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Malaria is a major international public health problem that affects millions of patients
worldwide especially in sub-Saharan Africa. Although many tests have been developed to
diagnose malaria infections, we still lack reliable diagnostic biomarkers for the identification
of disease severity, especially in endemic areas where the diagnosis of cerebral malaria is
very difficult and requires the exclusion of all other possible causes. Previous host and
pathogen transcriptomic studies have not yielded homogenous results that can be
harnessed into a reliable diagnostic tool. Here we utilized a multi-cohort analysis
approach using machine-learning algorithms to identify blood gene signatures that can
distinguish severe and cerebral malaria from moderate and non-cerebral cases. Using a
Regularized Random Forest model, we identified 28-gene and 32-gene signatures that
can reliably distinguish severe and cerebral malaria, respectively. We tested the specificity
of both signatures against other common infectious diseases to ensure the signatures
reliability and suitability as diagnostic markers. The severe and cerebral malaria gene-
signatures were further integrated through k-top scoring pairs classifiers into ten and nine
gene pairs that could distinguish severe and cerebral malaria, respectively. These
signatures have various implications that can be utilized as blood diagnostic tools for
malaria severity in endemic countries.

Keywords: malaria, cerebral malaria, Plasmodium falciparum, gene-signature, immune response, multi-cohort
analysis, transcriptomics, point-of-care
INTRODUCTION

Malaria is an important vector-transmitted infectious disease that affect millions of patients
worldwide especially in sub-Saharan Africa, with an estimated new 228 million cases and
405,000 deaths in 2018 alone (World Malaria Report, 2019). Despite the decreasing number of
new patients, a result of multinational efforts, and various advancements in diagnosis and treatment
options, it is still a large burden especially on the countries most affected.

The disease is caused by the infection of human erythrocytes with protozoa of the genus
Plasmodium, where P. falciparum is by far the most relevant (White et al., 2014). P. falciparum
infection can lead to many several severe complications such as respiratory distress, hypoglycemia,
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metabolic acidosis, and severe anemia (Trampuz et al., 2003).
Cerebral malaria is one of the most severe complications
especially in children, and can lead to long-term neurological
effects and higher mortality rate (Hora et al., 2016).

Although many diagnostic tests have been developed for the
identification and screening of malaria infections (McMorrow
et al., 2011), and some clinical signs such as retinopathy are
hypothesized to be associated with severe and cerebral malaria
(Beare et al., 2006), we still lack a reliable diagnostic biomarker
for the identification of disease severity. In disease-endemic
regions, cerebral malaria is an exclusion diagnosis (Idro et al.,
2005) where patients with other etiologies such as viral
encepha lopathy may happen to addi t iona l ly have
asymptomatic parasitemia (Taylor et al., 2004). More sensitive
diagnostic and prognostic tools are required to enable rapid
identification of severe and cerebral malaria to ensure adequate
therapeutic response, which would improve disease outcome
(Mwangi et al., 2005; Vinnemeier et al., 2012).

Many transcriptomic studies have tried to elucidate
characteristic features of the host immune response to malaria
infection and subsequently define promising candidates for
biomarker development and treatment. However, studies with
large sample numbers are rare, and the platform and design
heterogeneity of the studies performed so far have made it
difficult to define uniform biomarkers (Hodgson et al., 2019).
A practical approach to harness the potential of these studies
while overcoming the various heterogeneities caused by study
specific methods, is using multi-cohort analysis to compensate
for these study-specific biases and to increase the analysis
sensitivity by incorporating many samples analyzed in these
studies. In this way it is possible to distinguish the most
relevant features of the tested phenotype (Haynes et al., 2016).

This approach has been successful in harnessing the
advantage of using various gene-expression studies towards
identification of reliable biomarkers and novel gene signatures
for various diseases such as bacterial (Sweeney et al., 2016; Badr
et al., 2021) and viral infections (Barral-Arca et al., 2020; Li et al.,
2020) and elucidate novel molecular mechanisms responsible for
infectious and autoimmune diseases’ development (Badr and
Häcker, 2019; Zhong et al., 2020).

Here we implemented a multi-cohort analysis using machine-
learning algorithms to identify gene signatures from the whole
blood and PBMC of malaria patients that we find capable of
distinguishing cerebral and severe cases from mild malaria as
well as from infections with other agents.
MATERIALS AND METHODS

Collection of Gene Expression Data
Collection of the meta-analysis data was carried out by searching
public expression databases (NCBI GEO and Array Express)
(accessed September 2020). For the GEO query, we used the
following search terms: “Plasmodium”, “malaria”, and the filters
(organism (Homo sapiens)), study type (expression profiling by
array), entry type (Dataset/Series)). The Array Express query was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
executed using the following search terms: Plasmodium”,
“malaria”, and the filters (organism (Homo sapiens)),
experiment type (array assay). Initially 89 entries from GEO
and 34 entries from Array Express were retrieved. Duplicates and
irrelevant studies were excluded, and 19 studies remained and
were further refined using the inclusion criteria (below) to
identify the final nine studies included in our analysis. We
included only studies that had analyzed gene expression in
whole blood, PBMC or blood cell components but excluded
studies using other tissues, ex vivo experiments, and cell line
infection models. The database-search followed the Preferred
Reporting Items of Systematic reviews and Meta-Analyses
(PRISMA) statement and is documented in the PRISMA Flow
Diagram (Supplementary File 1). Only datasets with available
raw data were included. After a thorough search and excluding
datasets as specified above, nine datasets with 417 samples were
selected for further analysis.

Data Pre-Processing and Normalization
We removed samples taken from healthy controls keeping 318
patient samples, which were further included in the downstream
analysis. We ensured that all datasets were normalized and log-
scaled before analysis. Since our analysis includes datasets from
experiments with different technologies, we further Z-
transformed the gene expression of each dataset separately to
ensure that all datasets are on the same scale. The nine datasets
were combined in a single metadata based on a subset of
common genes (2578 genes) and samples were labeled as
severe or non-severe and cerebral or non-cerebral using the
phenotype information provided in each dataset. In terms of
malaria severity, samples without available annotation were
labeled as severe if they have one or more of the following: a)
cerebral malaria; b) severe anemia; c) hyperparasitemia). These
criteria are based on the World Health Organization (WHO)
criteria for the diagnosis of severe malaria infection (World
Health Organization, 2000). Subsequently, we divided the data
into 70% training and 30% testing using balanced stratification
ensuring that both divisions have a similar representation of the
important covariates including age, sex, WBC count, and the
original dataset. Finally, the training and testing data were
quantile-normalized separately (Supplementary Figures 1, 2).

Identification of the Gene Signatures
To identify parsimonious gene signatures of both severe and
cerebral malaria, we performed a feature selecting process using
regularized random forest (RRF) models (Deng and Runger,
2012; Deng and Runger, 2013) on the training data. RRF is
similar to random forest but returns a subset of non-redundant
features by penalizing the features used for node splitting if their
information gain is similar to features used at previous splits.
Since the selected features might depend on the specific data used
to build the model, we bootstrapped the training data 100 times
and built a RRF model on each one. We hypothesized that
consistently selected features would be important to the
phenotype under study, so we included those selected at least
five times in the final models. These consistently selected features
were then used to train standard RF models on the training data
October 2021 | Volume 11 | Article 743616
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and the number of variables randomly sampled for splitting at
each tree node (mtry) was selected using the “tuneRF” function.
This whole process was performed for both phenotypes to
identify two small subsets of genes that can distinguish severe
from non-severe and cerebral from non-cerebral malaria.

Independent Evaluation of Performance
We evaluated both signatures on the unseen testing data using
different performance metrics including the area under the ROC
curve (AUC) and the area under the precision recall curve
(AUPRC). To compute the ROC and PRC curves together with
the AUC values, we used the predicted class probabilities
(ranging from 0 to 1) returned by the RF model together with
the true class labels (Fawcett, 2006). These probabilities were
transformed to binary classes (severe vs non-severe and cerebral
vs non-cerebral) using the default cutoff (0.5). The predicted
classes were compared with the true labels to calculate the other
metrics including the accuracy, sensitivity, and specificity.
Notably, since these metrics can be misleading especially in the
case of unbalanced datasets (Bekkar et al., 2013; Wald and
Bestwick, 2014), MCC was used as an additional metric to
assess the signatures performance (Matthews, 1975) since it
takes into account the class unbalance. MCC can be
interpreted as the correlation between the class predictions and
the true labels with values ranging from -1 (worst prediction) to 1
(best prediction) (Chicco et al., 2021).

To examine whether the severe malaria signature can capture
some of the molecular changes induced by malaria in non-blood
tissues, we applied the signature to a dataset of 20 placental
samples (GSE7586), ten of which have placental malaria (PM)
and the other ten are from controls. Eight samples have signs of
placental inflammation, seven with and one without PM. The
signature was used to distinguish PM-positive from PM-negative
samples and to distinguish samples with inflammation from
inflammation-free samples.

Specificity of the Signatures
Since many infectious diseases may induce similar, non-specific
molecular changes in the blood, we proceeded to test the
specificity of the two malaria signatures. For this purpose, we
used the signatures to classify dengue fever (DF) versus healthy
controls and DF versus severe dengue (dengue hemorrhagic fever
(DHF) and dengue shock syndrome (DSS)) in blood samples
from six different datasets (GSE51808, GSE96656, GSE25001,
GSE18090, GSE17924, and GSE13053). We used DF to test the
specificity of our signatures since malaria and DF have a similar
geographical distribution, both are mosquito-transmitted, and
both share several immunopathogenic features (Arias et al., 2014;
Mendonça et al., 2015). Similarly, we used the malaria signatures
to distinguish pulmonary or extra-pulmonary tuberculosis (TB)
from healthy control in blood samples from four datasets
(GSE19444, GSE73408, GSE62525, and GSE83456) and
meningitis from healthy controls using blood samples from
two datasets (GSE80496 and GSE40586). Finally, the signatures
were also tested in six other datasets (GSE40396, GSE42026,
GSE6269, GSE63990, GSE39940, and GSE46681) with samples
from multiple viral and bacterial infections including TB,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
HIV, West Nile virus, Influenza, RSV, Streptococcus
pneumoniae, Escherichia coli, and Staphylococcus aureus. The
characteristics of the non-malaria datasets are shown in
Supplementary Table 1.

Improving the Interpretability of the
Signatures
Since interpretability of the gene signatures is essential for their
potential clinical uses, we proceeded to test if we can simplify the
decision rules of the two malaria signatures. For this purpose, we
divided the genes comprising the signatures into two sets of up-
and down-regulated genes. These were subsequently used to
build gene pairs with each pair consisting of an up-regulated and
another down-regulated gene. We used the resulting gene pairs
to build K-Top Scoring Pairs (K-TSPs) models with the target of
identifying a subset of gene pairs that can separate severe from
non-severe and cerebral from non-cerebral malaria. The K-TSPs
is a rank-based classification method that selects gene pairs (K)
whose expression levels consistently switch their ranking
between the two classes of interest (Geman et al., 2004). Each
pair votes for one class based on the relative ordering of the two
genes and the final prediction is simply determined by the sum
of votes.

Software and Packages
We used R programming language (version 4.0.2) for initial
processing and analysis of dataset. The datasets were accessed
from the NCBI GEO database using the GEOquery R package.
The feature selection processes were performed using the RRF
package (Deng and Runger, 2012) and the random forest models
were constructed using the RandomForest package (Liaw and
Wiener, 2002). Visualization and clustering of the samples were
done using PCA and heatmap methods implemented in the R
packages pcaMethods, pheatmap, ClustVis, and ggplot2.
RESULTS

Data Acquisition
From the initial datasets acquired by searching public databases,
nine matched our predetermined inclusion criteria (see
methods). The datasets included samples from 99 healthy
controls and 318 malaria patients, from which 137 were
asymptomatic or had mild malaria, 51 severe non-cerebral and
130 cerebral malaria. The data summary of the included datasets
is shown in Table 1.

Discovery of gene Signatures of Severe
and Cerebral Malaria
For severe malaria, we used a bootstrap process to identify 28
genes that were frequently selected (≥ 5%) by the RRF model.
The 28 genes include: IDH1, ZNF148, SF3B1, TBCD, HDAC5,
STK17B, TRA2A, LIFR, ORC2, CHAF1A, DNALI1, CREM,
PLXNA2, SLC25A40, MAP2K7, TBC1D2B, XDH, MBTD1,
CBX5, PAPPA2, ATP5G3, CNOT7, SCML1, ADAP2, SLC38A2,
ZCCHC2, AGPAT3, and USP48 (Figure 1). Using the same
October 2021 | Volume 11 | Article 743616
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methodology for cerebral malaria, we identified 32 genes that
could distinguish cerebral from non-cerebral malaria including:
TRIP12, PUM2, MYH11, SETX, ANK2, RABEP1, ELF2, MORC2,
CD53, ZNF197, MAP3K13, KRIT1, PGR, EPHA4, USP34, THRB,
ATP5G3, OGT, DGKQ, XRCC5, LARP4, SCN2B, CDH8,
SPATS2L, KPNA6, VPS13B, PPP6R3, MREG, TTC17,
CHRNA10, ASB7, and C18orf8 (Figure 1).

PCA and heatmap plots of the 318 samples for the 59 gene
expressiondataareshowninSupplementaryFigures3,4respectively.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Evaluation of the Identified Signatures
When evaluated on the unseen testing dataset, both the severe
and cerebral malaria signatures showed a good performance. The
severe malaria signature was able to distinguish severe from non-
severe malaria in the testing dataset with an AUC of 0.85,
sensitivity of 0.91, specificity of 0.62, and MCC of 0.54
(Figure 2A). Similarly, the cerebral malaria signature could
distinguish cerebral from non-cerebral malaria with an AUC of
0.98, sensitivity of 0.89, specificity of 0.93, and MCC of 0.81 in
TABLE 1 | Summary of the datasets integrated in the meta-analysis pipeline for prediction and validation of the gene signature.

Dataset Platform Tissue
type

Healthy
controls

Asymptomatic and mild
malaria

Severe non-cerebral
malaria

Cerebral
malaria

Reference PMID

GSE1124 GPL96 whole
blood

5 10 5 5 Boldt et al., 2019 30638864

GSE1124 GPL97 whole
blood

5 8 5 4 Boldt et al., 2019 30638864

GSE117613 GPL10558 Whole
Blood

12 – 17 17 Nallandhigha et al., 2019 30060095

GSE35858 GPL15240 whole-
blood

8 9 20 – NA NA

GSE34404 GPL10558 whole-
blood

61 52 42 – Idaghdour et al., 2012 22949651

GSE116306 GPL16699 PBMC – 6 4 6 NA NA
GSE119150 GPL15207 whole-

blood
6 3 3 – NA NA

GSE16463 GPL6102 PBMC 2 4 – – Tantibhedhyangkul et al.,
2011

21610853

GSE72058 GPL6244 whole
Blood

– – – 98 26884431

Total number 99 92 96 130
Octob
er 2021 | Volume 11 | Arti
Note that samples from healthy controls were excluded from analysis.
PBMC, peripheral blood mononuclear cells; NA, not available.
FIGURE 1 | Selection frequency of the genes in the severe (left) and cerebral (right) malaria signatures. Regularized random forest models were run on 100 bootstraps
of the training data to select the important features. Features were ordered based on the selection frequency and those frequently selected (≥ 5%) were kept.
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the testing dataset (Figure 2B). See Table 2 for complete
performance. Additionally, the severe malaria signature was
able to distinguish PM from non-PM samples and samples with
inflammation from those without inflammation with AUCs of 0.70
and 0.76, respectively (see Supplementary Figure 5).
Signature Specificity and Comparison With
Other Infectious Diseases
To examine the specificity of the signatures, we applied them to
different datasets of other infectious diseases (Supplementary
Table 1). The signatures were used to distinguish DF from
healthy controls and complicated DF (DHF, DSS) from
uncomplicated DF. In all DF datasets, the severe malaria
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
signature performed poorly with AUCs ranging from 0.37 to
0.64 (Figure 3) while the cerebral signature had a relatively better
performance with AUCs ranging from 0.30 to 0.92
(Supplementary Figure 6). Both signatures also failed to
distinguish primary pulmonary and extra-pulmonary TB from
healthy controls in four different datasets with AUCs ranging
from 0.32 to 0.566 and 0.15 to 0.65 for the severe and cerebral
signatures, respectively (Supplementary Figures 7 and 8).
Similarly, the signatures were also applied to six different
datasets comprising multiple viral and bacterial infections in
which they also failed to distinguish infected from non-infected
samples (Supplementary Figures 9 and 10). Surprisingly, the
severe malaria signature (Supplementary Figure 11) had a much
better performance in distinguishing meningitis from healthy
TABLE 2 | Complete performance of the severe and cerebral malaria signatures in the testing data.

Performance metric Severe malaria signature Cerebral malaria signature

AUC 0.85 0.98
Accuracy 0.84 0.91
Balanced accuracy 0.76 0.91
Sensitivity 0.91 0.89
Specificity 0.62 0.93
PPV 0.90 0.94
NPV 0.65 0.87
MCC 0.54 0.81
October 2021
AUC, Area Under the ROC Curve; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient.
A1 B1

A2 B2

FIGURE 2 | Performance of the severe and cerebral malaria signatures in the independent testing dataset. The performance of the 28-genes severe malaria
signature (left) and 32-genes cerebral malaria signature (right) on the independent testing dataset. Upper and lower panels show the receiver operating characteristic
(ROC) (A1, B1) and precision-recall (PRC) curves (A2, B2), respectively. AUC, area under the ROC curve; AUPRC, area under the PRC curve.
| Volume 11 | Article 743616
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controls in blood samples compared with the cerebral malaria
signature (Supplementary Figure 12).

Simplifying the Signatures
We proceeded to improve the interpretability of the two malaria
signatures to improve their clinical utility. The genes comprising
each signature were divided into up- and down-regulated genes
based on their mean expression in severe vs non-severe and
cerebral vs non-cerebral samples (see Supplementary Tables 2
and 3). A total of 14 up-regulated and 9 down-regulated genes
showed a big difference in their mean expression in cerebral
versus non-cerebral malaria and were subsequently used to build
a list of 126 gene pairs. Similarly, the up- and down-regulated
genes in the severe malaria signature were used to build a list of
192 pairs. Those gene pairs were fed to a K-TSPs classifier to
select the top pairs relative to the phenotype being predicted.

The severe malaria K-TSPs model identified ten gene pairs
capable of differentiating severe from non-severe malaria
including: SLC38A2-SCML1, SLC25A40-MAP2K7, DNALI1-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
AGPAT3, LIFR-TBCD, STK17B-ORC2, SF3B1-USP48,
ZNF148-ZCCHC2, CBX5-CHAF1A, CNOT7-PLXNA2, and
CREM-IDH1. When evaluated on the unseen testing data, the
signature showed a good performance with an AUC of 0.68,
accuracy of 0.66, sensitivity of 0.64, specificity of 0.71, and MCC
of 0.30 (Figure 4A). Similarly, the K-TSPs model for cerebral
malaria identified nine gene pairs including: TTC17-C18orf8,
PUM2-ASB7, RABEP1-MYH11, SETX-SPATS2L, XRCC5-
TRIP12, ELF2-CHRNA10, LARP4-ANK2, MREG-KPNA6, and
ZNF197-CD53. Those nine pairs distinguished cerebral from
non-cerebral malaria in the testing data with an AUC of 0.79,
accuracy of 0.73, sensitivity of 0.78, specificity of 0.67, and MCC
of 0.45 showing a similar performance to the one obtained by the
RF model but with better interpretability owing to its simple
decision rules (Figure 4B).

For both signatures, each pair votes for a particular class
based on the relative ordering of the two genes and the final
prediction is determined by the sum of votes. Thresholds of five
and four votes were used for the severe and cerebral malaria
A

B D

E

F

C

FIGURE 3 | Performance of the severe malaria signature in the dengue fever datasets. ROC curves showing the performance of the severe malaria signature at
distinguishing DF from healthy controls (A–C) and uncomplicated DF from complicated DF (dengue hemorrhagic fever and dengue shock syndrome) (D–F). DF,
Dengue fever; AUC, area under the ROC curve.
October 2021 | Volume 11 | Article 743616
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K-TSPs signatures, respectively. In that sense, for malaria severity,
samples with ≥ 5 votes would be classified as severe malaria and
for the cerebral phenotype, a sample with ≥ 4 votes would be
classified as cerebral malaria. Heatmaps of the TSPs votes in the
testing data are shown in (Supplementary Figures 13 and 14).
DISCUSSION

Malaria is one of the main world public health problems, which
tops the WHO priority list and remains one of the top causes of
death in many low-income countries (World malaria report
2019). New approaches to rapidly diagnose severely affected
patients are essential to combat its high mortality rate. The
available diagnostic tools lack a reliable and accessible measure to
distinguish severe and cerebral malaria from mild cases,
especially in high endemicity areas, where the identification of
other infections can be confused with malaria asymptomatic
parasitemia. Previous postmortem autopsies of fetal cerebral
malaria cases indicated that the misdiagnosis of cerebral
malaria could reach as high as 23% (Taylor et al., 2004). In our
study, we demonstrate two blood gene signatures that can
identify severe and cerebral malaria patients.

To select the most relevant genes able to classify disease status
in our cohort, we implemented a multi-step analysis, where we
combined a data-preprocessing pipeline to ensure reliable
integration of samples from different datasets and used a two-
step genomics classification model to select the most important
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
features. For the first selection, we used regularized random
forests (RRF) techniques, which offer a modification to standard
random forest models by introducing a limitation to features
used for splitting the trees, meaning that new features are added
only when they offer a predictive value superior to those used in
previous splits, which ensures choosing the most relevant
features to the model accuracy (Ancuceanu et al., 2020).

We identified 28-gene and 32-gene signatures that can reliably
distinguish severe and cerebral malaria with an AUC of 0.85 and
0.98, and sensitivity of 0.91 and 0.89, respectively. The high
performance of these signatures in the malaria datasets without
cross-reacting with other infectious diseases makes them suitable
candidates for new diagnostic platforms for malaria severity.

These signatures provide a substantial improvement to
previously detected host-gene signatures that were mainly
focused on distinguishing acute malaria from healthy patients
(Griffiths et al., 2005), or harbor too many genes to be
implemented in a diagnostic tool (Nallandhighal et al., 2019).

Our multi-cohort approach could detect many genes that may
have been missed in individual study analysis. ATP5G3, which
was downregulated in the two malaria signatures, plays a part in
energy metabolism and energy production. Its downregulation in
both types of disease can indicate an infection-induced
mitochondrial injury, which can lead to reduced energy
production, reducing the capacity of immune cells to stop the
infection (Lobet et al., 2015).

Several immunological aspects have been associated with the
development of severe and cerebral malaria in comparison with
mild cases such as the levels of tumor necrosis factor (TNF)
A B

FIGURE 4 | Performance of the K-TSPs severe and cerebral malaria signatures. (A) the performance of the severe malaria 10-TSPs model at distinguishing severe
from non-severe malaria. (B) the performance of the cerebral malaria 9-TSPs model at distinguishing cerebral from non-cerebral malaria. Shown are the ROC curves
in the training (red) and testing (green) data. The set of genes comprising each signature was divided into up- and down-regulated genes and used to build a K-top
scoring pairs (K-TSPs) model with improved interpretability. AUC: area under the ROC curve.
October 2021 | Volume 11 | Article 743616
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(Grau et al., 2010), although TNF-dependent regulation of the
immune response is essential in various infectious diseases such
as cerebral tuberculosis (Francisco et al., 2015). In our cerebral
malaria signature, we see that the immune-cell specific
tetraspanin CD53, which is downregulated in cerebral patients,
can be a better marker for cerebral disease status, as it also
belongs to one of the gene pairs in the K-TSPs analysis, and was
shown to be down-regulated during neutrophil activation with
TNF (Mollinedo et al., 1998). Furthermore, CD53 plays an
important role in the adaptive immune response, especially in
B cell activation and differentiation (Dunlock, 2020), and its
deficiency is associated with recurrent infections (Mollinedo
et al., 1997). Moreover, its expression is preserved between
blood and brain tissue highlighting its importance as a
diagnostic biomarker for cerebral malaria (Cai et al., 2010).

Most genes in the two signatures have not been previously
reported to be associated with the severity of malaria infection
but some play a role in other infectious diseases. Isocitrate
Dehydrogenase (NADP(+)) 1 (IDH1) is one of the genes we
identified as down-regulated in severe malaria has also been
found to be associated with HIV infection. Specifically, Chinn
et al. reported that SNPs in IDH1 were significantly associated
with HIV infection, three of which were found in transcription
factors binding sites (Chinn et al., 2010). Similarly, CNOT7 and
ADAP2, both down-regulated in severe malaria, were previously
reported to have a protective role during viral infections (Shu
et al., 2015; Chalabi Hagkarim et al., 2018). Of the up-regulated
genes in severe malaria, TRA2A was found to promote human
influenza A virus replication by inhibiting the splicing of the NS
segment of its mRNA (Zhu et al., 2020). CREM was found to play
a role in T cell exhaustion by reducing IL-2 production (Maine
et al., 2016) and its expression is increased in mice infected with
Entamoeba histolytica (Wojcik et al., 2018).

The cerebral malaria signature consists of 19 up-regulated
and 13 down-regulated genes. The Pumilio protein PUM2, which
is up-regulated in cerebral malaria patients, plays a role in the
regulation of RIG-I signaling, which is essential for pathogen
detection (Narita et al., 2014). XRCC5, the gene encoding the
KU80 protein, which plays a role in the repair of DNA double-
strand breaks (Grabsch et al., 2006), is up-regulated in cerebral
patients in comparison with non-cerebral ones. This indicates a
DNA-damage response by the host in response to cerebral
malaria infection that may explain some of the long-term
effects of cerebral malaria such as neurocognitive defects seen
in survivors (Schiess et al., 2020). Both Senataxin (SETX) and
MORC Family CW-Type Zinc Finger 2 (MORC2) are associated
with a number of neurological disorders including cerebellar
ataxia (Coutelier et al., 2018) and Charcot-Marie-Tooth disease
(CMT) (Sevilla et al., 2016), however, SETX was also found to
decrease the expression of anti-viral genes like INF-b delaying
the infection resolution (Miller et al., 2015). EPH Receptor A4
(EPHA4) and other Eph receptors are known to be up-regulated
after neuronal injury (Goldshmit et al., 2006). Although the role
of EPHA4 has not been explored in malaria, it was proposed as a
blood mRNA biomarker for tuberculosis (de Araujo et al., 2016).
O-Linked N-Acetylglucosamine (GlcNAc) Transferase (OGT)
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was found to promote influenza A virus replication and
cytokine production (Wang et al., 2020) and its overexpression
has been linked to hepatitis C virus (HCV) infectivity and HCV-
induced hepatocellular carcinoma (Herzog et al., 2020).

Gene expression markers have been gaining increased
attention for their suitability in point-of-care testing tools, to
arrive at a precise and certain diagnosis of complicated
infectious diseases. In daily practice it is important to
distinguish bacterial from viral infections (Herberg et al., 2016;
Gómez-Carballa et al., 2019), but in the same way malaria has to
be differentiated from other severe diseases. To improve the
clinical utility of both signatures, we enhanced their
interpretability using a gene-pair system (K-TSPs) that can be
easily integrated in a point-of-care molecular based test with
various nucleotide amplification techniques. The K-TSPs uses a
simple classification mechanism which selects a set of features that
consistently switch their ranking between the two classes of
interest and subsequently uses these features to construct gene
pairs (Tan et al., 2005). Each pair votes for one class based on the
relative ordering of the two genes, and the final prediction is
determined by the sum of votes given by all the pairs in the final
classifier. Using this approach, we managed to simplify the severe
and cerebral malaria signatures into ten and nine gene pairs that
can still accurately distinguish severe from non-severe and cerebral
from non-cerebral malaria, respectively. Since this classification
mechanism depends solely on the relative ranking of genes rather
than the absolute expression values, it is very flexible and can be
implemented through different platforms like RT-PCR.

Notably, our study has some limitations. First, while our
signatures have been tested on independent datasets, there is still
need to further validate their performance in large patient
cohorts using RT-PCR or other testing platforms. Secondly,
given the fact that malaria is geographically prevalent in low-
income countries with limited infrastructure, any diagnostic tests
should be low-cost and feasible (Gallup and Sachs, 2001).
Achieving this would require extensive collaboration between
researchers, physicians, industry personnel and other entities to
design and validate a prototype based on these signatures that
can be used as a point-of-care diagnostic test in malaria-endemic
regions. With this in mind, we spent special effort on
transforming the RF-based signatures into interpretable ones
with simple rank-based decision rules using the K-TSPs
algorithm. This feature makes both signatures platform-
friendly and would expedite their clinical use.

In conclusion, we identify two gene signatures capable of
detecting severe and cerebral malaria infections. To the best of
our knowledge, this is the first study to implement RRF and K-TSP
algorithms coupled with multi-cohort analysis to identify gene
signatures capable of distinguishing cerebral and severe malaria
patients. While it is clear that these signatures have to be further
validated in prospectively curated large cohorts, especially inmalaria
endemic areas, they at this stage propose the basis for the first
diagnostic assay for predicting malaria disease severity and
distinguishing cerebral malaria from other causes of encephalitis.

Our study demonstrates the power of exploiting heterogenic
datasets through multi-cohort analysis and rigorous preprocessing
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and data cleaning approaches in guiding new molecular studies
and disease biomarker discoveries. These signatures can play a role
in closing a fundamental gap in the efforts to decrease the disease
burden and to combat disease mortality.
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