIs) is essential for
effective catalysis to take place in a protein degradation
paradigm. A fundamental understanding of the kinetic and
thermodynamic parameters that contribute to cooperativity
can inform on the degrader design and optimization process.
As a result, this understanding could drive efficient protein
degradation and expedite the identification of key chemical
matter through rational drug design and tailored screening
approaches. To conceptualize the induced cooperativity
spectrum, we can think of how small molecule degraders can
toggle through both cooperativity and binary affinity axes
(Figure 2a). In the leftmost side of the spectrum, a molecular
glue theoretically may not have any detectable binary affinity
toward either protein surface by itself but forms a highly
cooperative ternary complex. Conversely, at the rightmost end
of the spectrum, a bivalent degrader can exhibit a maximum

Figure 1. (A) The catalytic cycle for proteasomal protein degradation can be hijacked by unnatural degrader entities. This catalytic cycle is
orchestrated by multiple enzymes, where the CUL4A-DDB1-CRBN complex is illustrated here. Sequence of events including (1) ternary complex
formation, (2) charging Ub by E2 recruitment, (3) Ub transfer, (4) Ub chain extension, and (5) release of poly-Ub from the ternary complex are
required for proteasomal degradation. (B, C) Molecular degraders exhibit different energy landscapes, which ultimately impact the degradation
profile and saturability for degrader dose−response curves. Energy diagrams represent reaction coordinates for a single molecular degradation
event, whereby the formation of binary complexes is omitted for clarity. The pharmacological degradation profile describes the average population
of molecular degraders with corresponding equilibria that can be empirically measured.
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binary affinity toward either POI or E3 ligase, with negative
cooperativity arising from steric clashes within the ternary
complex. To support these notions, we discuss selected
examples of empirically discovered protein degraders and key
considerations for ternary complexes across the induced
cooperativity spectrum.

In less than two decades, researchers have advanced
PROTACs from basic science to the clinic, where a handful
of molecules have entered phase I trials.13 PROTACs typically
feature an E3 ubiquitin ligase recruiting end, a linker, and a
ligand for the POI (Figure 2b). Colocalization of the E3 ligase
complex with a protein of interest can lead to productive
polyubiquitination and proteasomal degradation. This ap-
proach, however, is not without several challenges including
extensive medicinal chemistry to identify suitable E3 ligase
recruiters and optimized linkers that afford bifunctional small
molecules with improved cell permeability and efficient
degradation. To access robust protein degradation, these
challenges can be addressed by a careful balance of target
binding potency, cellular permeability, and judicious choice of

E3 ligase for a successful ubiquitination outcome. Beyond
cellular degradation, developing efficient degraders also
requires tackling unique hurdles to achieve the in vivo
pharmacological phenotype with improved pharmacodynamics
(PD) and PK.14 However, this drug discovery phase can be
prohibitively long, and guidelines for accessing the desired
degradation profile remain largely empirical.5

To highlight a single target class, kinase inhibitors have
provided a ripe entry point to develop bivalent degraders
against a highly characterized kinome with corresponding
chemical ligandability.15,16 Several reports have demonstrated
that degraders based on pan-kinase inhibitors could exhibit an
exquisite degradation selectivity of a single kinase, which was
unprecedented for the parent kinase ligand.17−19 Furthermore,
Crews and co-workers developed a selective degrader for the
p38-gamma isoform of the MAPK family by linking a foretinib
warhead to a VHL recruiter.19 Collectively, these studies
demonstrated that key design elements such as the E3 ligase
recruiter and linker composition were required to achieve the
desired target selectivity and degradation. However, these
efforts also revealed that target engagement alone was
insufficient to result in protein degradation. For this reason,
significant work in the protein degradation field has gravitated
toward identifying key determinants required for the
productive formation of a ternary complex that lead to
efficient degradation.
The recombinant expression of ternary complex components

has facilitated the evaluation of the binding affinity of
degraders to both POI and E3 ligase, as well as the
determination of cooperativity (α value). Isothermal calorim-

Figure 2. The induced cooperativity spectrum encompasses multiple degrader entities. (A) Theoretical ends of the induced cooperativity spectrum
are flanked by molecular glues (left) and bivalent degraders (right). This spectrum can be further dissected into contributions arising from
cooperativity (α value) and binary affinity for either POI or E3 Ub ligase recruiter, or a combination thereof. Selected degrader examples are
described based on cooperativity values reported or estimated from experimental data from indicated references. (B) Chemical structures for small
molecule degraders from part A, with bivalent warheads corresponding to the POI recruiter in teal and E3 ligase in purple.

Induced cooperativity through
proximal recruitment of artificial
protein−protein interactions
(PPIs) is essential for effective

catalysis to take place in a protein
degradation paradigm.
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etry (ITC), fluorescence polarization (FP), size exclusion
chromatography (SEC), and luminescent proximity assay (i.e.,
aLISA) are among popular techniques that allow the
measurement of these thermodynamic parameters under
steady state conditions.20 In addition to the recent under-
standing emerging from crystal structures,21 these biophysical
methods have helped define interactions at the protein−
protein interface that can display both cooperative behavior
and recently appreciated plasticity. Notably, bivalent degrader
design can capitalize on protein−protein interactions (i.e.,
BRD4-VHL,22 BRD4-CRBN,23 BTK-CRBN24) to develop
more efficient degraders that can also benefit from cooperative
behavior (Figure 2b). This work was followed up by the
cyclization of the MZ1 degrader to produce macroPROTAC-1,
where Ciulli and co-workers demonstrated that reducing
entropic cost can increase cooperativity and maintain cellular
degradation efficiency.25 Harnessing cooperativity within
ternary complexes can also have a positive impact in
minimizing the hook effect from catalysis and safety
perspectives.26,27 In addition to routine ternary complex
characterization, prospective mathematical models such as
three-body equilibria can also inform iterative degrader
design.28−30 Furthermore, more recent in silico methods can
also guide the prioritization of degraders as well as linker
design that benefit from increased protein surface comple-
mentarity to reduce the time for exploring structure−activity
relationships (SARs).24,31−33 Combining experimental and
modeling approaches to prioritize stable ternary complexes
has been productive11 but may also bias discovery of degraders
toward molecules that primarily access static and long-lived
populations. Thus, opportunities where sufficiently fast protein
degradation occurs, such that a small fraction of ternary
complex is present, could go unrecognized.

In contrast to the notion that stable ternary complexes can
enhance degradation efficiency, Pfizer scientists found that
increased rigidity and stability may negatively impact BTK
degradation mediated by the recruitment of cIAP1.34 With a
suite of biochemical, biophysical, and structural studies, they
showed that in solution ensembles can lead to ternary complex
conformations with different degradation profiles upon
bivalent degrader recruitment, perhaps stemming from rigid-
ification of the degrader linker or intrinsic rigidity of the
ternary complex, or a combination of both.34 In this scenario,
visualizing high-stability ternary complexes from an energy
landscape perspective can illustrate the steep activation
requirement for productive degradation (Figure 3a). In line
with recognizing unique attributes of a given ternary complex,
Donovan et al. conducted a tour de force effort to map the
degradable kinome and answer fundamental questions
regarding kinase tractability and degradability. Interestingly,
this comprehensive study revealed (1) that high potency
binders can be ineffective starting points for degraders, (2) that
degradation efficiency is not predicted by the formation of
stable ternary complexes, and (3) that catalytic degradation

can result from transient and unstable ternary complexes
(degrader example depicted as a reaction coordinate in Figure
3b).35 Both collective works highlighted above point out
considerations for overstabilizing ternary complexes as well as
opportunities to exploit degradation outcomes based on
dynamic yet productive ternary complexes. Furthermore,
plasticity in ternary complexes has been previously appreciated
for bivalent degraders22,23 as well as next-generation
immunophilins that engage a malleable FKBP12 surface.36

Therefore, a mechanistic understanding of dynamic protein
complexes with refined methods as well as the role of
privileged conformations and populations could provide
untapped opportunities in protein degradation workflows.37,38

Beyond target selectivity and interprotein contacts, the
premise of event-driven pharmacology, where a substoichio-
metric amount of a small molecule catalytically degrades POI,
is a unique pharmacological attribute of degradation
mechanisms. Indeed, Bondeson et al. demonstrated that
bivalent degraders at substoichiometric concentrations can
catalyze ubiquitination rates in vitro.39 The catalytic degrada-
tion of long-half-life proteins, such as AKT40 and RIPK2,41 has
demonstrated profound and prolonged PD. Furthermore,
electrophilic molecules can facilitate protein degradation at
fractional E3 ligase (i.e., DCAF16) occupancy42 and with
nanomolar doses,43 both viable strategies for the longer
durability of POI removal. Reactivity profiling to engage
nucleophilic residues has enabled the discovery and develop-
ment of novel covalent warheads to pursue previously
inaccessible E3 ligases.44−46 Using a covalent warhead to
reprogram substrate recognition by a modified E3 ligase is an
elegant strategy to enhance both selectivity and catalysis of
degradation. Indeed, Nomura and co-workers achieved
selective disruption of RNF114-substrate recognition with a
nimbolide warhead thereby accessing the desired efficacy and
on-target mechanism of action (MOA).43 Covalent degraders
could also have the unique potential to address unresolved
challenges of improved physicochemical properties and PD/
PK relationships.46

Despite productive strides to harness thermodynamic
cooperative interactions, fewer efforts have intentionally
pursued kinetically driven ternary complexes that could
address the hook effect, overly stable ternary complexes, and
lack of catalysis. To do this successfully, a mechanistic
understanding of kinetic parameters and enzymology of the
protein degradation cycle is imperative.47 Biophysical methods,
including surface plasma resonance (SPR) and biolayer
interferometry (BLI), are better positioned to qualify kinetic
parameters and have been utilized to inform bivalent degrader
design.34,48 Complementary to measuring koff/kon rates and
dissociation half-lives, native mass spectrometry can provide
additional granularity of ternary complex formation and
intermediate conformational states in a single label-free
experiment.49 Future approaches to further explore degrada-
tion opportunities may require an in-depth kinetic analysis of
protein complexes as those used for dynamic transcription
factors,37 which microfluidics and single molecule studies may
also be well positioned to address.50 Drawing from enzymology
principles, a deeper appreciation and mechanistic under-
standing of energetics for protein ensembles could provide
new avenues for protein degradation paradigms.51−54 Produc-
tive integration of these molecular contributions will continue
to refine kinetic degradation models and translational frame-
works to successfully develop bivalent degraders.30,55

Thus, opportunities where suffi-
ciently fast protein degradation
occurs, such that a small fraction
of ternary complex is present,

could go unrecognized.
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Following the induced cooperativity spectrum, monovalent
degraders offer a distinct degradation profile from bivalent
degraders.56 A recent emergence in identifying monomeric
degraders may be a result of both improved MOA
deconvolution frameworks for molecules of a desired
phenotype and more sensitive detection methods. These
degraders can offer distinct physicochemical properties from
bivalent counterparts with improved solubility and cell
permeability, which are critical for selecting the dose and
route of administration.56 Often serendipitously discovered,
molecular perturbagens modulating B-cell lymphoma protein 6
(Bcl6), an oncogenic transcription factor, are great examples of
how small changes in chemical structure can induce target
inhibition or degradation.57,58 Recently, Ebert, Fischer, and co-
workers unraveled the molecular MOA of BI-3802 (Figure 2b),
a monomeric degrader that initially triggers the polymerization
of Bcl6, followed by entrapment in cellular foci and, finally,
destruction by the proteasome.59 Notably, a bivalent degrader
derived from a structurally different Bcl6 inhibitor was not
superior to the parent warhead and exhibited mild anti-
proliferative properties.60 This latter study raises important
considerations when repurposing inhibitor warheads as
degrader starting points, specifically, untangling mechanistic
contributions of target inhibition from degradation to
understand cellular phenotypes. Collectively, Bcl6 inhibition
and degradation studies exemplify the need for rigorous MOA
deconvolution for chemical matter of interest with an eye
toward target dynamics that are governed by kinetic and
thermodynamic processes.
Harnessing an occupancy-driven mechanism, PPI stabilizers,

such as cyclosporin A, FK-506, and rapamycin, benefit from
stable ternary complexes for driving immunosuppressive
pharmacology.61 Conversely, event-driven pharmacology
could advantageously exploit conditions where ternary
complex formation is transient. Thus, kinetically processing
this intermediate could lead to rapid and selective degradation

of the protein substrate. The immunomodulatory (IMiD)
drugs demonstrate this principle and will also be considered
through the lens of the induced cooperativity spectrum. Often
identified by empirical methods, molecular glues can create a
neomorphic surface that can, in turn, selectively engage
neosubstrates and funnel them for proteasomal degradation.8

This surface programmability has enabled drug discovery
efforts to hone selectivity further for bespoke neosubstrates by
diversifying chemical scaffolds of IMiDs.10 Remarkably, CRBN
has been exploited as a privileged E3 ligase that can recognize
structural degrons from over 100 Zn finger substrates.62−64

Moreover, this programmed complementarity has recently
been exploited to modulate CAR-T cell activity.65,66 On the
other hand, anticancer drugs with an arylsulfonamide scaffold
(e.g., indisulam, Figure 2b) engaging DCAF15 also serve as
molecular glues but only engage a handful of targets, as crystal
structures have revealed a highly conserved peptide sequence
in degradable neosubstrates.7,67−69 In a prospective effort to
leverage structure-based drug design, scientists at Nurix
Therapeutics were able to mimic a native phosphoepitope in
β-catenin as a molecular glue that enhances association with
SCFβ‑TrCP, its cognate E3 ligase, to afford successful
proteasomal degradation.70 Similarly to bivalent degraders,
the development of molecular glues requires a long discovery
phase with extensive medicinal chemistry campaigns and
remains empirical.
As our structural understanding of matching the POI and E3

ligase continues to improve, the SAR cycle time to develop
degraders that stabilize ternary complex formation and reduce
entropic cost will also shorten. However, with this approach,
biased attention is concentrated on an early step of the
catalytic degradation cycle, which may not be the rate-limiting
step for all degradation mechanisms across the induced
cooperativity spectrum. Furthermore, we may not uncover
novel starting points to kinetically alter the degradome of a
ligand. Going forward, ligand screening platforms that could be

Figure 3. Energy landscapes for specific examples where stable ternary complex formation leads to inefficient degradation (A), and unstable
complexes can lead to productive degradation (B). Chemical structures of degraders BCPyr and SK-3-91 are color-coded by POI ligand, linker
(black), and E3 ligase.
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adapted to select for catalytic degraders and provide new
footholds for challenging targets will be important. In the next
section, we focus on intrinsic attributes from the cellular milieu
that can affect catalytic degradation and how those can be
leveraged to identify efficient degraders.

III. CELLULAR CONTEXT IS CRITICAL TO FINDING
EFFICIENT DEGRADERS

When considering degrader catalytic efficiency in live cells, any
biological factor that decreases saturation could diminish
efficient degradation. Of potential factors, global protein
abundance levels of POI or E3 ligase may not correlate with
efficient degradation, perhaps in part due to a smaller labile or
degradable pool.35 In addition to expression levels, inter-
rogating relevant cellular contexts that recapitulate key biology
is far more important. From a historical research perspective
spanning the past decade, dissecting thalidomide’s toxicity
mechanism epitomizes the necessity to thoroughly examine the
molecular MOA of degraders in different cellular contexts.
After the initial discovery of CRBN engagement in zebrafish,71

multiple neosubstrates have been identified,10 of which SALL4
degradation phenocopies have observed teratogenicity.72,73

Furthermore, our understanding of ligandable and recruitable
E3 ubiquitin ligases has significantly expanded along with
degradable neosubstrates.74,75 Leading this front, carefully
defined phenotypic screens present unique advantages to
discover and develop E3 ligase modulators.76 With growing
multiomic data sets generated from cellular, preclinical, and
clinical studies, future targeted protein degradation efforts
could leverage systems biology approaches to nominate
degradation hypotheses with greater confidence.77,78 In
practice, the success of such strategies will be highly dependent
on the available cellular and chemical tools to validate them.

Within recent years, several cellular technologies have
emerged as valuable tools to interrogate protein degradation
in live cells. Chemical genetic approaches such as the
HaloPROTACs79 and dTAG platform80 have democratized
access to visualize the degradation of your favorite POI in lieu
of available small molecule ligands, including orphan cell
surface transporters.81 Genetic tools such as haloTag and GFP
fusions have enabled the early assessment of Ub ligase
compatibility,82 while biodegraders have enabled swift
scanning of POI degradation fitness for a number of E3
ligases83 and targeting specific conformational states of KRas.84

Collectively, these technologies offer a diverse menu to select
tractable degrader starting points in live cells.
In order to drive SAR optimization of degraders, low- to

high-throughput quantitative methods are routinely used.85 Of
these methods, luminescence-based workflows developed by
Promega surfaced as very powerful tools to kinetically
characterize protein degradation events.86 In these experi-
ments, POIs can be labeled with HiBiT tags at endogenous
levels to interrogate competing biosynthesis and degradation
rates.87 Furthermore, the portability of HiBiT constructs helps

paint a crisp picture by reporting on specific events of the
catalytic degradation cycle: cytosolic access, target engage-
ment, ternary complex formation, Ub transfer, and proteasome
processing.86 Of note, deconvolution of TL12-186, a pan-
kinase PROTAC, illuminated the mechanistic profile with the
required selectivity and temporal resolution to identify
degradation of POI subpopulations.88 Collectively, these
reports showcase that a detailed mechanistic understanding
of degradation profiles for bivalent degraders can be achieved
in relevant cellular contexts. Given the breadth and depth
afforded by HiBiT tagging, this approach is also well
positioned to characterize and exploit kinetically favored
degradation mechanisms across the induced cooperativity
spectrum.
In contrast to bivalent degraders, the prospective identi-

fication of privileged small molecule degraders remains
challenging. In this context, functional genomic screens have
unveiled degradation dependencies that accelerate the
identification of novel molecular glues. For example, three
independent studies identified distinct chemical scaffolds that
stabilize DDB1-CDK12 interaction and thus lead to the
enhanced degradation of Cyclin K, a CDK12 interactor.89−91

These findings represent a novel mechanism by which a
molecular glue can induce POI degradation by a distant PPI
rather than directly reprogramming the POI-E3 interface.
Phenotypic screens that capitalize on degradation nodes, such
as hyponeddylated cells,89 or exploit cancer vulnerabilities92−94

are elegant strategies to discover and enhance the druggability
of novel degrader biology in relevant cellular contexts. Notably,
Koduri et al. devised a creative screening strategy for novel
IKZF1 degraders, which led to the identification of Spautin-1, a
novel molecular glue that does not require CRBN, and
subsequently deployed this strategy to uncover CDK2’s role in
regulating the abundance of the oncogenic transcription factor
ASCL1 pertinent to small cell lung cancers.93 Additionally,
genetic screens have also provided early insights into potential
resistance mechanisms emerging from multiple proteasomal
degrader modalities.92,94,95 This collection of studies has
embraced the tractability of genetic screens and translatability
of phenotypic approaches to intentionally identify novel
molecular glues and deconvolute underlying mechanisms of
proteasomal degradation. Therefore, functional genomics will
continue to play an important role in deconstructing desired
phenotypes in relevant cellular contexts.
Finally, the complexity of the ubiquitin proteasome system

(UPS) should not go unrecognized. As the understanding of
proteostasis machinery accumulates across cellular environ-
ments, we will have a better appreciation for the intricacies of
Ub code,74,96 redundancies of 600 Ub ligases,97 or lack thereof,
regulation of CRL4 network dynamics,98 and protein turnover
rates.99 Going forward, the identification of underlying
mechanisms that amplify POI destruction upon degrader
recruitment, such as potentiating proteasomal flux100 or
enhancing Ub-chain elaboration,101 can unlock unique
synergies to complement degrader approaches. Equally
exciting, the degradation of disease-relevant protein aggre-
gates102 and polymerized Bcl659 have already shifted naiv̈e
perceptions on processing and unfolding activities by the
proteasome. Consequently, converging the elucidation of
degradation mechanisms with compelling cellular contexts
presents bright prospects to access therapeutically relevant
human biology with catalytically efficient molecules.

When considering degrader cat-
alytic efficiency in live cells, any
biological factor that decreases
saturation could diminish effi-

cient degradation.
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IV. CONCLUSIONS AND OUTLOOK
Capitalizing on catalytic considerations for the induced
cooperativity spectrum can advance future degrader discovery
campaigns. Importantly, exploiting kinetically privileged
protein degradation and leveraging phenotypically relevant
cellular contexts present untapped opportunities. Of broader
significance, the concept of using catalytic molecules to
kinetically control cellular processes extends beyond the area
of proteasomal degradation, including pioneering studies
where novel modalities can hijack autophagy and lysosomal
recycling mechanisms.103−105 Theoretically, any cellular
process can be modulated with an approach that colocalizes
cellular machinery to a target of interest, where applying
induced cooperativity principles is critical. Though the vast
majority of examples to date have focused in targeted protein
degradation, early results for controlling both installation and
removal of posttranslational modifications, like phosphoryla-
tion106,107 and glycosylation,108,109 have also been reported. In
the pursuit of innovative chemical tools and medicines, the
growth and success of this budding field could be significantly
advanced by experimental workflows leveraged by catalysis
researchers. We hope that this Outlook contextualizes the
opportunities and challenges for this field under the lens of
catalysis and brings forward new ideas that will ultimately
benefit patients.
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