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Abstract: Background: Epstein–Barr virus (EBV) infection is strongly associated with multiple
sclerosis (MS). Helminth infection can downregulate antiviral immune responses, potentially
protecting against MS, but with a theoretical risk for reactivating latent EBV infection. Objective:
To investigate parameters of EBV infection and their relationship with disease activity in people with
MS (PwMS) therapeutically vaccinated with Necator americanus (hookworm). Methods: Sequential
serum samples from 51 PwMS; 26 therapeutically infected (25 larvae) with N. americanus and 25
controls were tested for EBV virus capsid antigen (VCA) IgG and IgM, EBV nuclear antigen-1 (EBNA-1)
IgG, and EBV early antigen (EA) IgG. Disease activity was assessed by periodic MRI. Significance
was set at p < 0.05. Results: All PwMS were EBV VCA IgG and EBNA-1 IgG positive, and 35.2%
were EBV EA IgG positive. EBV antibody levels were generally stable, and EBV reactivation in
PwMS was not demonstrated by significant increases in IgG titre over 12 months. Disease activity
was most frequent in PwMS possessing high levels of EBV VCA IgG (>600 units/mL) or EBNA-1
IgG (>150 units/mL); however, there was no association with hookworm treatment. Interpretation:
Therapeutic hookworm vaccination was not associated with EBV reactivation. Multiple sclerosis
disease activity was associated with high levels of EBV VCA IgG or EBNA-1 IgG.
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1. Introduction

The hookworms Necator americanus and Ancylostoma duodenale are nematode roundworms which
belong to a larger group of helminth multicellular worms that also include cestode tapeworms and
trematode flukes. In hookworm infection, free-living larvae directly penetrate the skin and in the
case of N. americanus, infecting larvae migrate via the lungs, before attachment and maturation in
the gastrointestinal tract. Hookworm infestation is prevalent in countries of Asia, South America
and sub-Saharan Africa and is associated with poverty [1,2]. Infection is usually asymptomatic;
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however, heavy worm loads can trigger intestinal blood loss, leading to iron-deficiency anaemia [3].
Immunologically, helminth infection promotes an anti-inflammatory response by promotion of Th2
immune pathways, stimulation of T and B regulatory cell population activities and the suppression of
Th1/Th17 effector responses [4].

An inverse correlation between the distribution of hookworm infestation and the prevalence of
allergic and autoimmune diseases has been observed [5]. In the case of multiple sclerosis (MS) [6],
an inflammatory demyelinating disease of the central nervous system (CNS), a threshold of helminth
prevalence in excess of 10% is associated with a steep decline in the prevalence of disease [7]. Animal
models and human studies have both provided evidence supporting an immunomodulatory effect of
helminth infection on several autoimmune conditions including the relapsing and remitting form of
MS [8]. In view of these associations, there has been considerable interest in the application of helminth
therapy for the treatment of multiple sclerosis and several small-scale studies have been reported [8,9].

The risk of adverse virological consequences following suppression of the antiviral Th1 response
in hookworm-treated MS patients remains to be established. In animal studies, it has been reported
that helminth infection can inhibit antiviral immunity via a pathway of innate immunomodulation [10]
and that latent murine gammaherpesvirus infection can be reactivated [11]. Epstein–Barr virus
(Human gammaherpesvirus 4-EBV) belongs to the family Herpesviridae, subfamily Gammaherpesvirinae
and, following primary infection, establishes latency in human B lymphocytes [12]. Latency is a
phenomenon characteristic of all human herpesviruses in which the virus genome persists within
selected cells with limited gene expression in a non-replicative state virtually hidden from the host
immune response [13]. Under certain conditions, the virus can switch (reactivate) to a replicative/lytic
state, revealing itself to the host immune response. The expression of specific virus proteins is
associated with EBV latency (e.g., Epstein–Barr nuclear antigen-EBNA-1) or reactivation/active
infection (early antigen-EA and/or virus capsid antigen-VCA). Detection of antibodies to these proteins
is used to stage EBV infection as recent/active, or past, or reactivation [14]. Infection with Epstein–Barr
virus (EBV) is linked to the development of MS [15] and there have been reports of EBV reactivation
with disease activity [16,17]. High levels of EBV antibody markers (EBV VCA IgG and EBNA-1 IgG)
have also been reported to be associated with increased disease activity in cases of clinically isolated
syndrome (CIS) [18] and in PwMS [19].

The Nottingham Worms for Immune Regulation in Multiple Sclerosis (WIRMS) study [20]
commenced on 2012 and was a randomized, double-blinded, placebo-controlled clinical trial in which
35 patients were infected with 25 larvae of Necator americanus and 36 were given placebo. Samples
collected from this study afforded the opportunity to measure selected EBV antibody levels over
a period of 12 months, enabling the impact of hookworm therapy on EBV reactivation and other
parameters to be assessed. The results of these investigations are described in this study.

2. Methods

2.1. Study Design and Participants

Serum samples from people with multiple sclerosis (PwMS) were collected over 12 months as
part of the WIRMS (Worms for Immune Regulation in MS) trial (NCT 01470521), which was conducted
at the Department of Clinical Neurology, University of Nottingham, Nottingham, UK. Appropriate
ethical approvals (National Research Ethics Service Committee East Midlands; reference 11/EM/0140)
were obtained and all patients provided written informed consent to participate in this study. In this
study, which commenced during 2012, 35 PwMS were treated with the hookworm N. americanus
(25 larvae applied cutaneously per patient) and 36 PwMS received placebo (water). PwMS meeting
the McDonald criteria [21] for relapsing and remitting multiple sclerosis were included together with
secondary multiple sclerosis patients with superimposed relapse, subject to specific clinical criteria.
Exclusion criteria (for details, see supplementary section Tanasescu et al. [20]) included prior or present
evidence of parasitic infection and prior treatment with anti-helminthic drugs in the preceding six
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years. PwMS entered into the trial had not received immunosuppressive drugs 12 weeks prior to
enrolment, were immunocompetent, and had not been treated with interferon or glatiramer acetate
within 8 weeks of enrolment. N. americanus infection was confirmed using real-time polymerase
chain reaction and amplicon sequencing [20]. Adequate serum samples were available from 51 study
participants: 26 treated with hookworm and 25 given placebo. Multiple aliquots of the serum samples
were stored at minus 80 ◦C following collection.

Multiple sclerosis disease activity (DA) was assessed by the analysis of brain magnetic resonance
imaging (MRI) scans performed monthly between months 3 and 9 and again at month 12. Disease
activity (DA) was defined as the appearance of new or enlarging lesions on T2 FLAIR imaging or
evidence of Gadolinium-DPTA-enhancing T1 lesions.

2.2. Detection of EBV Antibodies

Epstein–Barr virus capsid antigen IgG (EBV VCA IgG), EBV capsid antigen IgM (EBV VCA
IgM), EBV nuclear antigen-1 IgG (EBNA-1 IgG), and EBV early antigen IgG (EBV EA IgG) antibodies
were detected and quantified using SERION ELISA classic (Institut Virion\Serion GmbH, Würzburg,
Germany) kits. The manufacturer’s instructions were followed.

The cut-offs applied were as specified by the manufacturer and were as follows: EBV VCA IgG
(<10 U/mL = negative; >15 U/mL = positive), EBV VCA IgM (<9 U/mL = negative; >13 U/mL = positive),
EBV EA IgG (<10 U/mL = negative; >15 U/mL = positive), and EBNA-1 IgG (<2.5 U/mL = negative;
>3 U/mL = positive). Test results falling between the negative and positive cut-offs were graded equivocal.

2.3. Statistical Methods

Basic data manipulations, for example, calculation of geometric means and standard deviations
together with graphical presentations, were performed using Excel 2016 and GraphPad Prism (version 8).
The level of significance for statistical analyses was set at p < 0.05. Associations of categorical data
(e.g., seroprevalence) were tested using Fisher’s exact test because of the small sample sizes available.
Normality was estimated using Shapiro–Wilk and Kolmogorov–Smirnov tests. The Mann–Whitney U
test was used to evaluate associations of independent samples where normality could not be assumed.

3. Results

3.1. Demographics of PwMS Groups

There were 26 PwMS in the hookworm-treated group, comprising 21 females and 5 males, and there
were 25 PwMS in the placebo-controlled group, comprising 19 females and 6 males. The mean age
of PwMS in the hookworm-treated group was 44.7 years and the mean age of the PwMS in the
placebo-controlled group was 45.2 years. Clinical characteristics of the PwMS recruited to the trial are
shown in Table 1. Apart from three South Asians, all trial participants were Caucasians. There were no
serious clinical adverse events directly attributable to EBV during the trial. Infection with N. americanus
was confirmed using molecular methods in 23 of 35 PwMS who underwent therapeutic infection [20].

3.2. EBV VCA IgM Seroprevalence in the Hookworm- and Placebo-Treated Groups

Only one PwMS in the hookworm-treated group was EBV VCA IgM positive and only one PwMS
in the placebo-controlled group was EBV VCA IgM positive. Both patients were IgM seropositive
throughout the 12 month study period: in the hookworm-treated PwMS, IgM levels ranged over time
between 40 and 70 U/mL (mean 52.7 U/mL); in the placebo control, PwMS IgM levels ranged between
25 and 30 U/mL (mean 27 U/mL). Both of the above PwMS were seropositive for EA IgG, EBNA-1 IgG
and VCA IgG markers.
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Table 1. Demographics and baseline clinical features of hookworm-treated (n = 26) and placebo-controlled
(n = 25) PwMS.

Patient Characteristics Hookworm Placebo

Demographic characteristics
Age

(mean age, range) 44.8 (32–60) 49.3 (29–59)
Sex (no. of subjects, %)

Female 21 (81%) 19 (76%)
Male 5 (19%) 6 (24%)

Clinical characteristics
Type of relapsing MS

(no. of subjects, %) 21 (81%) 21 (84%)
RR

SP with superimposed relapses 5 (19%) 4 (16%)
Time from first symptoms of MS (mean years, SD) 11 (8.3) 9.2 (9.3)

Mean EDSS score (range) 3 (1.5–5.5) 2.6 (1.5–4)

3.3. EBV VCA IgG and EBNA-1 IgG Seroprevalence and Levels in the Hookworm- and Placebo-Treated Groups

All PwMS were seropositive for EBV VCA IgG and VCA IgG levels were stable over the 12 month
study period (Figure 1). All PwMS were seropositive for EBNA-1 IgG and EBNA-1 IgG levels were
stable over the 12 month study period (Figure 2). There were no differences between EBV VCA IgG
levels in hookworm-treated PwMS and placebo controls before, during, or after treatment (Table 2).
Similarly, there were no differences between EBNA-1 IgG levels in hookworm-treated PwMS and
placebo controls before, during, or after treatment (Table 2).

Table 2. EBV VCA and EBNA-1 geometric mean IgG levels in hookworm-treated (n = 26) and
placebo-controlled (n = 25) PwMS before, during, and three months after treatment.

EBV Antibody and
Treatment Group

Before Treatment
(0 months)

During Treatment
(6 months)

Post Treatment
(12 months)

EBV VCA IgG 340.2 units/mL 347.2 units/mL 351.1 units/mL
Hookworm treated 95% CI: [242–476.3] 95% CI: [248–486] 95% CI: [250–493]

EBV VCA IgG 251.4 units/mL 257.0 units/mL 254.8 units/mL
Placebo 95% CI: [179–352] 95% CI: [185–355] 95% CI: [183–354]

EBNA-1 IgG 67.8 units/mL 64.7 units/mL 65.7 units/mL
Hookworm treated 95% CI: [50.2–91.6] 95% CI: [45.9–91.3] 95% CI: [46.6–92.6]

EBNA-1 IgG 66.4 units/mL 65.3 units/mL 67.0 units/mL
Placebo 95% CI: [48.6–90.9] 95% CI: [49–86.8] 95% CI: [50.4–89]

3.4. EBV EA IgG Seroprevalence and EBV Reactivation in the Hookworm- and Placebo-Treated Groups

In the hookworm-treated PwMS, 14 PwMS were EA IgG negative, 4 were equivocal, and 8 (30.7%)
were EA IgG positive (range 16 U/mL–65 U/mL). In the placebo-controlled group, 12 PwMS were
EA IgG negative, 3 were equivocal, and 10 (40.0%) were EA IgG positive (range 16 U/mL–100 U/mL).
Generally, EA IgG levels were stable over time, but some patients showed more variation than others.
The difference (treating equivocals as seronegatives) in the EBV EA IgG seropositivity between the two
groups was not significant (Fisher exact test statistic value = 0.565). The detection of EBV EA IgG in
the presence of EBV VCA IgG and EBNA-1 IgG is potentially consistent with virus reactivation so
there is a theoretical possibility that approximately 30–40% of PwMS tested showed evidence of EBV
reactivation. In all these cases, the pre-treatment serum was EBV EA IgG positive and there was no
evidence of a trend of increasing EA IgG levels during the 12 months of monitoring which suggests the
existence of processes not consistent with classical reactivation.
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3.5. Stratification of Levels of EBV VCA IgG and EBNA-1 IgG and Association with Disease Activity in PwMS

The distribution of EBV VCA IgG levels in PwMS is shown in Figure 3. MRI data was available
for 48 PwMS. There were 27 (56.2%) PwMS who showed new disease activity (DA)—11 had been
therapeutically infected with hookworm and 16 had received placebo (Figure 4). The geometric mean
EBV VCA IgG level of the new DA group was 325 units/mL (95% CI: 224–470 units/mL) and that of
the no new DA group was 247 units/mL (95% CI: 184–332 units/mL). Stratification of PwMS (n = 48)
by their EBV VCA IgG levels showed that there were 11 (22.9%) PwMS with EBV VCA IgG levels
greater than or equal to 600 units/mL, comprising 10 (90.9%) PwMS who showed new DA and 1 (9.1%)
PwMS who showed no new DA (Figure 4). The group of PwMS with high EBV VCA IgG levels
(≥600 units/mL) was deemed high risk for new DA and differed significantly from the lower-risk
(<600 units/mL) PwMS. In those PwMS who were hookworm treated (Figure 4) and showed new DA,
6/11 (54.5%) were in the EBV VCA IgG high-risk group (levels ≥600 units/mL). This compared with
4/16 (25.0%) of EBV high-risk group PwMS who received placebo. There was no significant difference
in new DA of EBV VCA IgG high-risk PwMS who received hookworm treatment and those who
received placebo.
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The distribution of EBNA-1 IgG levels in PwMS is shown in Figure 5. MRI data was available for
49 PwMS. There were 27 (55.1%) PwMS who showed new disease activity (DA) and 22 (44.9%) PwMS
who showed no new DA (Figure 6). The geometric mean EBNA-1 IgG level of the new DA group
was 72.5 units/mL (95% CI: 52.5–100.1 units/mL) and that of the no new DA group was 65.1 units/mL
(95% CI: 49.7–85.2 units/mL). Stratification of PwMS by their EBNA-1 IgG levels showed that there
were 8 (16.3%) PwMS with EBNA-1 IgG levels greater than or equal to 150 units/mL, comprising
7 (87.5%) PwMS who showed new DA and 1 (12.5%) PwMS who showed no new DA (Figure 6).
The group of PwMS with high EBNA-1 IgG levels (≥150 units/mL) was deemed high risk for new
DA and differed significantly from the lower-risk (<150 units/mL) PwMS. In those PwMS who were
hookworm treated (Figure 6) and showed new DA, 3/11 (27.2%) were in the EBNA-1 IgG high-risk
group (levels ≥150 units/mL). This compared with 4/16 (25.0%) of EBV high-risk group PwMS who
received placebo. There was no significant difference in new DA of EBV VCA IgG high-risk PwMS
who received hookworm treatment and those who received placebo.
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Figure 6. Scatter plot of EBNA-1 IgG levels (baseline data, n=49)) in hookworm-treated versus
placebo-controlled groups of people with multiple sclerosis (PwMS) differentiated by disease activity.
MRI = brain magnetic resonance imaging, and positivity was the development of new or enlarging
lesions (see methods).

4. Discussion

The Nottingham WIRMS study (NCT 01470521) is the largest clinical trial of hookworm therapy
for MS to be conducted in adults and the first to be placebo controlled. The rationale for this study
was that natural hookworm infection promoted an anti-inflammatory Th2 and regulatory T cell
immune phenotype, which would be beneficial for PwMS who typically show regulatory B and T cell
dysfunction [22,23] leading to excessive inflammatory activation and a predominant Th1 immune
phenotype. A concern of this form of treatment intervention was that the antiviral Th1 response
may be excessively compromised, resulting in reduced control of virus infections. Laboratory studies
using murine models of infection [10,11] have raised the possibility of an increased potential for EBV
reactivation. The clinical sequelae of such reactivations may be severe [24] and it is relevant that
herpesvirus reactivations be assessed in patients receiving this form of treatment.

Unlike VZV reactivation, where a shingles-type rash is an obvious, although not definitive,
sign of renewed virus activity, there is no overt clinical sign of EBV reactivation; therefore, appropriate
laboratory investigations are essential. In immunocompetent individuals, detection of relevant antibody
markers by serological tests is the widely adopted approach [25] for staging EBV infection as “acute” or
“past”. Virus replication (lytic phase) either during primary infection or reactivation is evidenced by the
detection of virus capsid antigen (VCA) IgM and IgG and early (EA) IgG. Virus latency (past infection)
is evidenced by the detection of specific IgG to nuclear antigens, typically EBNA-1. EBV reactivation
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can be evidenced directly by the detection of virus DNA using quantitative EBV viral load assays [26];
however, a limitation of viral load assays is their variability and lack of specificity in differentiating
EBV reactivation from periodic virus shedding and for this reason they were not used in our study.
In our study, no PwMS seroconverted to EBV VCA IgM or were EBV EA IgG seropositive during
the study period. Persistent EBV EA antibody levels were observed in the hookworm-treated group,
in which 30.7% were EA IgG seropositive, and in the placebo-controlled group, in which 40.0% were
EA IgG seropositive. The difference in the EBV EA IgG seropositivity between the two groups was
not significant. Although traditionally considered as a marker for EBV reactivation, the significance
of our finding of EA IgG seropositivity is unclear, particularly, as individual EA IgG levels remained
constant throughout the 12 months of monitoring. Furthermore, a background EA IgG seropositivity of
approximately 10–20% has been reported in several studies [27,28] and on testing a panel of 124 control
sera [29] collected from adults living in the Nottingham area, we observed a background EBV EA
seropositivity of 21.5% (data not reported). These findings merit further investigation.

An interesting observation derived from our study is the existence of subpopulations of PwMS
with high levels of either EBV VCA IgG (≥600 units/mL) or EBNA-1 IgG (≥150 units/mL) who appeared
at higher risk of disease activity. An association between levels of EBV VCA IgG or EBNA-1 IgG and
disease activity has been observed by others. For example, Horakova and colleagues [30] reported in
a study of clinically isolated syndrome patients that the cumulative number of contrast-enhancing
lesions and T2 lesions during a two-year period was greater for individuals comprising the highest
quartile of EBV VCA IgG levels. In another study, Jakimovski and colleagues [31] showed high EBNA-1
IgG levels to be associated with focal destructive lesion pathology in RRMS patients.

5. Conclusions

In conclusion, there was no evidence of EBV reactivation in PwMS following therapeutic infection
with small numbers (25 larvae) of hookworm for a period of nine months. Previous studies [32–34]
have shown the complexity of humoral and cellular immune responses following hookworm/helminth
infections and a highly significant negative correlation between total IgE levels and hookworm weight
and fecundity has been documented [35]. Our findings relate only to the particular conditions of our
study in which a low parasite burden of infection was established [36] and the data presented add
to our knowledge of the safety profile [37,38] of therapeutic hookworm infection. Finally, it appears
that subsets of PwMS with high levels of EBV antibodies are at greater risk of disease activity and this
observation requires further investigation as it raises the possibility of targeted anti-EBV interventions
to reduce disease activity.
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