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Robustness and Vulnerability 
of Networks with Dynamical 
Dependency Groups
Ya-Nan Bai1,*, Ning Huang1,2,*, Lei Wang3,* & Zhi-Xi Wu4,*

The dependency property and self-recovery of failure nodes both have great effects on the robustness 
of networks during the cascading process. Existing investigations focused mainly on the failure 
mechanism of static dependency groups without considering the time-dependency of interdependent 
nodes and the recovery mechanism in reality. In this study, we present an evolving network model 
consisting of failure mechanisms and a recovery mechanism to explore network robustness, where 
the dependency relations among nodes vary over time. Based on generating function techniques, we 
provide an analytical framework for random networks with arbitrary degree distribution. In particular, 
we theoretically find that an abrupt percolation transition exists corresponding to the dynamical 
dependency groups for a wide range of topologies after initial random removal. Moreover, when the 
abrupt transition point is above the failure threshold of dependency groups, the evolving network with 
the larger dependency groups is more vulnerable; when below it, the larger dependency groups make 
the network more robust. Numerical simulations employing the Erdős-Rényi network and Barabási-
Albert scale free network are performed to validate our theoretical results.

Complex networks are increasingly being investigated in various fields of nature and society1–5 and from different 
angles, such as collective behaviour6–10, robustness11,12, controllability13,14, etc. Many findings have been revealed 
through the discovery of statistical and topological properties of complex networks or via modelling and ana-
lysing network behaviours (or characteristics). All of these results can help us well explain distinct phenomena 
of complex networks in some ways. However, more challenges remain to fully understand complex networks. 
Cascading failure is one of the fascinating and significant challenges.

Large cascades are common in most complex networks15. Earlier works regarding the cascading process in 
complex networks focused on failures triggered just by the removal of a single node16 or small initial shocks17. 
Recently, the dependency property, modelled by dependency links18–20, has been proposed to study the effects 
of dependency among nodes on the evolution of complex networks, especially for cascading failures. One of the 
characteristics discriminating them from the traditional connectivity links is that dependent links present the 
relations among local nodes, not the global topological relations of a network. According to ref. 18, dependency 
studies usually focus either on failures due to overloads in networks or on local dependency models in which each 
node’s state depends only on the states of its neighbours and therefore a failing node will also cause its neighbours 
to fail, etc. After dependency groups were proposed, many researchers expanded these studies to random depend-
ency models. One fundamental difference between local dependency models and random dependency models is 
that dependencies between nodes are either confined to adjacent nodes or not.

In dependency models, network nodes depend on each other, forming a dependency group. If any node in 
the dependency group fails, the group will fail totally, i.e., all of the other nodes of this group will fail18. For 
example, in financial networks18, the trading and sale connections between companies can be abstracted as the 
connectivity links of networks and companies in the same industrial chain could form a dependency group. If 
one company fails, all other companies in the same industrial chain also fail due to the rupture of the industrial 
chain. Another example is online social networks (Facebook or Twitter)18: Each individual communicates with 
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his friends. These communication relationships are defined as connectivity links, thus forming social networks 
through which information and rumours can spread. It is noted that many individuals will only participate in a 
social network if other individuals with common interests also participate in that social network. These particular 
relationships are denoted by dependency links. Concerning the dependency property, Parshani et al.18 proposed 
an analytical model to study the robustness of networks that include both connectivity and dependency links and 
found, surprisingly, that a broader degree distribution increases the vulnerability of these networks to random 
failures, which is opposite to how networks containing only connectivity links behave. The dependency link in 
ref. 18 represents a static dependency relation between two nodes. Apparently, this assumption, i.e., that only a 
pair of nodes depends on each other, seems quite unreasonable; Bashan et al.21 theoretically analysed the effects 
of different distributions of dependency links on network robustness. For asymmetric dependency based on 
degree, Li et al.22 showed that an asymmetric dependency makes networks more robust than a symmetric one and 
that the percolation transition point is not sensitive to the number of asymmetric dependency nodes. Because of 
the situation in real networks in which one failed node may not always break the functionality of a dependency 
group, Wang et al.23 studied a conditional cascading failure model in which a dependency group fails only when 
more than a fraction of nodes fails. They found that the network becomes more robust as the fraction increases. 
Moreover, networks with dependency groups or links have also been studied in the form of interdependent net-
works and multilayer networks, also showing the fragility of networks when nodes depend on each other20,24. 
Among these efforts, some new phenomena have also been found, e.g., assortativity25 and coupling strength26 
decrease the robustness of interdependent networks, intersimilarity27 and short dependency distances28 have 
considerable effects on reducing the cascading failures, and percolation transitions are not always sharpened by 
making networks interdependent29.

From previous discussions, static dependency is a common assumption when investigating the dependency 
property. One key reason is that the dependency relations among nodes are considered to be fixed during the 
process of cascading failure, which simplifies the theoretical analysis of cascading failures tactfully regarding the 
dependency property. Yet, it seems more appropriate to introduce dynamical dependency groups to network evo-
lution partially due to the ubiquitousness of the dynamical dependency property in real networks. For instance, 
acquisitions and mergers have easily taken place in almost every industry30, resulting in dynamic changes of 
dependency groups in financial networks. In social networks, each individual reacts adaptively to its own chang-
ing propensities and capabilities, which leads to dynamical dependency groups31. In epidemiological networks, 
due to more and more frequent social personnel flow, accidentally coming in contact with others gives rise to 
time-dependent dependency groups. Therefore, it is necessary to explore cascading failures of networks under 
dynamical dependency.

The dependency property in networks has two sides. It is well known that the dependency property makes 
these networks more fragile under failure. However, the dependency property contributes to the recovery of 
failure nodes in dependency groups under certain conditions. In a dependency group, a fraction of nodes exists 
whose failure has no effect on the function of the group23. These failed nodes can be recovered, called dependency 
recovery, by means of the dependency property. For example, for communities in social networks, the process of 
social influence can promote convergence in behaviour32. Conformity behaviour makes the minority swim with 
the tide. Recently, network recovery mechanisms, such as targeted recovery33, greedy recovery34 and spontaneous 
recovery35 after a time period, have been investigated with respect to network robustness. All of these efforts 
indicate that network robustness is the gaming result between failure and the recovery of nodes, especially for 
networks with large time scale evolution, e.g., social and economic systems17. Therefore, the failure and recovery 
of dynamical dependency groups coexist in a variety of complex networks, inspiring us to explore how robust or 
vulnerable these networks behave.

The aim of this study is to determine the effect of dynamical dependency groups on the percolation of net-
works with a recovery mechanism. Our main contribution can be summarized as follows: (I) We simultaneously 
introduce dynamical dependency groups and the recovery mechanism to investigate the robustness of networks. 
By means of a general evolving network model, we can understand the cascading failures of real networks better, 
where varying dependency relation is widespread. Then, we find that the dynamical dependency among nodes 
results in disintegrating the network in the form of an abrupt phase transition after an initial random failure of 
nodes. (II) We consider the robustness discussed here as the gaming result between the failure mechanisms and 
recovery mechanisms of a network. Through our analysis, we find that dependency strength has a nonlinear effect 
on network robustness, which is significantly different from the linear effect on networks with static dependency. 
This robustness, reflecting the capacity of real networks against failure, provides insight to the network designer. 
This article is organized as follows. In the section of results, firstly, we present an evolving network model con-
sisting of failure mechanisms, a recovery mechanism and a dynamic mechanism of dependency groups. Then, we 
investigate the effects of dependency strength and the size of the dependency group on network robustness. The 
relevant discussions are given in the next section. By employing generating function techniques, we give analyti-
cal results based on our presented model in the methods section.

Results
An Evolving Network Model with Dynamical Dependency.  We here introduce a generic evolving 
model with dynamical dependency groups under the coexistence of cascading failure and a recovery mechanism 
as a basis of our theoretical and numerical analysis. Consider an arbitrary network of size N with degree distribu-
tion Pk. Initially, a fraction q of nodes is chosen randomly to form dependency groups with size g; all other nodes 
with the fraction (1 −​ q) do not belong to any dependency groups. After randomly removing a fraction − p̂1  of 
nodes and their links, the failed nodes may cause the other nodes to disconnect from the network (percolation 
process18). All of the failure nodes are called the initial removal 1 −​ p. Then, dependency groups undergo the 
dependency process and dependency evolution.
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•	 Dependency Process. If the fraction of the failure nodes of a group is equal to or larger than the dependency 
failure threshold, the group will fail, i.e., all nodes in this group will fail, even though they still connect to the 
network via connectivity links (dependency failure process23). If the fraction of the failure nodes of a group 
is less than or equal to the dependency recovery threshold, the group will recover, i.e., the failure nodes in 
this group will go back to normal (dependency recovery process). This dependency process, including the 
dependency failure process and the dependency recovery process, can be described by the following mathe-
matical model:








− ≥

− ≤

p g

p g

dependency failure, if 1

dependency recovery, if 1 , (1)

g

g

F

R

where pg is the fraction of functional nodes in this group; gF and gR are the failure threshold and the recovery 
threshold, respectively.

•	 Dependency Evolution. After one dependency process triggered by failed nodes and its subsequent percola-
tion process, previous dependency groups will evolve into new dependency groups. These new dependency 
groups still consist of randomly chosen nodes.

Each dependency process and its subsequent percolation process are called one iteration. During one iter-
ation, the failed nodes may trigger more failed nodes, recover partially from failure, or have no effect on other 
nodes. Therefore, the frequency of group change has no influence on network robustness. If the failed nodes 
trigger more failed nodes, the frequency only shifts the number of iterations in the cascading process; otherwise, 
the cascading process stops before the dependency groups change. To facilitate the theoretical analysis, our model 
assumes that the new dependency groups will replace previous dependency groups between each iteration. Once 
the cascade process begins, the dependency process and percolation process will occur alternately until there are 
no further nodes whose state is different from others. Note that under static dependency, our model is equivalent 
to the failure mechanism proposed by Wang et al.23 when ggR <​ 1; furthermore, when ggR <​ 1 and ggF <​ 1, our 
model reduces to the representative failure mechanism proposed by Parshani et al.18.

To illustrate our model mentioned above explicitly, we give a typical simple example, as shown in Fig. 1. We 
find that, by means of simulations, an initial failure of network nodes disintegrates the network in the form of an 
abrupt transition if the dynamical dependency always exists. The property, i.e., that the cascading process leads 
to an abrupt transition, exists for a wide range of topologies, including Erdős-Rényi (ER) and Barabási-Albert 
scale free (BA) networks, indicating that it is a general property of many networks (Fig. 2). This can be explained 
qualitatively by our model. Those networks with a small fraction of removed nodes will recover from failure. 
Conversely, due to a large fraction of removed nodes, the entire network will be fragmented.

Gaming between Failure and Recovery.  In reality, how to improve network robustness or protect a 
network from vulnerability remains an overarching concern. From Fig. 2, we can see that networks with a larger 
recovery threshold are more robust, while a smaller failure threshold makes the network more vulnerable. It 
seems good to strengthen robustness by increasing the recovery failure threshold and the failure threshold. 
However, we cannot continuously increase the recovery threshold and the failure threshold of dependency groups 
to enhance robustness due to the cost constraint. Under a certain recovery threshold and failure threshold, we 
pay more attention to identifying the network property with which we can improve network robustness against 
random failure. Through our analysis in the Methods section, we find that the dependency strength and size of 
the dependency group play important roles in the cascading process. The evolving behaviour of a network to 
cascading failure is affected significantly when these parameters are changed. Hence, we investigate the effects of 
the dependency strength and size of the dependency group on the network robustness.

Regarding the dependency strength of a network, previous studies18,26 have demonstrated that the dependency 
strength q has a critical effect on the robustness of networks: reducing the dependency strength results in a change 
from a first-order to a second-order percolation transition. Nevertheless, in our model, the existence of dynamical 
dependency among nodes can lead to an abrupt percolation phase transition. This is because the synergy between 
the cascading failure process and the cascading recovery process will result in failure or recovery of the whole net-
work when reaching a steady state. Moreover, it is observed that the dependency strength accelerates the cascad-
ing process of networks. Figure 3 shows the fraction of giant component at the end of cascading process α∞ and 
the number of iterative failures (NOI) of the same networks under different dependency strength. The networks 
include the ER network (pentagram) and BA network (square). With decreasing dependency strength q, the NOI 
increases significantly. This can be explained by Eq. (5) in the Methods section; when we reduce the dependency 
strength q, α∞ will depend less on the dependency part, which will delay the breakdown time. Furthermore, from 
Eq. (12), we reveal the nonlinear effect of dependency strength on network robustness.

Next, we study how the size of the dependency group affects the network robustness. According to Eq. (12), 
the critical point pc is dependent on the size g of the dependency group, the recovery threshold gR, the failure 
threshold gF and the dependency strength q. We all know that the cumulative probability density function of 
binomial distribution is defined as:
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0

It is an increasing function of probability p that increases with the total number of samples n if K >​ np, while 
it decreases with n if K <​ np. Therefore, the critical point pc increases with the size g of the dependency group if
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Figure 1.  Network with dynamical dependency group. The network is composed of nine nodes, eleven 
connectivity links (A), and two dependency groups (dashed lines). The relation among the nodes is time-
dependent in every cascading process, including a dependency process and a percolation process. In each 
group, if a fraction gF or more of nodes fail, the group will fail, i.e., all of the nodes of this group fail. If no more 
than a fraction gR of nodes fail, the group will recover, that is, the failing nodes in this group will go back to 
normal. gF =​ 0.5 and gR =​ 0.4 are taken as an example for this network. (A) The red nodes represent the initial 
random removal. The nodes removed due to the percolation process are marked in green. (B) Due to the 
dependency process, the nodes removed are marked in blue and the nodes recovered are marked in grey. (C,D) 
Due to dynamical dependency, the dependency process and percolation process result in change of the node’s 
state again. Each graph shows the state after one cascading process.

Figure 2.  The simulation results of an ER network and BA network for different gR. In simulations, the 
parameters are set as: N =​ 2 ×​ 104, k =​ 10, g =​ 10, q =​ 1, gF =​ 0.8. Simulation results show the abrupt phase 
transitions in the ER and BA networks. The fraction of nodes in the giant component at the end of the cascading 
process, α∞, is shown as a function of p. Note that in our model, the final state of the giant component is 0–1 
binary due to the dynamical dependency. Therefore, the value of α∞ is not the real size of the giant component 
of the steady state, but rather, the average of α∞ for several realizations of computer simulations.
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Furthermore, for cases under the situation pc >​ gF and pc <​ 1 −​ gR, the condition gF <​ 1 −​ gR is always met. Thus, 
we can obtain that pc decreases with g when:






>
< − .

p g
p g1

c

c

F

R

In real networks, there are no situations of pc <​ gF and pc >​ 1 −​ gR because, in general, gF >​ gR.
Roughly speaking, networks with a larger dependency group size are more robust if pc <​ gF and more vulner-

able if pc >​ gF. Simulation results show the validity of our analysis. In Fig. 4, we plot the values of pc of different 
size g of an ER network (pentagram) and BA network (square) for a given recovery threshold (0.1) and failure 
threshold (0.4). In these networks, because pc >​ gF, pc decreases with size g. This is consistent with the simulation 
results. Moreover, it has been shown from Fig. 4 that a network with a larger size of dependent groups will more 
slowly respond to initial removal, which can be reflected by the special behaviour characterizing the NOI in the 
cascading process. For a larger size of dependent groups, the response approaches steady state much more slowly. 
This is because the interval of gR <​ 1 −​ p <​ gF increases with the size g of the dependency group, that is, the fraction 
of the network without dependency groups, which equivalently reduces the dependency strength.

Discussion
Concerning the dynamical dependency in real networks, we propose a cascading failure model for a network 
with dynamical dependency groups and a recovery mechanism. In our presented evolving network model, the 
dependency relation among nodes is time-varying, which is more accordant with real networks, and the fail-
ing node could be recovered if the group it belongs to satisfies the recovery condition. Our presented model is 
more universal because it covers the model in which the failure of one or some nodes can lead to the failure of a 
dependency group when ggR <​ 1.

Figure 3.  Effects of different dependency strengths q on ER and BA networks. In simulations, the sizes of the 
ER network (pentagram) and BA network (square) are both set as 2 ×​ 104, the average degree is 10, the failure 
threshold gF =​ 0.8, and the recovery threshold gR =​ 0.2. The simulation results show the size of giant component 
α∞ and the number of iterative failures (NOI) of networks under different dependency strengths q =​ 0.3, 
q =​ 0.4, q =​ 0.6, q =​ 0.8. Note that the value of α∞ is the average of α∞ for several realizations of computer 
simulations.
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Both simulation and analytical results reveal that the network disintegrates in the form of an abrupt transition. 
According to analysis, the critical point of our model depends on the size of the dependent group, the depend-
ency strength, the recovery threshold and the failure threshold. Furthermore, we find that, in general, a larger 
dependency group always makes such a network more vulnerable when the failure threshold gF <​ pc, whereas for 
the failure threshold gF >​ pc, a network with a larger dependency group is more vulnerable. No matter the number 
of failure and recovery thresholds, a larger group size gives the network more power to resist the initial removal, 
which indicates that we have more time to recover the failure nodes before the network breaks down. By means 
of our evolving network model and the analysis, we can have a better understanding of the robustness of a real 
networked system with the dependency property.

Methods
To solve this model, the exact analytical solution of the dependency process and the percolation process can be 
obtained by means of the mean-field approximation and the generating function techniques, respectively. In a 
mean-field approximation, after initially removing a fraction 1 −​ p of nodes, 1 −​ p is the average probability that 
any node has failed. Let PR and PF be the probability that a dependency group is functioning and failing, respec-
tively. As the setting of our model for the typical case of q =​ 1, PR and PF can be obtained according to Eq. (1):
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where ⌊ ⌋g gR  is the largest integer smaller than or equal to ggR; ⌈ ⌉g gF  is the smallest integer larger than or equal to 
ggF.

Thus, the fraction of nodes that remain functional after the dependency process, gD(p), is:

= + − − .g p P p P P( ) (1 ) (4)D R R F

Following a similar approach for the general case of 0 ≤​ q ≤​ 1 yields the universal function gD(p):

= + − − + − .g p q P p P P q p( ) [ (1 )] (1 ) (5)D R R F

Analogous to gD(p), gP(p) is defined as the fraction of nodes belonging to the giant component of the connec-
tivity network after random removal of fraction 1 −​ p of the nodes. The percolation process can be solved analyt-
ically by using the apparatus of generating functions21,36,37. As shown in the generating function methods, we 
introduce the generating function of the degree distributions G0(ξ) =​ ∑​k P(k)ξk and the generating function of the 
underlining branching processes ξ ξ= ′ ′G G G( ) ( )/ (1)1 0 0 . Random removal of 1 −​ p nodes will change the degree 

Figure 4.  The critical point pc of the case versus g. The parameters are set as: k =​ 10, q =​ 1, gF =​ 0.4 and 
gR =​ 0.1. (a) The size of the giant component of steady state α∞ versus p. The pentagram symbol (ER network) 
and square symbol (BA network) represent simulation results, while the blue solid lines show the corresponding 
analytical prediction of Eq. (12). (b) As noted in ref. 18, the number of iterative failures (NOI) sharply increases 
when p approaches the critical point; thus the sharp peaks can identify the corresponding critical points pc for 
the abrupt transition region. Moreover, the peak of NOI increases with the size of the group, which indicates 
that there are longer times to recover for fault systems. Note that the value of α∞ is the average of α∞ for several 
realizations of computer simulations.
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distribution of the remaining nodes; then, the generating function of the new distribution is equal to the generat-
ing function of the original distribution, with the argument equal to 1 −​ p(1 −​ ξ)36. The fraction of nodes that 
belongs to the giant component after the removal of 1 −​ p nodes is ref. 37

= − − −g p G p u( ) 1 [1 (1 )], (6)P 0

where u =​ u(p) satisfies the self-consistency relation

= − − .u G p u[1 (1 )] (7)1

It follows from the previous analysis that the network will return back to normal if the number of nodes recov-
ering from failure, Δ​TR, is larger than the number of nodes failing, Δ​TF, at every iteration; otherwise, if Δ​TR <​ Δ​TF,  
the network will undergo crash. Therefore, it is natural to pay more attention to the critical point pc such that:

∆ = ∆ . (8)TF TR

Because functions gD(p) and gP(p) are non-decreasing, we can find the critical point of this model at the first 
iteration. For the first iteration, the number of recovery nodes Δ​TR is:
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The number of failed nodes in the dependency process, Δ​TDF, is:
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After the dependency process, there may be several nodes that need to be removed in the percolation process. 
Before this percolation process, the accumulated failure, including the initial removal of (1 −​ p) and the removal of 
(Δ​TR −​ Δ​TF)/N due to the dependency process, is equivalent to a single random removal of [1 −​ p0 −​ (Δ​TR −​ Δ​TF)/N],  
where p0 =​ p/(1 −​ u), u =​ G1[1 −​ p0(1 −​ u)]. Therefore, the number of failing nodes in the first cascading process, 
Δ​TF, is:

∆ = ∆ + ∆
∆ = + ∆ − ∆ − + ∆ − ∆N p N g p N( ( )/ )(1 ( ( )/ )) (11)

TF TDF TPF

TPF 0 TR TF p 0 TR TF

According to Eq. (8), the critical point of this model can be obtained. Note that Δ​TF or Δ​TR is not the real value of 
every dependency group, just a mean value of all groups. Therefore, phase transition occurs at around the critical 
point for real networks.

The formalism presented above is generic and applicable to any random network with arbitrary degree distri-
bution. In the case of a common ER random network whose degrees are Poisson distributed38,39, the problem can 
be solved explicitly. Let the average degree of the network be k. Then, the generating function can be written as 
G1(ξ) =​ G0(ξ) =​ exp [k(ξ −​ 1)]. Substituting these generating functions into Eqs (6) and (7), we derive gP(p) =​ 1 −​ u 
and u =​ exp (kp(u −​ 1)), respectively. Thus, Δ​TPF =​ Np1u, where p1 =​ p0 +​ (Δ​TR −​ Δ​TF)/N and u =​ exp (kp1(u −​ 1)). 
Furthermore, we get the following equations for the critical point pc:

Figure 5.  Comparison between simulations and theoretical results of critical point pc versus gR. The 
results are shown for an ER network with k =​ 10, g =​ 10, q =​ 1, and gF =​ 0.8. The theoretical results (redline) are 
calculated according to Eq. (12) and compared to several realizations of computer simulations for networks of 
size N =​ 2 ×​ 104.
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Equation (12) gives the relation of the critical point pc, the failure threshold gF, the recovery threshold gR and 
the dependency strength q. To validate the theoretical results, we carry out simulations on an ER network of 
size N =​ 2 ×​ 104 and plot the size of the giant component at the end of the cascading process as a function of the 
recovery threshold gR in Fig. 5. It is observed from Fig. 5 that the simulation results agree well with the theoretical 
results.
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