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Simple Summary: Nowadays patients affected by locally advanced breast cancer and particular
subtypes of early breast cancer may benefit from neoadjuvant chemotherapy (NAC) before surgery
with different advantageous, like reduction of tumor size and prognosis improvement. Pathological
complete response to NAC is very variable amongst all different histological and immunophenotypic
subtypes of breast cancer and its correct assessment by imaging is crucial for treatment planning,
as patients could be addressed to conservative or demolitive breast surgery with reconstruction.
Advanced imaging techniques, such as MRI and nuclear medicine, recently contributed to the predic-
tion of chemotherapy response in the early phase of NAC, to avoid side effects and psychological
implications of the oncological treatment in patients who are supposed to be unresponsive. This
review article aims to compare different imaging techniques for both assessment and prediction of
response to NAC and explain the new revolutionary contribute offered by Artifical Intelligence in
this field.

Abstract: Neoadjuvant chemotherapy (NAC) is becoming the standard of care for locally advanced
breast cancer, aiming to reduce tumor size before surgery. Unfortunately, less than 30% of patients
generally achieve a pathological complete response and approximately 5% of patients show disease
progression while receiving NAC. Accurate assessment of the response to NAC is crucial for sub-
sequent surgical planning. Furthermore, early prediction of tumor response could avoid patients
being overtreated with useless chemotherapy sections, which are not free from side effects and
psychological implications. In this review, we first analyze and compare the accuracy of conventional
and advanced imaging techniques as well as discuss the application of artificial intelligence tools in
the assessment of tumor response after NAC. Thereafter, the role of advanced imaging techniques,
such as MRI, nuclear medicine, and new hybrid PET/MRI imaging in the prediction of the response
to NAC is described in the second part of the review. Finally, future perspectives in NAC response
prediction, represented by AI applications, are discussed.

Keywords: breast cancer; neoadjuvant chemotherapy; imaging; nuclear medicine; machine learning;
artificial intelligence; radiomics

1. Introduction

Neoadjuvant chemotherapy (NAC) is becoming the standard of care for locally ad-
vanced breast cancer [1] aiming to reduce tumor size before surgery. Indeed, NAC offers
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different advantages. It could reduce breast tumor size and/or downstage the axilla, allow-
ing a more conservative surgery, and enables in vivo evaluation of treatment effectiveness,
which allows changing the therapeutic strategy according to personal patient response.
NAC was also found to be a valuable prognostic factor for patients who obtain a pathologi-
cal complete response (pCR) as they seem to improve their survival [2]. Unfortunately, less
than 30% of patients generally achieve pCR [3–6] and approximately 5% of patients show
disease progression while receiving NAC [7]. Moreover, the therapeutic effect remains
unknown until the patient has received at least two cycles of chemotherapy. In patients
who are non-responders, treatment may be changed to a more effective regimen and avoid
side effects from an ineffective treatment that can be discontinued. Early evaluation of
tumor response could also allow earlier timing of surgery if the tumor appears refractory
to NAC.

Thus, early prediction of the response to NAC could be an important weapon for
individualized medicine. A prediction model could avoid patients to be overtreated
with useless chemotherapy cycles which are not free from side effects and psychological
implications. It is likewise crucial to accurately assess the response to treatment after NAC
in order to establish the most appropriate surgical approach.

Imaging plays a fundamental role in the evaluation of patient candidates to NAC for
the evaluation of primary tumor and axillary lymph-node status. Indeed, the main aim of
imaging, particularly by means of ultrasound (US), digital mammography (DM)/digital
breast tomosynthesis (DBT), is the assessment of the response to treatment and the estimate
of residual tumor, both influencing patients’ prognosis and surgical strategy [8]. The in-
troduction of advanced imaging techniques able to provide functional information and
quantitative parameters reflecting tumor biology, such as magnetic resonance imaging
(MRI) [9], contrast-enhanced spectral mammography (CESM), integrated positron emis-
sion tomography (PET) with computed tomography (CT) (PET/CT), as well as the newest
hybrid PET/MRI scanner, may have a significant impact in the evaluation of patient candi-
dates to NAC, not only improving the accuracy in detecting residual tumor, but also early
predicting the response to treatment. Similarly, the application of artificial intelligence (AI)
techniques may enable to early identify patients who may benefit from NAC, extracting
quantitative meaningful parameters from baseline examinations.

The aim of this review is to elucidate and compare the role of conventional and
advanced imaging techniques in assessing and predicting the response to NAC as well as
to illustrate future perspectives represented by AI applications. A comprehensive summary
of the major imaging techniques employed for the assessment and prediction of response
to treatment is reported in Table 1.

Table 1. Summary of available imaging techniques for the assessment and prediction of response to
neoadjuvant chemotherapy in breast cancer.

Assessment of Residual Tumor after NAC

Morphological imaging techniques

Ultrasound—US

Automated Breast Ultrasound—ABUS

Quantitative ultrasound (QUS) methods

Digital mammography—DM

Digital breast tomosynthesis—DBT

Advanced imaging techniques

Contrast-enhanced spectral mammography—CESM

Magnetic resonance imaging—MRI

Dedicated breast positron emission tomography—DbPET

Molecular Breast imaging—MBI
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Table 1. Cont.

Prediction of the Response to Treatment

Advanced imaging techniques

MRI diffusion weighted imaging—DWI

MRI perfusion weighted imaging—PWI

Hybrid imaging: PET/Computed Tomography (CT),
PET/MRI

Future Perspectives

Radiomics and Artificial
Intelligence Texture analysis, Machine Learning, Deep learning

2. Evaluation of Residual Tumor after NAC

Patients who undergo NAC are essentially monitored by a clinical breast examination
(CBE), mammography (DM), ultrasound (US), and/or magnetic resonance imaging (MRI).
The accurate assessment of breast tumor and regional lymph node response to preoperative
systemic therapy is crucial and the selection of imaging methods prior to surgery should
be determined by the multidisciplinary team, according the recent NCCN guidelines [10].
All these procedures are basically engaged to monitor changes of tumor size which is
considered the main parameter to define the tumor responsivity to NAC, thus influencing
the subsequent surgical decision. Chapgar et al. [8] first estimated the error of CBE, DM,
and US in the detection of size of residual tumor after NAC; they found a significant
correlation between the radiological and/or clinical size and the pathological one, but
the level of correlation was only moderate for all the three procedures. Therefore, the
authors invited surgeons to keep caution in the interpretation of residual tumor size in
the preoperative time when using CBE, US, or DM. During the last decade, MRI and
new technologies like DBT and Automated Breast Ultrasound (ABUS) have enforced the
correlation between the radiological detection of residual tumor size after NAC and the
pathological one, offering new perspectives in clinical practice.

2.1. Conventional Imaging Techniques
2.1.1. Digital Mammography and Digital Breast Tomosynthesis

The accuracy of DM-based post-treatment evaluation depends upon specific tumor
morphological characteristics. In particular, it is higher for lesions who appear well-
circumscribed on the pre-treatment examination. The most reliable indicators of treatment
response are decrease in size and density, whereas calcifications and spicules are the biggest
challenge for imaging interpretation. Indeed, several authors correlated mammographic
microcalcification with surgical specimen and concluded that residual microcalcifications
on DM could be due to both residual tumor (i.e., in situ carcinoma) (Figure 1) and treated
cancer with necrotic material, thus it did not always represent the residual tumor [11].

Kim et al. [12] demonstrated that the extent of microcalcifications on mammography
after NAC did not correlate with the extent of residual cancer in 38.5% of the 96 women
included in their single center retrospective study. Um et al. [13] supported the same
conclusion and their single center retrospective study enhances how post-NAC residual
microcalcifications on DM have a lower correlation with residual tumor size compared
to MRI. Adrada et al. [14] reported that the residual calcified size and pathologic results
differed by up to 22% in breast cancer patients undergoing NAC. Spicules as well are not
an effective indicator of residual disease as they can possibly represent tumor itself after
NAC or underlying fibrosis and hyalinization, as supported by Winchcombe et al. [15].
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Figure 1. A 36-year-old patient with G3, Luminal B, HER2+ left breast cancer undergoing NAC. An irregular, hyperdense 
opacity with inner microcalcifications, determining distortion of the surrounding parenchyma, is depicted on both MLO 
(arrow in (A)) and CC (arrow in (C)) views. After NAC, the irregular opacity is no longer appreciable on both MLO (arrow 
in (B)) and CC, while some microcalcifications are still detectable as expression of in situ carcinoma (arrow in (D)) as 
revealed by histological specimen (pCR). 
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DBT has proven to be superior to DM for the evaluation of tumors size, especially in 
case of small lesions and dense breast [16]. Moreover, two studies have shown higher ac-
curacy of DBT than DM in assessing response to NAC, though studies with bigger popu-
lation are required to validate such results [17,18]. However, some limitations of DM and 
DBT are reported, related to a possible overestimation in residual tumor size measured 
by DBT, whereas underestimation when measured by DM [11]. Different factors could 
explain these findings, such as the superiority of DBT than DM in assessment of tumor 
margin and size, and also the detection of benign calcifications of necrotic tissue after 
treatment and/or the inclusion of fibrotic spicules in the measurement. 

2.1.2. Ultrasound  
US is considered a more accurate method than CE or DM in assessing tumor size and 

in the monitoring of residual breast tumors, but operator dependency and shortage of 
qualified personnel have been an issue in hand-held US [19]. Conflicting results have been 
described in literature about the utility of US in the evaluation of residual tumor after 
NAC. In a recent study, Dobruch-Sobczaka et al. [20] assessed the variability of breast 
tumor echogenicity from hypo to isoechoic after three or four courses of NAC. They found 
persistent tumor hypo-echogenicity after three courses of NAC to be predictive of a poor 
response to treatment. Indeed, the change in tumor echogenicity could predict a patho-
logical response with significant accuracy and may be considered in NAC monitoring. 
Moreover, Evans and colleagues showed that a decrease in tumor stiffness at US sono-
elastography, could be considered a good predictor of a pathological response already 

Figure 1. A 36-year-old patient with G3, Luminal B, HER2+ left breast cancer undergoing NAC. An irregular, hyperdense
opacity with inner microcalcifications, determining distortion of the surrounding parenchyma, is depicted on both MLO
(arrow in (A)) and CC (arrow in (C)) views. After NAC, the irregular opacity is no longer appreciable on both MLO (arrow
in (B)) and CC, while some microcalcifications are still detectable as expression of in situ carcinoma (arrow in (D)) as
revealed by histological specimen (pCR).

DBT has proven to be superior to DM for the evaluation of tumors size, especially
in case of small lesions and dense breast [16]. Moreover, two studies have shown higher
accuracy of DBT than DM in assessing response to NAC, though studies with bigger
population are required to validate such results [17,18]. However, some limitations of DM
and DBT are reported, related to a possible overestimation in residual tumor size measured
by DBT, whereas underestimation when measured by DM [11]. Different factors could
explain these findings, such as the superiority of DBT than DM in assessment of tumor
margin and size, and also the detection of benign calcifications of necrotic tissue after
treatment and/or the inclusion of fibrotic spicules in the measurement.

2.1.2. Ultrasound

US is considered a more accurate method than CE or DM in assessing tumor size
and in the monitoring of residual breast tumors, but operator dependency and shortage
of qualified personnel have been an issue in hand-held US [19]. Conflicting results have
been described in literature about the utility of US in the evaluation of residual tumor
after NAC. In a recent study, Dobruch-Sobczaka et al. [20] assessed the variability of
breast tumor echogenicity from hypo to isoechoic after three or four courses of NAC. They
found persistent tumor hypo-echogenicity after three courses of NAC to be predictive of
a poor response to treatment. Indeed, the change in tumor echogenicity could predict a
pathological response with significant accuracy and may be considered in NAC monitoring.
Moreover, Evans and colleagues showed that a decrease in tumor stiffness at US sono-
elastography, could be considered a good predictor of a pathological response already
after the second cycle of NAC [21]. On the other hand, Baumgartner et al. [22] concluded
that US imaging is insufficient to predict pCR with adequate accuracy with an overall
sensitivity of 60.8% and specificity 78.0% for US predicted remission. In the same series, a
multivariable analysis assessed the influence of receptor status on the diagnostic precision
of US and pathologic outcome, thus supporting the results of previous series [23–25]. In
particular, triple negative tumors seem to have the highest NPV and lowest FNR amongst
all the receptor subtypes, implying that pathologic response to NACT can most reliably be
predicted for this subtype.
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In a recent retrospective study by Makanjuola et al. [26], US has shown a high predic-
tive value of pCR when combined with mammography images. According to the authors,
the complete radiological response (rCR) could be defined with the absence of a mass and
normal breast parenchyma overlying the post-biopsy tissue marker both in mammography
than ultrasound images. Indeed, according to this strict criteria, rCR evaluated both by
DM and US correlated highly (approx. 93%) with the pCR in the histological exam after
surgery, even if a longer follow up of patients and more prospective studies are mandatory
to validate this innovative result.

New technologies have been introduced in breast US imaging such as the automated
breast ultrasound (ABUS) which provides 3D images using wider probes. Shin et al. [27]
enhanced how ABUS permits more appropriate image evaluation for architectural distor-
tion and large breast mass compared to conventional breast US. However, in the series
described by Park et al. [11], ABUS showed the lowest reliability in prediction of resid-
ual tumor size and pCR compared to DM, DBT, and MRI, as it tends to underestimate
residual tumor. The authors also suggest that ABUS may be sensitive enough to distin-
guish chemotherapy-induced fibrosis and hypoechoic tumor after NAC. Furthermore,
quantitative ultrasound (QUS) technique is a new imaging modality which analyzes raw,
ultrasonic radio-frequency echoes (RF), thus defining quantitative parameters characteristic
of the tissue. Unlike B-mode ultrasound (BUS), which defines anatomical information,
QUS conveys tissue microstructure characteristics, including cell nuclei, by quantitatively
analyzing the radiofrequency (RF) data backscattered from tissues [28,29]. Ultrasonic RF
backscattered signals are basically analyzed by two types of QUS: the spectrum analysis of
single-frame RF signals and RF time-series. Ultrasonic spectrum analysis of single-frame
RF data has shown good results in tissue characterization when diagnosing prostate can-
cer, ocular tumors, and cardiac abnormalities, as well as detecting the early response to
radiotherapy and chemotherapy based on detecting tumor microstructure changes and cell
death in tumor according recent preclincal and clinical studies [30]. Oelze et al. used QUS
parameters to characterize the difference between benign from malignant lesions in rodent
models of breast cancer [31]; in their model, they also demonstrated that QUS could be also
useful to recognize breast cancer micrometastasis in excised lymph nodes. In another study,
QUS data were used to classify lesions as benign or malignant from 78 patients breast
with a resulting sensitivity and specificity of 96% and 84%, respectively [32]. Studies have
also demonstrated that time changes in QUS parameters reflect cell death [33], suggesting
new frontiers for QUS parameters and textural analyses in the prediction and the monitor
response to NAC in patients with LABC [34] at an earlier stage than the standard US
imaging [35].

2.2. Advanced Imaging Techniques

NAC monitoring methods such as DM or US or physical examination are not free from
limitations [19]. Sometimes, NAC-induced architectural changes can mask a reduction in
primary tumor at imaging, even if a response is found at pathological examination.

For instance, Taxanes determine a decrease of enhancement of the tumor and the
whole breast tissue as it has a specific anti-angiogenetic effect [36]. Functional imaging
techniques, such as positron emission tomography (PET), MRI with diffusion weighted
imaging, and diffuse optical spectroscopy, enable to capture changes in the microstructure,
vascularization, and metabolic activity of tumors under the influence of chemotherapy
after the first cycle of treatment.

2.2.1. Magnetic Resonance Imaging

MRI is currently used to provide an accurate assessment of primary lesion dimension,
which is usually underestimated by DM and US, loco-regional disease spread, multifocality,
multicentricity, and lymph nodes involvement. In particular, dynamic contrast-enhanced
MRI (DCE-MRI) and diffusion-weighted MR imaging (DWI-MRI) significantly improved
the detection, diagnosis, and monitoring of breast tumors using high-field (1.5–3.0 Tesla)
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scanners and dedicated radiofrequency coils. Of note, DCE-MRI is well known to enable
the most accurate assessment of lesion response after NAC reflecting tumor tissue changes
on the basis of contrast distribution (37), while DWI-MRI allows the calculation of apparent
diffusion coefficients (ADC)—a quantitative measure of the diffusivity of water—providing
information related to tumor cellularity and the integrity of cell membranes, being sensitive
to intra-tumoral changes induced by chemotherapy. MRI has been proved to accurately
evaluate residual tumor after NAC with high sensitivity (76–92%), specificity (60–89%),
and accuracy (76–90%) [37]. Moreover, MRI is more accurate than DM, DBT, and US in
evaluating residual tumor after NAC and predicting pCR [11], but its accuracy is not
adequate to replace the pathological evaluation of breast tumor and axillary nodes, as
recently confirmed by Weber et al. [38]. Overall, a metanalysis published by Wu et al. [39] in
2012 confirmed that DWI-MRI has a high sensitivity (0.93 with 95% CI 0.82–0.97) while CE-
MRI (contrast enhanced) shows a high specificity (0.91 with 95% CI 0.87–0.94) in assessing
and predicting a pathological response to NAC in breast cancer patients. The combined
use of DW-MRI and CE-MRI has the potential to improve the diagnostic performance in
monitoring NAC, but authors conclude that further large prospective studies are warranted
to assess the actual value of this combination in breast cancer preoperative treatment
screening. Hahn et al. retrospectively analyzed 78 breast MRI acquired after NAC and
depicted that MRI diagnostic accuracy increases when DWI is associated to DCE-MRI
(specificity 80%; accuracy 91%) [40]. More recently, a retrospective study by Choi et al. [41]
concluded that the in-breast residual cancer burden index, which is an absolute assessment
of residual tumor in the breast parenchyma and lymph nodes, correlated best with changes
in DCE-MRI features, and the MRI-measured angio-volume reduction rate correlated best
with pathologic tumor responses.

However, some concerns have been raised on the measurements of breast tumor
lesions on MRI, mainly related to the different enhancement patterns of tumor lesions
over time [42]. Furthermore, a great variability of MRI accuracy of residual tumor evalu-
ation after NAC according to different histological subgroups is reported, as confirmed
by Pasquero et al. [43], who showed in a short series the superiority of MRI accuracy in
diagnosing HER2+ and triple negative tumors, but suggesting caution in case of luminal tu-
mors’ evaluation. The relationship between the accuracy of MRI and subtype classification
has been well described by Fukuda and al. [44]. The pCR rate of the triple negative subtype
was higher than the luminal subtype. MRI for predicting pCR is generally more accurate
in tumors that have a better response. It is also known that the ER-negative tumors have
higher contrast uptake on MRI after NAC than the ER-positive ones. In the triple-negative
subtype, the high contrast uptake may explain the high accuracy of MRI diagnosis.

In line with the latest results, Kim et al. [45] recently tried to identify MRI assessment
criteria which could help clinicians to select appropriate patients for avoiding surgery
after NAC when pCR is obtained. In particular, the authors found that lesion size and the
lesion-to-background parenchymal signal enhancement ratio (SER) on early phase MRI
images detected residual tumors with high sensitivity and NPV in Hormone Receptor (HR)
negative (Triple negative and HER2+) breast cancers after NAC. Although these promising
results, limitations of the study such as the lack of consideration of residual DCIS and
axillary lymph node metastasis raise some controversies in the clinical practice, thus more
prospective and enlarged studies are required to enforce the clinical value of the outcomes.

2.2.2. Contrast-Enhanced Spectral Mammography

CESM is a recent imaging technique that combines DM to intravenous administration
of a contrast agent, thus allowing the assessment of neo-angiogenesis in patients who can-
not undergo MRI [46]. In the study of Iotti et al., 46 patients were enrolled during and after
NAC in order to compare residual tumor evaluation with CEM and MR. The two imaging
techniques showed high agreement (0.76–0.96) though both of them underestimated resid-
ual tumor [47]. More recent but analogous results have been described by Patel et al. [48] in
their short series where comparing CESM versus MRI for assessment of complete response,
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the sensitivity was 95% vs. 95%, specificity 66.7% vs. 68.9%, positive predictive value 55.9%
vs. 57.6%, and negative predictive value 96.7% vs. 96.9%, respectively. Similarly, Barra
et al. [49] concluded that CEM was comparable to MRI, showing that mean differences
between CEM, MRI, and residual histopathological tumor size were 0.8 cm and 1.8 cm,
respectively. Evidence from a recent metanalysis reports that CESM has equal pooled
specificity (0.82) and greater sensitivity (0.83 vs. 0.77) compared to DCE-MRI [50].

2.3. Nuclear Medicine Techniques

Nuclear medicine offers valid experimental and clinical tools for the evaluation of
tumor residual after NAC. While Kitajima et al. [51] reported that 18F−Fluorodeoxyglucose
(FDG) positron emission tomography/computed tomography (PET/CT) showed a ten-
dency toward underestimation of the residual tumor with relatively low specificity and
PPV, an innovation of mammography imaging which uses 18F-FDG for the detection of
breast cancer, positron emission mammography (PEM) or dedicated breast PET (dbPET)
has shown higher sensitivity and specificity than PET/CT in particular for lesions smaller
than 2.5 cm [46]. The prospective study of Noritake et al. compared PEM technique to
whole-body (WB) 18F-FDG-PET and PEM proved to better detect residual tumor, whereas it
was not superior in predicting pCR, though only 20 patients were enrolled [52]. In a series
including 47 patients, Sasada et al. [53] concluded that PEM was more accurate than WB
PET in detecting residual primary tumors after NAC, particularly intraductal carcinoma.
Analogous results have been reported by the Japanese team of Koyasu [54] in 2018. Fur-
thermore, recent advanced radiotracers other than 18F-FDG have been proposed to predict
response to neoadjuvant therapy [55–57]. In particular, a biophysical mathematical model
to predict tumor response for two HER2 + breast cancer patients was defined by Jarret
et al. using quantitative data from MRI and 64Cu-DOTA-trastuzumab PET to estimate
tumor density, perfusion, and distribution of HER2-targeted antibodies for each individual
patient. In addition, Gong et al. proposed 18F-FES PET/CT, a non-invasive method to
monitor estrogen receptor expression, to predict patient prognosis on the basis of changes
in SUVmax tracer uptake in metastatic breast cancer. Furthermore, other novel radiotrac-
ers are being developed and applied for the in vivo measurement of different aspects of
breast cancer, such as cell proliferation and tumor metastasis (18F-fluorothymidine), tissue
hypoxia (18F-Fluoromisonidazole), receptor status, tumor antigen levels (68Ga-PSMA), and
therapeutic response (18F-Fluciclovine) [57].

Molecular breast imaging (MBI), is a technique employing dedicated gamma cameras
and an injected radiopharmaceutical such as technetium-99m Sestamibi, whose uptake
is related to several biological issue, i.e., blood flow and mitochondrial activity. MBI is
currently performed; (1) in breast cancer patients to assess disease extension, and response
to neo-adjuvant chemotherapy, similarly to MRI; (2) for high-risk surveillance; and (3) in
cases of equivocal mammographic/sonographic findings [58]. Hunt et al. [59] recently
reported their experience in 90 patients comparing the accuracy of MRI and MBI in the
detection of invasive breast cancer response to NAC. The authors concluded that MBI can
be performed as an alternative in patients with contraindications for performing MRI, even
if the pattern of response to NAC and alterations in tumor vascularity may affect the ability
of MBI and MRI to detect residual disease. Notwithstanding, these promising techniques
present some practical limitations as they are expensive and time-consuming, requiring
intravenous injection of a radiotracer; thus, their use is now limited only in academic
centers and mainly for research purposes.

2.4. Artificial Intelligence

AI is emerging as a new paradigm in healthcare, allowing the possibility to use huge
amount of data to make the prediction of interest, such as tumor characterization, response
to a specific treatment, and patients’ prognosis using different algorithms. Radiomics
is a method to extract quantitative parameters from medical images in order to obtain
data that can be used to help diagnosis and make predictions using AI algorithms, e.g.,
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machine learning and deep learning methods. Indeed, radiomics allows the extraction of
quantitative features to depict information on pixel distribution within the image, reflecting
its heterogeneity, that cannot be assessed by the human eye. Radiomics applications in
breast tumor imaging are numerous and are continuously increasing, especially in the
setting of prediction of response to NAC. Sutton et al. combined pre and post-NAC DCE-
MRI images to assess delta radiomics features for classifying pCR [60]. They validated a
combined radiomics and molecular subtype-based classifier model to predict pCR with
high accuracy and reproducibility. As a result, the combination of both tumoral features
outperformed single methods alone for detecting a pCR. Authors concluded that this
model could improve radiologists’ performance, and also facilitate the standardization of
post-NAC MRI reporting.

3. Prediction of Response to NAC

Tumor downsizing and pCR are the main aims of NAC. Its complete course usually
requires months and the administration of different chemotherapy drugs. Therefore, early
prediction of response is crucial for increasing survival, lowering toxicity and costs as it
could avoid unnecessary further drug administration in patients who do not respond. In
detail, advanced techniques such as MRI, hybrid-imaging and AI modalities have been
proposed for this purpose.

3.1. Magnetic Resonance Imaging

The use of functional imaging techniques, such as DWI-MRI and DCE-MRI, aims
at depicting biological properties of tumors, such as cellularity and neo-angiogenesis,
trough the extraction of quantitative DWI-MRI (apparent diffusion coefficient, ADC) and
DCE-MRI (Ktrans, Ve, Kep, iAUC) parameters that may change earlier during the course
on NAC, before any morphological changes are detectable (Figures 2 and 3).
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In particular, Tourel et al. studied the role of DWI-MRI and ADC in this setting.
Tumors with higher cellularity, and thus with lower ADC values, showed better response
to NAC, whereas tumors with necrosis, which showed high ADC levels, were associated
with worst survival outcome (Figure 4) [61].
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Figure 4. Example of early assessment of the response to NAC using diffusion weighted imaging (DWI). (A–C) = pre-NAC
examinations; (D–F) = early assessment examination after two cycles of cytotoxic NAC. (A,D) = dynamic post-contrast
images; (B,E) = DWI images; (C,F) = ADC maps. A 37-year-old patient with a G3, triple negative invasive ductal carcinoma
of the right breast (white and black arrows). Early assessment showed a reduction of tumor size along with increase of signal
intensity on ADC maps (C) compared to the pre-treatment examination (F). Pathology after surgical resection revealed
pathological complete response (pCR).
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Although heterogeneous results regarding the use of DCE-MRI parameters are re-
ported, it seems that the combination of quantitative perfusion parameters such as Ktrans,
Kep, and Ve reflecting tumor permeability and cell density can early predict pCR during
NAC (Figure 5) [62].
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Figure 5. Example of early assessment of the response to NAC using dynamic contrast-enhanced imaging (DCE-MRI) in a
37-year-old patient with a G3, triple negative invasive ductal carcinoma of the right breast (arrows, same case shown in
Figure 4). (A–C) = pre-NAC examinations; (D–F) = early assessment examination after two cycles of cytotoxic NAC. Ktrans
(A,D), Kep (B,E) and Ve (C,F) maps. Early assessment showed a reduction of Ktrans (286 vs. 83.9 min−1) and kep (91.49 vs.
20.14 min−1 × 100) with a slight increase of Ve (275.34 vs. 308.08 × 1000) signal intensity on ADC maps (C) compared to the
pre-treatment examination (F). Pathological complete response (pCR) was proved at pathology examination after surgical
resection.

In this setting, Tudorica et al. [63] confirmed the same conclusion in their recent
article. Their initial findings from a 28-patient cohort showed that changes in tumor
neo-angiogenesis and permeability described byDCE-MRI quantitative parameters can
be detected earlier than tumor size reduction after the first of six or eight cycles of NACT,
supporting the hypothesis that functional changes precede morphological tumor variations
at early NAC cycles. The authors found that the percent changes of the Ktrans, Ve, and Kep
parameters, as well as the SSM-unique τi parameter, are good to excellent early predictors
of pathologic response. Further studies are required to standardize and better understand
the role of DWI and PWI as the values present in the literature are still heterogeneous.
However, some methodological issues on DCE quantitative parameters measurements,
significantly affecting their reliability, have been recently reported [64].
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3.2. Hybrid Imaging Techniques

Hybrid-Imaging using PET/CT could be extremely useful in early response prediction
as it assesses both morphological and functional cancer features. In particular, tumor cells
change their metabolic expression after NAC, thus the assessment of glucose uptake rates
might be of clinical value. Indeed, 18F-FDG PET/CT is routinely used for staging, recur-
rence evaluation, and treatment response. Whole-body 18F-FDG PET/CT enables metabolic
activity assessment of breast tumors. Standardized uptake value (SUV) seems to correlate
with histology as it is higher in high-grade invasive ductal carcinomas, triple negative, and
erb-2 negative tumors and lower in low-grade lobular carcinoma. Furthermore, SUV is
significatively lower in patients who experience pCR after the second cycle of chemother-
apy [52]. Garcia Vicente et al. [65] also analyzed metabolic tumor features with 18F-FDG
PET/CT. In their study including 67 patients, they found that volume-based metabolic
variables obtained with 18F-FDG PET/CT such as metabolic tumor volume (MTV) and total
lesion glycolysis (TLG), unlike SUV based variables (SUVmax, SUVmean, and SUVpeak),
were good predictors of both NAC response and prognosis in locally advanced breast
cancer. The main limitation of PET is the assessment of small tumors as it has low spatial
resolution. PEM could overcome such limit as it is accurate for the evaluation of small
lesions. In particular, Soldevilla et al. used PEM for interim prediction of the response to
NAC in a retrospective study enrolling 108 patients. Though further studies are required to
validate these results, SUVmax and lesion to background (LTB) showed strong correlation
with pCR [66].

PET/MRI is the hybrid newest imaging technique which allows the simultaneous
collection of morphologic, metabolic, and functional parameters with higher contrast reso-
lution compared to PET/CT. It could be used for staging locally-advanced breast cancers
and for monitoring and evaluating response to neoadjuvant and systemic chemother-
apy [67]. A recent study by Cho et al. showed that 18F-FDG PET/MRI could be used
to predict non-pCR after the first cycle of NAC. Specifically, the sensitivity significantly
improved with the addition of MRI to PET parameters [68]. In a recent study by Wang
et al. [69], 14 women with breast cancer were scanned with PET and MRI before and after
the first or second cycle of treatment. The authors showed that percentage variations of
SUVmax, TLG, and peak enhancement ratio (PER) were good predictors of NAC response
(AUC 0.898, 0.878, and 0.837). In a study of 93 breast cancer patients, Pengel et al. [70]
demonstrated that combination of PET/MR parameters in association with clinical data
obtained the best accuracy in the detection of the response to NAC. In particular, age, breast
cancer subtype, %change in SUVmax, and %change in largest tumor diameter on MRI
were moderate predictors of pCR, while breast cancer subtype together with changes in
SUVmax and tumor diameter provided the highest AUC (0.90). An et al. [71] also showed
that combining data like DWI or DCE-MRI with PET improved negative predictive value
and specificity values in comparison with the single examinations. An example of hybrid
PET/MRI evaluation before, during, and after NAC is illustrated in Figure 6.
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Figure 6. A 36-year-old patient with left breast cancer undergoing NAC (same patient shown in
Figure 1). Fused PET/MRI images acquired before (A), during (B), and after (C) NAC are shown.
While a slight reduction of the tumor and its satellite nodule (white arrows in B) is appreciable,
18F-FDG uptake is significantly reduced after the second cycle of chemotherapy (B) as compared to
the pre-treatment evaluation (A). The tumor was not detectable at the post-treatment evaluation (C).
Pathology after surgery demonstrated a complete response (pCR).

3.3. Artificial Intelligence

Different imaging methods have been explored in literature to detect early response to
NAC using AI, including QUS, diffuse optical spectroscopy (DOS) [72], 18F-FDG-PET [73],
but a great amount of literature focuses on MRI [74,75].
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3.3.1. Ultrasound

Differently from MRI and PET, which may have limitations in repeated use due to
high costs and contrast agent/tracer injection, US is relatively inexpensive and safe for
patient management. In particular, newest advanced QUS methods could be able to early
depict changes in tumor microstructure without contrast agent administration. Fernandes
et al. [76] used a machine learning model, such as Naïve Bayes classifiers, applied to strain
elastography which was able to predict the response to NAC in locally advanced breast
cancer as early as 2 weeks during treatment with high sensitivity (84%) and specificity
(85%). These results may have a potential application in clinical practice. Moreover, the
combination of quantitative data extracted from US elastography with histological data,
such as Ki67 expression, was found to improve the predictive power [77]. Correlation
between tumor stiffness and molecular subtype using shear-wave elastography was also
investigated by Chang et al. [78]. In detail, 377 breast cancer lesions were evaluated using
a multiple linear regression analysis which showed stiffness values were significantly
influenced by tumor size, histological grade, and tumor subtype. Finally, Tadayyon et al.
demonstrated in a large patient cohort [79] the hybrid QUS biomarkers including midband
fit (MBF), spectral slope (SS), spacing among scatterers (SAS) could detect the response
to NAC in locally advanced breast cancer lesions early after 4 weeks of therapy with
relatively high sensitivity and specificity. This work confirmed the potential of QUS
and machine learning methods for the early detection of breast tumor response, possibly
helping clinicians to previously plan a personalized treatment for refractory patients.

3.3.2. Magnetic Resonance Imaging

Several studies analyzed the potential of AI with multiparametric MRI to predict
response to early predict NAC. In this light, 38 patients underwent multiparametric MRI
before and after two cycles of NAC in a study by Tahmassebi et al. with the extraction
of both qualitative and quantitative parameters [80]. In detail, qualitative features were
extracted from T2-weighted (e.g., signal intensity and presence of edema) and DCE images
(e.g., tumor size, pattern of shrinkage, mass or non-mass enhancement, shape, margins,
internal enhancement characteristics, distribution, and symmetry) while quantitative pa-
rameters were extracted from DCE (e.g., mean plasma flow, volume distribution, and mean
transit time) and DWI images (e.g., minimum, maximum, and mean ADC values). Change
in lesion size, complete pattern of shrinkage, mean transit time, peritumoral edema, and
minimum ADC value resulted as the most significant variables for prediction of residual
cancer. Some studies have set out how to predict response to NAC with only pretreatment
imaging. For example, Cain et al. [81] demonstrated that multivariate machine learning-
based models (e.g., SVM, LR) were able to accurately predict pCR, especially in TN/HER2þ
+ patient subgroup (p < 0.002) using pretreatment MRI performed in 288 patients. Braman
et al. retrospectively evaluated 117 patients who underwent DCE-MRI and subsequent
NAC. Combined intratumoral and peritumoral texture analysis-based radiomic approach
was proved to predict pCR to NAC, independently of prior knowledge of receptor status
suggesting their validity as response predictor [82]. Moreover, their findings suggest that
the radiomic features most predictive of response vary across different receptor subtypes,
and in particular, TN/HER2+ tumors were best characterized by a speckled enhancement
pattern within the peritumoral region of non-responders. A direct consequence of this
conclusion is that radiomics can also be helpful in identifying molecular subtypes of HER2+
from imaging thus helping treatment guidance [83]. Chamming’s et al. also used texture
analysis-based radiomics to depict tumoral features associated to pCR from breast MRI
acquired only before NAC [84]. According to their experience, kurtosis (a mathematical
parameter which reflects tissue microstructure organization) seemed to be associated with
pCR to NAC in non-triple negative breast cancer patients, and also represents a favorable
biomarker for the identification of triple-negative breast cancer. Evidence from a multicen-
ter study including 414 breast cancer patients who underwent NAC reported an accuracy
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of 0.86 obtained by a MRI-based radiomic signature, validated on an external dataset, for
the prediction of pCR [85].

3.3.3. Positron Emission Tomography

Radiomics applied to 18F-FDG PET offers the potential to non-invasively characterize
tumor heterogeneity, a factor strongly related to tumor growth and resistance to medical
treatments. However, reliable biomarkers have not been established yet. In this context,
Li et al. recently published a retrospective study including 100 breast cancer patients
who received NAC [86]. Radiomics predictors from pre-treatment 18F-FDG PET/CT scans
were able to predict pCR after NAC especially when combined with patient age or Ki
67 levels from pre-treatment core needle biopsy specimens, as also demonstrated in the
last prospective study by Luo et al. [87]. In their study, Li et al. also found a close
association between radiomic features, receptor expression, and tumor T stage in line with
previous studies, showing that the pCR rate varied with breast cancer molecular subtypes.
Specifically, the TN and HER2-positive molecular subtypes showed a higher pCR rate after
NAC. Antunovic et al. [88] supported this conclusion building different predictive models
based on PET/CT radiomics, and finding an association between PET imaging features
and pCR. The authors also found that patients with HER2+ and triple subtype were more
likely to have a pCR to NAC than those with luminal subtype. Such evidence suggests
that PET imaging features could be considered as potential predictors of pCR in locally
advanced breast cancer patients.

4. Conclusions

Assessment of residual tumor and prediction of response in patients with locally
advanced breast cancer undergoing NAC are clinically relevant to obtain the best outcome.
Advanced imaging techniques are making headway in the assessment of such patients
along with morphological and functional modalities. The possibility to extract information
reflecting tumor biology from medical images could aid in the early identification of
patients who will benefit from NAC, optimizing the response to treatment and avoiding
unnecessary toxicity. In this perspective, hybrid imaging modalities and AI may have
several and attractive future applications.
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