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Abstract: Laser direct writing technique in glass is a powerful tool for various waveguides’ fabrication
that highly develop the element base for designing photonic devices. We apply this technique to
fabricate waveguides in porous glass (PG). Nanoporous optical materials for the inscription can
elevate the sensing ability of such waveguides to higher standards. The waveguides were fabricated
by a single-scan approach with femtosecond laser pulses in the densification mode, which resulted in
the formation of a core and cladding. Experimental studies revealed three types of waveguides and
quantified the refractive index contrast (up to ∆n = 1.2·10−2) accompanied with ~1.2 dB/cm insertion
losses. The waveguides demonstrated the sensitivity to small objects captured by the nanoporous
framework. We noticed that the deposited ethanol molecules (3 µL) on the PG surface influence the
waveguide optical properties indicating the penetration of the molecule to its cladding. Continuous
monitoring of the output near field intensity distribution allowed us to determine the response
time (6 s) of the waveguide buried at 400 µm below the glass surface. We found that the minimum
distinguishable change of the refractive index contrast is 2 × 10−4. The results obtained pave the
way to consider the waveguides inscribed into PG as primary transducers for sensor applications.

Keywords: laser direct writing; porous glass; waveguides; photonic circuits; optofluidics; ethanol;
small molecules

1. Introduction

A nanoporous silicate framework of porous glass (PG) with multiple buried hollow
channels and pores with a well-controlled size in the range of 2–20 nm [1,2] represents
a promising matrix, which captures, stores, and transports molecules absorbed from the
environment [3–7]. Recently, portable devices with such a PG loaded with organic indica-
tors were demonstrated for monitoring the level of formaldehyde [3], nitrogen dioxide [4],
and ozone [5,6] in the environment. The interaction of the indicator and the harmful gases
changes the color of the entire glass plate. Laser-induced integration of several activated
sectors in the single PG aimed to expand the sensor functionality [8]. However, information
processing was performed by the spectral analysis of each sector of the glass plate. For a
more accurate analysis of chemical reactions in such a nanoporous medium, it is necessary
to inscribe a chip-scale optical channel, namely, a bulk waveguide, which typically consists
of a core and cladding to obtain internal reflection of coupled light resulting in a good
balance between light localization and optical losses [9]. The optical signal transmitted
through the waveguide can trace the media state in real-time, for example, the appearance
of new molecules, their chemical interaction, or vice versa evaporation. The combination of
a nanoporous silicate matrix and bulk waveguide may provide unique sensing abilities for
a nanopore sensor, which operates with single molecules [10,11]. The range of applications
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depends on the captured molecules and may be demanded in the field of biochemistry [12]
or drug investigation [13,14].

Nowadays, femtosecond laser direct writing (LDW) is an advanced technology to
fabricate waveguides inside glass materials [15–17]. Such structures represent an integral
element for photonics circuits [18,19], lab on a chip [20] and sensorics [21]. In particular,
various types of optical waveguides have been proposed—gradient [22], core-cladding [23],
plasmonic [24,25], and integrated in a glass chip functioning as thermal [26], fluid [21], or
light [25] sensors. Most of these applications are based on an evanescent wave interaction
with target molecules deposited on a glass surface [21,25,26]. Such a detecting mechanism
supposes a waveguide to be incorporated in the glass pre-surface layer to interact with
a target fluid deposited on the glass surface. However, that limits 3D integration of
waveguides in a photonic chip.

The ability to inscribe waveguides in glass materials enables the development and
realization of Mach–Zehnder (MZ) interferometers and quantum photonic circuits pos-
sessing low (up to 0.1 dB/cm) dissipation [27,28]. In combination with entangled photon
sources of light and efficient single photon detectors, such circuits may be used for linear
optics quantum computing [29] and quantum sensorics [30]. In particular, as it is shown
in [30], the optofluidic device that contains MZ interferometer and photonic N00N state
(with N = 2) at the input, provides the measurement of the concentration of bovine serum
albumin (BSA) in aqueous buffer solutions with 10−3 accuracy.

Considering all mentioned above, the connection of a waveguide with the sensing
medium seems to be relevant. Thus, the concept of waveguides inscription in optically
transparent PG can make a significant contribution to the design of optofluidic sensors.

Herein, we suggest a concept of the waveguide in PG to demonstrate a sensing
platform for the detection of target molecules. In the first step, we hold the research of
waveguides inscription in PG by LDW technique. The investigation revealed three types of
waveguides possessing the core-cladding structure. For the sensing application, we utilized
the waveguide with the highest refractive index contrast (1.2·10−2) and the lowest available
propagation losses (~1.2 dB/cm). As a model target molecules, we chose ethanol [31]. Then,
we demonstrated that the transmitted laser radiation through the waveguide has a response
to ethanol molecules deposited on the PG surface. In particular, the molecules captured
by the nanoporous framework transferred to the waveguide cladding and changed the
refractive index contrast. This determined and justified the sensitivity of the waveguides
to the flow of small objects inside the nanoporous framework. The minimum detectable
change in the value of the contrast of the refractive index is 2 × 10−4. This indicates the
high sensitivity of such a sensor for determining small volumes of molecules. Besides, we
showed that the heat treatment of the waveguides did not affect their structural and optical
properties, which confirms the multiple uses of the sensor.

2. Experiments
2.1. LDW of Waveguides in PG

In this work, the femtosecond laser-induced densification approach [32,33] was ap-
plied for the inscription of waveguides in PG with an average pore size ~10 nm, and total
porosity 26%. Glass composition consists of high silica proportion, SiO2 > 96% (mass
fraction, %) [34]. These PG plates possess high transparency (~90%) in the visible spectra
range, with an average refractive index n ≈ 1.34. The samples were impregnated with
water before laser irradiation to expand the ranges of laser processing parameters. Water
presence in PG glass provides a more optically homogeneous medium. In [33] we showed
that the water impregnation step increases the range of acceptable values of power densities
by 15%. The impregnation stage was conducted by immersing the PG sample in distilled
water for 96 h at room temperature and atmospheric pressure.

LDW was performed with the linear polarized Gaussian laser beam by Yb-doped fiber
laser (Avesta TETA-20, Russia) operating at 1035 nm wavelength with a pulse duration
220 fs, and a fixed repetition rate of 1 MHz. The laser beam was focused by an objective
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lens (LOMO, 20×, NA = 0.4). The objective lens formed the beam waist with a diameter
of 2.5 µm and the Rayleigh length z0 = 5.5 µm. The PG samples were mounted on an
XYZ translation stage based on a stepper motor with the step equalling 1 µm and being
controlled by the driver (SMC-AD3). The waveguides writing was performed by translating
the sample perpendicular to the laser beam axis at speed 0.0125–3.75 mm/s and incident
pulse energy Ep = 0.6, 0.8, and 1.6 µJ. The position of the laser beam focus is 400 µm beneath
the upper surface of the glass sample. The length of the writing track was 10 mm.

After the laser writing step, the samples were polished at both facets and heated in a
furnace for 2 h at 500 ◦C, and investigated by optical microscopy (Carl Zeiss, Axio Imager)
in the transmission mode and cross-polarized light to show the absence of cracks, stresses,
and to study the birefringence of waveguides structure.

2.2. Waveguides Testing

Since the fabricated tracks possess light-guiding properties, they are important to
study in terms of the refractive index contrast according to methodology demonstrated
by us formerly [35]. For this purpose, a setup equipped with a He-Ne laser and a pair of
objectives can register the near-field intensity distribution of radiation transmitted through
the waveguide (Figure 1a). In more detail, laser radiation is focused by an objective
(60×, 0.85 NA) to couple light into the waveguide. An out-coupled beam is collected
by another objective (40×, 0.65 NA). CCD camera (C1) controls the position of the input
beam to ensure which part of the waveguide is irradiated. CCD camera (C2) aligns the
focus plane of the objective with the out-coupled plane of the waveguide. After that,
the near field distribution of the out-coupled beam is captured by CMOS beam profiler
(Gentec-EO, Beamage 3.0, QC, Canada). Based on the captured near-field distribution, the
refractive index profile of the waveguide is estimated numerically by solving the Helmholtz
equation [36]

n2(x, y) = [nb + ∆n(x, y)]2 = n2
e f f −

λ2

4π2
∇2E(x, y)

E(x, y)
(1)

where, nb is the refractive index of initial glass, neff is the effective refractive index of the
propagating mode. Although neff is an unknown constant, the refractive index change
profile ∆n(x,y) is unaffected by the magnitude of neff. With the approximation neff = nb,
∆n(x,y) can be numerically evaluated using n2(x,y) ≈ nb

2 + 2nb ∆n(x,y). The normalized
E-field distribution E(x,y) across the mode is inferred by the measured near-field intensity
of the mode I(x,y). In the calculation, a third-order Butterworth filter with optimized
cutoff frequency is employed to remove impulsive and high-frequency noise in the power
intensity measured without accuracy loss [37]. The same setup is also utilized in this
work for near-field intensity monitoring during ethanol liquid deposition on PG surface
(Section 3.4).

The optical losses are also integral parameter, which characterizes the waveguides.
The losses measurement are performed with a fiber-coupling setup equipped with a laser
module operated at 975 nm, fiber coupling part and power meter (Figure 1b). The input
fiber is fixed on high-resolution multi-axis positioning coordinate table with sub-micron
accuracy. The Fresnel reflection losses for fiber-to-waveguide connections are considered
negligible. The waveguide insertion losses are obtained from the power transmitted
through the waveguide and detected with an InGaAs photodiode power sensor (deviation
is ±0.5%). The registered signal is normalized to the power propagated through free space
with the same distance.
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Figure 1. Schemes of the experimental setups for the caption of near-field intensity distribution
(a) and for measuring losses of waveguides (b).

3. Results and Discussion
3.1. Waveguide Fabrication

The pulse energy and scanning speed are two critical parameters determining future
waveguide morphology and geometry during the LDW step. The waveguides observed by
optical microscopy possess the shape of an elongated ellipse in the cross-section, which is
the direct evidence of a filament structure appearance [38]. These filaments are character-
ized by height in the range of 50–400 µm (Figure 2a) and width 4–7 µm. Such an elliptical
shape affects the form of the mode distribution. Another feature is a shift of the waveguide
position along the optical axis, depending on the selected pulse energy and the number of
laser pulses. The increase of energy and number of laser pulses shifts the waveguide in the
positive Z direction, while the decrease causes it to move in the negative Z-direction, as
schematically shown in Figure 2b. Moreover, with the high pulses number that is 1.0 × 105,
we observed a drop-like structure formed of multiple layers in the cross-section (Figure 2c).
The enlarged image shows that the structure of the waveguide consists of a brighter central
ellipsoid surrounded by a darker elliptical ring and followed by another slightly brighter
ring (Figure 2d). Similar structures were reported in borosilicate glass by Nolte et al. [39]
and in Corning Gorilla Glass by Boisvert et al. [40]. The multilayer structure of this kind
is interpreted as an occurrence of the densified region and rarefaction region of the glass
framework. More details about the waveguide structure are presented in Section 3.3.
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waveguide, which is schematically shown in (b). Transmission microscope photos of the waveguide
fabricated by Ep = 0.8 µJ and 105 pulses (c) and its enlarged view (d). The scale bars are 30 µm (c) and
5 µm (d).

3.2. Thermal Resistance of Waveguides

PG plate is possible to reuse after capturing analyte and/or reagent by heat treatment
in the furnace (temperature up to 500 ◦C). This reusability is important for the future
application of waveguides as a sensing element. However, such a temperature may release
the residue stress field of the waveguides or change their properties as a previous study
showed for waveguides in solid glass [23]. As part of this work, we confirmed the thermal
stability of waveguides when PG with inscribed waveguides is heated in the furnace.

Thus, we have tested the thermal stability of waveguides while heating in a furnace at
a temperature of 500 ◦C for 2 h. After the waveguide’s heat treatment, the study was held
by transmission microscopy and crossed polarizers to examine birefringent with a constant
exposure time (Figure 3). The microscopy in transmission light shows bright elongated
regions with the related increased refractive index appeared for peak fluence (Fp) up to
45 J/cm2 and the different number of pulses (Figure 3a). The observed top view in crossed
polarizers shows two cases (Figure 3b): bright central part for waveguides fabricated
with an increased number of laser pulses (N > 5600) and smooth waveguides (17 J/cm2,
N < 3700 pulses) whose core does not have a bright color when the sample is rotated
relative to crossed polarizers. The bright light is usually associated with birefringence
phenomena. However, in comparison with toughened glasses [41], such a glow was found
both in the core and in the cladding of the fabricated waveguide. In our study, there is no
bright light surrounding the waveguides fabricated with 17.0 < Fp < 22.7 J/cm2 and pulse
number in the range of 3700–5600. That indicates the absence of lateral residual stresses
around the waveguides. The surrounded stresses occur for waveguides fabricated by
increasing the number of pulses over 104. Even in this case the surrounded stresses relaxed
after additional thermal treatment (Figure 3c). The photos of the waveguides’ central part
in crossed polarizers after heat treatment had no changes (Figure 3c). This suggests that
the internal structure of the waveguides remained the same proving their thermal stability.
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3.3. Waveguide Properties: Types, Refractive Index Profile, and Losses

The refractive index profile reveals three types of sandwich-like structure of fabricated
waveguides. The difference between them is in the reordering of densified and rarefaction
layers. The uniform waveguide is written by using relatively low pulse energy 0.6 µJ at
a high translating speed of 3.75 mm/s (N ~ 400), with the peak fluence 17.0 J/cm2 and
net fluence 6.8·103 J/cm2. The cross-sectional view of the waveguide shows a comet-like
shape with the coupling beam position on the tip (highlighted by a dot-dash outline in
Figure 4a). The near-field distribution of propagating laser light through the waveguide is
also captured to observe a guiding mode and cross-sectional features (Figure 4b). The near-
field distribution exhibits a satisfactory modal profile confirmed by the well-confinement
of the guiding light. The refractive index profile evaluated from Equation (1) demonstrates
the core (∆ncore = 6.5·10−4) and cladding (∆nclad = −10.5·10−4) (Figure 4c). The refractive
index contrast between the core and cladding is 1.7·10−3. The shape of the distribution of
the refractive index also tends to the shape of a ‘comet’, but the structure remains within
the framework of the classical concept of a waveguide. This LDW regime is relatively
fast and allows us to fabricate the type of waveguides, which we have called a ‘comet-
shaped waveguide’.
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Figure 4. Cross-sectional view of a comet-shaped waveguide (0.6 µJ pulse energy, ~400 pulses)
(a), rectangular-sectioned waveguide (0.6 µJ pulse energy, ~104 pulses) (d) and cylindrical-shaped
waveguide (1.6 µJ pulse energy, ~600 pulses) (g) with corresponding measured near-field distribution
(b,e,h) and estimated refractive index profile (c,f,i). Dash white squares indicate the laser radiation
coupling position. Scaling bar equals 10 µm.

With the same pulse energy 0.6 µJ but at the lowest translating speed 0.125 mm/s
(N ~ 104) with the same peak fluence but with larger net fluence ~2 × 105 J/cm2, an
elongated densified region is observed in the cross-sectional view (Figure 4d). That oc-
curs due to the self-focusing of the propagating wavefront, i.e., the pulse collapses into
a filament near the focus [42]. The captured near-field image demonstrates a rectangular
shape distribution with its maximum in the central part (Figure 4e). The central mode
profile is elliptical. The refractive index profile shows an opposing result, where the
positive rectangular core (∆ncore = 5·10−4) is surrounded by symmetrically located nega-
tive cladding (∆nclad = −2.7·10−3) (Figure 4f). The refractive index contrast between the
core and cladding is 3.2·10−3. The second type of waveguides are called ‘rectangular-
sectioned waveguides’.

The third type of waveguides are written with a relatively high pulse energy of 1.6 µJ
at a translating speed of 2.5 mm/s (N ~ 600) with a larger peak fluence of 45.3 J/cm2 and
net fluence 2.7·104 J/cm2. Here, we see a 2-micron-sized cylindrical-shaped core located
between two rarefaction layers (Figure 4g). Basically, such a structure occurs as a result of
self-focusing and defocusing by self-generated plasma [42]. The coupling of He-Ne laser
radiation into the core shows a nearly single elliptical mode distribution and is captured
in Figure 4h. Again, the refractive index profile demonstrates a positive elliptic core with
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maximum ∆ncore = 6.0·10−4 surrounded with a highly depressed cladding with maximum
∆nclad = −1.2·10−2. The contrast between the core and cladding is 1.2·10−2 (Figure 4i). The
third type of waveguides are called ‘cylindrical-shaped waveguides’. This type possesses
the highest contrast, the absence of residual stresses in the cladding, and is chosen for the
following losses and sensing investigations.

Insertion losses (α) are measured for the waveguides, which refers to the second type
waveguide (Figure 4d–f) and third type waveguide (Figure 4g–i). This was accomplished
by coupling laser module radiation into the core of the waveguide on the fiber-coupling
setup (Figure 1b). The input power (Pin) was equal to 1.4, 3.9, and 6.9 mW. The output
power (Pout) of the light after passing through the waveguide was also registered (Figure 5).
The insertion losses are estimated as

α = 10·lg(Pin/Pout). (2)
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Thus, the second type waveguide possesses a slightly higher inversion loss compared
with the third type waveguide, while the average insertion loss of these waveguides is
~1.2 dB/cm.

Notably, the insertion losses account for both coupling losses and propagation losses.
The cross-sectional morphology determines the spatial distribution of the mode supported
by the waveguide. Any mismatch between the mode fields of the waveguide and the
input beam will result in increased insertion losses. Meanwhile, as in silicate glass [43],
the insertion losses originated from the non-symmetrical morphology of the waveguide
can be dramatically reduced to below 1 dB/cm at 1550 nm, by optimizing the fabrication
process. Moreover, if we compare our result to a waveguide in porous silicon [44], which
is applied for sensing application, our waveguides possess an order of magnitude lower
losses. Therefore, we can assume that, for a primary transducer with a length of several
centimeters, the obtained loss value is suitable.

When the waveguide is used as the analyzer of liquid, the liquid penetrates to the
cladding through the porous framework, mitigates the refractive index contrast between the
core and cladding, and deteriorates the waveguiding property. Notably, waveguides with
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a higher refractive index contrast are preferable for liquid sensor applications. Therefore,
the third type of waveguides was selected for the sensing demonstration.

3.4. Opto-Fluidic Waveguide for Ethanol Molecule Sensing

The occurrence of the optical micro-channel in PG is a remarkable feature, as the
fabricated waveguide exhibits sensitivity to the changes happening in the nanoporous
framework. Such sensitivity is associated with the waveguide’s cladding filling with
molecules deposited on the glass surface. First, these changes can be noticed when the
refractive index contrast changes, then there will be a distortion of the intensity distribution
at the waveguide output. The key sensor parameter of such a waveguide is a response time.

Here, we demonstrate an approach to detect molecules captured by PG during the reg-
istration of time-dependent changes in the near-field mode distribution of the waveguide
output. In the experiment we use the ‘cylindrical-shaped waveguide’ due to the following
reasons: (i) uniform elliptical mode of distribution; (ii) lowest losses; (iii) the presence
of space for liquid precipitation in the form of rarefaction layers around the waveguide
core. To conduct this study, widely available ethanol, a so-called “small molecule” [45],
was chosen as the liquid, since the molecules easily penetrate through PG nanoporous
framework [46].

The experimental scheme for waveguide testing is given in Figure 6. He-Ne laser
radiation is coupled into the waveguide. An objective-objective connection is applied
to laser radiation coupling and registering the transmitted laser radiation through the
waveguide (Figure 6a). The objectives are fixed on the multiple-axis translation stages
to provide accurate positioning of both the in-coupling beam and out-coupling beam
(Figure 6b). A CMOS camera located behind objective 2 captures the near-field intensity
distribution, as schematically shown in Figure 1a.
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In the experiment, a 3 µL-drop of ethanol liquid was deposited on the PG surface,
where the monitoring of near-field intensity distribution at the waveguide output occurred
during 45 min after ethanol deposition (Figure 7). The exposure time of the CMOS camera
was constant (20 ms) to trace the intensity change of the guiding light. The RMS noise of
the CMOS camera is 1000:1. In the first minute of ethanol penetration, there was a sharp
jump in the value of the transmitted intensity, the same was observed in the value of the
contrast (red dots/curve in Figure 7). After 15 min, the mode shape was changed with
the corresponding intensity decrease. Meanwhile, the filling of nanopores with ethanol
mitigates the refractive index contrast between the core and cladding of the waveguide, and
thus deteriorates its light guiding ability. After 17 min, we noticed the maximum decrease
in the intensity, the added ethanol diffused to the region adjacent to the waveguide through
connected nanopores of PG. 22 min later, the intensity began to recover, reaching its original
state after 42 min. The results obtained show the waveguide possesses an ability to detect
small molecules such as ethanol captured by PG upon registration of time-dependent
changes in the near-field intensity distribution at the waveguide output.
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To estimate the response time of the waveguide, we captured the evolution of the
near-field intensity distribution during the first minute after the ethanol deposition with
an interval of 6 s (that corresponds to the minimum measurement interval of CMOS
camera) and a constant exposure time of 20 ms. The result is given in Figure 8, where an
approximately linear decline is revealed with a slope of 0.00248 s−1. The time of ethanol
liquid deposition on the PG surface was set as the beginning of the recording. There
is a significant decrease in the intensity of about 17% within 60 s, which can be easily
distinguished by most photodiode detectors (for example, Hamamatsu Photonics S5972
PIN Photodiode). Applying our CMOS camera parameters, we can establish the response
time is fewer than 6 s. Meanwhile, our numerical simulation of the refractive index profile
reveals a decrease of refractive index contrast of ~5 × 10−4 with a deviation error of
±1 × 10−4 within 60 s. Therefore, the minimum distinguishable change in the value of the
refractive index contrast is ~2 × 10−4.
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4. Conclusions

In conclusion, we have applied LDW in PG to fabricate new types of waveguides.
Specifically, a gradual sequence of uniform ‘comet-shaped’, ‘rectangular-sectioned’, and
‘cylindrical-shaped’ waveguides was achieved in PG by varying pulse energy and/or the
number of accumulated laser pulses. The ‘cylindrical-shaped’ waveguide is written by
the following parameters: 1 MHz, 1.6 µJ pulse energy, and 2.5 mm/s translating speed,
which is characterized by relatively high ∆n ~1.2·10−2. The obtained value is suitable for
the current tasks of the sensor element. For other applications this value can be increased
by adopting the multi-scan technique [47]. However, the detailed investigation of the
level of nanopore collapse in the waveguide cross-section is required. Waveguide optical
losses represent one of important issues for various applications in photonics and quantum
technologies. For the currently available LDW setup, the insertion losses of fabricated
‘cylindrical-shaped waveguide’ are equal to 1.2 dB/cm. The obtained level of insertion
losses is due to the technical imperfections of the experimental setup. The losses can be
significantly reduced by implementing with the currently available technology utilized the
position accuracy of hundreds of nanometers [48].

In particular, the ‘cylindrical-shaped’ waveguide is used for the detection of ethanol
molecules deposited on PG upon registration of time-dependent changes in the near-field
distribution at the waveguide output. The waveguide shows a short response time of ~6 s
and high sensitivity with a minimum detectable change in the value of the refractive index
contrast of the numerical method of ~2 × 10−4. The results show the optical sensitivity of
waveguides inscribed in PG for the detection of small molecules such as ethanol. Then, on
the next step, the calibration procedure of such a sensor is required for every target molecule.
Depending on the properties of the molecules, the calibration can be accomplished by the
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response time, minimum/maximum intensity level shift at the waveguide output, and
the recovery time. The size of pores places a restriction on the molecule to be detected—
molecules larger than the pore size cannot be detected because they are unable to penetrate
the waveguide cladding.

It is worth noticing that our recent work enables to use PG waveguides for applications
in the quantum domain even in the presence of some moderate level of losses. In particular,
further improvement of the considered technology allows to design MZ interferometers
as a basis for high precision sensors and photonic information processing circuits [49].
For sensor applications, one can use the waveguide in an interferometer arm to obtain
an interference pattern to show the concentration variation of captured molecules. The
entangled states and especially, N00N states at the input of the interferometer can improve
the visibility for this method [30].
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