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Neural integration underlying naturalistic prediction
flexibly adapts to varying sensory input rate
Thomas J. Baumgarten 1,2, Brian Maniscalco1, Jennifer L. Lee3, Matthew W. Flounders 1, Patrice Abry4 &

Biyu J. He 1,5✉

Prediction of future sensory input based on past sensory information is essential for organisms

to effectively adapt their behavior in dynamic environments. Humans successfully predict future

stimuli in various natural settings. Yet, it remains elusive how the brain achieves effective

prediction despite enormous variations in sensory input rate, which directly affect how fast

sensory information can accumulate. We presented participants with acoustic sequences cap-

turing temporal statistical regularities prevalent in nature and investigated neural mechanisms

underlying predictive computation using MEG. By parametrically manipulating sequence pre-

sentation speed, we tested two hypotheses: neural prediction relies on integrating past sensory

information over fixed time periods or fixed amounts of information. We demonstrate that

across halved and doubled presentation speeds, predictive information in neural activity stems

from integration over fixed amounts of information. Our findings reveal the neural mechanisms

enabling humans to robustly predict dynamic stimuli in natural environments despite large

sensory input rate variations.
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The sensory information an organism receives in the natural
environment is highly structured spatiotemporally due to
statistical regularities inherent to natural stimuli1,2. Such

regularities give rise to informational redundancy3, which
organisms can exploit to effectively predict future stimuli. This
allows organisms to generate predictions about their environment
and produce adaptive behaviors, providing key benefits for
survival4. Unsurprisingly, prediction of future stimuli has been
empirically shown in humans in multiple contexts, ranging from
visual scene perception5 and gaze control6 to object recognition7

and auditory speech perception8. Clinically, deficits in sensory
prediction are considered to be a fundamental impairment of
information processing in multiple psychiatric disorders9.

Effective stimulus prediction relies on correctly extrapolating
past sensory information. This requires the nervous system to
integrate sensory information over time, a process that we refer to
as sensory history integration (SHI). Specifically, organisms need
to accumulate past sensory information to extract statistical
regularities (e.g., a melody), as such regularities cannot be infer-
red from single stimuli (e.g., a tone) alone. However, SHI is more
than mere accumulation, as it requires selection of prediction-
relevant sensory information and continuous updating to account
for any changes in sensory input (e.g., the start of a new song).
SHI thus represents a core computation for sensory prediction, as
it provides a dynamically updated representation of past sensory
input, from which a limited subset of probable future stimuli can
be derived.

A central challenge for SHI is to determine how much past
information should be integrated to ensure reliable predictions.
Time-varying natural stimuli contain long-range temporal cor-
relations that are rich and complex10. Integrating insufficient
amounts of information yields inaccurate estimation of stimulus
statistics and hence poor prediction. However, integration cannot
reach back into sensory history infinitely, as the amount of
information represented in neural systems is limited by biological
and computational resources11. Neural implementation of SHI
must therefore find a compromise between the minimal inte-
grated information necessary for a sufficiently precise prediction
and an integration bottleneck due to biological constraints.

In addition, the rate with which the nervous system receives
sensory information is crucial for SHI, as it determines how
quickly sensory information can in principle be integrated. The
rate of sensory information arrival varies greatly in natural
environments, for example in bird songs12 and human speech13.
A previous fMRI study showed that neural responses in linguistic
and extra-linguistic brain areas can flexibly scale in time across a
2–3-fold change in the speed of speech stimuli14. However, it
remains unknown how variations in the rate of sensory infor-
mation arrival influence SHI supporting prediction of future
sensory input. Here, we address this open question by testing two
alternative hypotheses about SHI underlying predictive neural
computation given varying rates of sensory information arrival.

First, SHI may operate over fixed time windows. According to
this hypothesis, the amount of neurally integrated sensory infor-
mation inversely scales with stimulus presentation rate (Fig. 1a,
Hypothesis 1: Temporal bottleneck). This hypothesis is supported
by evidence showing that sensory processing has an intrinsically
stable (i.e., input-independent) temporal regime. Mechanistically,
fixed temporal limitations in neural information processing can
result from low-level biophysical constraints15,16. At the population
level, prevalent neural oscillations in sensory cortices operate at
intrinsically stable frequencies, which are tightly linked to stimulus
processing17,18 and perception19,20.

Alternatively, SHI may operate over fixed amounts of infor-
mation, which requires integration windows to scale flexibly in
time to adapt to different stimulus presentation rates (Fig. 1a,
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Fig. 1 Hypotheses, stimuli, and paradigm. a Hypotheses. Neural sensory
history integration (SHI) can be limited by a fixed duration (Hypothesis 1,
highlighted red, temporal bottleneck) or a fixed amount of information
(Hypothesis 2, highlighted blue, informational bottleneck), resulting in a
different number of neurally integrated tones (k0) across-tone duration
conditions. b Full stimulus set. Tone sequences consisted of 34 tones [black
squares] ordered by temporal dependence level (β, rows) and theoretically
predicted final tone (p�34 [color-coded arrows], columns). For each beta
level, we generated three sequences with tone pitch between 220 and 880
Hz. Sequences were chosen to have a p�34 lower than 440 Hz (column 1,
blue arrows), equal to 440Hz (column 2, turquoise arrows), or higher than
440 Hz (column 3, yellow arrows). For all sequences, the penultimate tone
(p33) was 440 Hz. The final presented tone (p34 [empty black squares])
was pseudo-randomly drawn from one of six possible tone pitch values at
4, 8, or 12 semitones above or below 440Hz. Sequences were presented
with different tone durations (150ms, 300ms, 600ms per tone). c Trial
structure. After stimulus presentation, subjects rated the final tone pitch
likelihood given the previous sequence information on a scale of 1–5.
Subsequently, subjects rated the trend strength (i.e., beta level) of the
presented sequence on a scale of 1–3.
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Hypothesis 2: Informational bottleneck). This hypothesis is sup-
ported by behavioral studies in humans showing robust percep-
tual performance across varying stimulus presentation rates21,22.
Neural evidence also suggests the plausibility of flexible SHI: e.g.,
at the single-cell level, neurons in the primary auditory cortex
process acoustic features at multiple timescales23; at the popula-
tion level, fMRI responses flexibly scale to stimulus presentation
speed14. Computationally, recurrent neural networks can recog-
nize identical stimuli presented at different speeds24.

At present, the relevance of these findings to predictive neural
computation remains unclear. To adjudicate between the temporal
bottleneck and informational bottleneck hypotheses regarding
neural SHI underlying predictions about future sensory input, we
presented human subjects with acoustic sequences exhibiting pre-
cisely manipulated predictive information and parametrically varied
presentation speed. Importantly, we constructed these stimuli to
capture the temporal regularities pervasive in the natural environ-
ment in order to investigate predictive computation based on nat-
ural temporal regularities10,25. We present findings demonstrating
that neural predictions integrate a constant number of stimuli
across a four-fold change in stimulus presentation rates and are
thus constrained by an informational bottleneck.

Results
Paradigm and behavior. We presented subjects with auditory
tone sequences exhibiting statistical regularities similar to natural
acoustic stimuli (e.g., natural soundscapes, speech, and music).
Within each tone sequence, pitch fluctuated over time in a
temporally autocorrelated manner, such that the pitch of a given
tone was statistically dependent on the pitch of preceding tones
within that sequence. Specifically, fluctuations adhered to a
temporal power spectrum characterized by P∝ 1 / f β, where 0 <
β < 2, thereby mimicking the temporal statistical regularities
commonly seen in dynamical natural stimuli1,26,27. In previous
work, we have developed a mathematical framework to precisely
manipulate predictive information in such sequences with nat-
uralistic temporal regularities25.

In each trial, we presented subjects with an auditory tone
sequence consisting of 34 concatenated, nonoverlapping pure
tones without interstimulus interval (Fig. 1b; see Methods). Tone
duration was kept constant within a sequence but systematically
varied across trials (Fig. 1b, bottom), producing three conditions
differing in sequence presentation speed: fast (150 ms/tone),
medium (300 ms/tone), slow (600 ms/tone). Pitch fluctuations
within each sequence exhibited one of three temporal dependence
levels (quantified by the β parameter in the temporal power
spectrum28), ranging from weak (β= 0.5) to medium (β= 0.99)
to strong (β= 1.5). Importantly, all sequences converged on the
same pitch (440 Hz) for the penultimate (33rd) tone, at which
timepoint each sequence’s unique history predicted a specific
upcoming tone pitch (p*34). This crucial design provided a time
window wherein sensory input was constant across trials, yet
sequence history and the predicted upcoming sensory input
differed across trials, allowing us to separate instantaneous
sensory processing from predictive processing building up over
the course of the sequence.

For each sequence, the theoretically predicted final tone pitch
(p*34) was derived from all preceding tone pitches in the
sequence10,25. p*34 was not actually presented to the subject.
Instead, the pitch of the actually presented 34th tone (p34) was
pseudo-randomly drawn from six possible values located four,
eight, or twelve semitones below/above 440 Hz. Consequently, for
a listener who can extract predictive information provided by the
temporal dependencies between tone pitches within a sequence,
their judgment of final tone pitch likelihood—capturing their

perception of how well the last tone fits into the preceding tone
sequence—should be a function of both the presented final tone
pitch (p34) and the theoretically predicted final tone pitch (p*34).
By rating final tone pitch likelihood on each trial (Fig. 1c),
subjects therefore provided an indirect index of their prediction
of the final tone pitch.

To investigate the behavioral effect of final tone pitch
prediction, subjects’ final tone pitch likelihood ratings were
submitted to a three-way repeated-measures ANOVA (factors: 3
(tone duration) ´ 3 (p*34) ´ 6 (p34); all n= 20; see Methods).
There was a significant main effect of p34 [F2,41= 16.22, p < 0.001,
η2p = 0.46], accounting for the inverse U-shaped function where
extreme p34-values were rated as less likely (Fig. 2a). Importantly,
a significant interaction was found between p*34 and p34 [F2,46=
36.96, p < 0.001, η2p = 0.66], suggesting that subjects’ likelihood
rating of the final tone depended on its predicted value given the
previous sequence history. Across-tone duration conditions,
when p34 was high (880 Hz), participants rated it as more likely
when p*34 was also high (paired t-test for low p*34 vs high p*34, t19=
−8.66, p < 0.01, d=−1.94). Likewise, when p34 was low (220 Hz),
participants rated it as more likely when p*34 was also low (low p*34
vs. high p*34, t19= 5.12, p < 0.01, d= 1.15).

A significant interaction effect between p*34 and p34 on final
tone pitch likelihood ratings was further found within each tone
duration condition using a two-way repeated-measures
ANOVA (factors: 3 (p*34) ´ 6 (p34); 150 ms: [F5,97= 11.94, p=
0.001, η2p = 0.39]; 300ms: [F4,79= 20.6, p < 0.001, η2p = 0.52];
600ms: [F4,71= 25.09, p < 0.001, η2p = 0.57], Fig. 2b), demonstrating
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Fig. 2 Subjects’ behavior demonstrates effective final tone pitch
prediction (n= 20 participants). a Final tone pitch likelihood ratings
averaged across all tone duration conditions. Final tone pitch likelihood
rating (y-axis; 1= unlikely, 5= likely) is plotted as a function of presented
final tone pitch (p34 [empty black squares], x-axis) and theoretically
predicted final tone pitch (p�34; color-coded). p

�
34 tone pitch is indicated on

the x-axis by color-coded arrows. A repeated-measures ANOVA shows a
significant interaction between p34and p�34 [F2,46= 36.96, p < 0.001, η2p =
0.66], indicated by the crossover of the blue and yellow lines. Dots
represent individual participant data. Data are presented as mean ± SEM
across participants. b Final tone pitch likelihood ratings per tone duration
condition. Same format as a.
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that subjects successfully predicted final tone pitch across a four-
fold variation in stimulus presentation rate. Significant p34 main
effects and p*34 ´ p34 interactions effects could further be replicated
for both the first and the second half of the experiment
(see Supplementary Notes for details), suggesting that behavioral
performance is stable across the course of the experiment.

Correlates of prediction and sensory history integration in
slow arrhythmic neural activity. To elucidate neural activity
underlying predictive performance, we first investigated if neu-
romagnetic activity during the penultimate (33rd) tone (p33)
contains information about the theoretically predicted final tone
pitch, p*34 (left inset in Fig. 3a; see Methods). Since the pitch of p33
was constant (440 Hz) across all trials, this analysis was able to
identify neural activity underlying prediction without being

affected by instantaneous sensory processing. Specifically, we
computed a linear regression of neuromagnetic activity during p33
(averaged across 50-ms-length sliding windows for each sensor)
as a function of p*34. Analyzed neural activity was not baseline
corrected, which allowed us to capture the continuous buildup of
predictive information emerging over the course of the tone
sequence25,29.

Group-level sensor clusters carrying significant predictive
information about p*34 were identified for all tone duration
conditions and are subsequently labeled as predictive processing
clusters (all n= 20). The results of the medium (300 ms) tone
duration condition (Fig. 3a) were selected to define sensors of
interest used in further analyses. Two significant bilateral
predictive processing clusters were identified in the first time
window (0–50 ms: left cluster: 41 sensors, p= 0.005, dcluster = 5.2;

a Linear effect of p*34 prediction on p33 ERF (300 ms tone duration)
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Fig. 3 Slow arrhythmic neuromagnetic activity contains predictive information about upcoming tone pitch (n= 20 participants). a Prediction analysis
schematic and group-level neuromagnetic correlates of theoretically predicted final tone pitch (p�34 [color-coded]) prediction for data from the 300ms
tone duration condition. Non-baseline-corrected neuromagnetic activity averaged across 50ms time windows during the penultimate tone (p33) was
regressed onto p�34 to reveal sensor clusters where neuromagnetic activity is predictive of future tone pitch. Topoplots show t-values corresponding to a
group-level one-sample t-test on regression coefficients for each sensor and time window. White dots indicate significant predictive processing clusters (all
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p�34, averaged across sensors for the left (bottom) and right (top) predictive processing cluster defined in the 50–100ms time window. Data are presented
as mean ± SEM across participants. b Event-related fields (ERF) over the course of tone sequence presentation (p1 = tone 1 within the current sequence)
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predictive processing cluster defined from the 50–100ms time window (inset and Fig. 3a). Bottom panel: ERF computed for the early sensory filter (inset
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permutation test, two-tailed). Data are presented as mean across participants.
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right cluster: 27 sensors, p= 0.024, dcluster = 2.9, cluster-based
permutation test, two-tailed; see Methods) and the second
time window (50–100 ms: left cluster: 38 sensors, p= 0.016,
dcluster = 3.8; right cluster: 29 sensors, p= 0.024, dcluster = 2.8).
In the remaining time windows, the left predictive processing
cluster remained significant (100–150 ms: 34 sensors, p= 0.014,
dcluster = 3.8; 150–200 ms: 43 sensors, p= 0.002, dcluster = 5.3;
200–250 ms: 42 sensors, p= 0.002, dcluster = 6; 250–300ms:
34 sensors, p= 0.017, dcluster = 3.3). Averaged across sensors
within a cluster, neural activity during the penultimate tone (p33,
always at 440 Hz) varied according to the predicted upcoming
tone pitch (p*34; right inset in Fig. 3a shows an illustrative example
for the left and right cluster at 50–100 ms). Analysis of short
(150 ms) and long (600 ms) tone duration conditions revealed a
comparable topography (Supplementary Fig. 1), although only
the right predictive processing cluster reached significance
therein. In addition, the neural prediction effects were relatively
stable across the first and second halves of the experiment
(see Supplementary Notes and Supplementary Fig. 2).

We next investigated how the predictive information contained
in neural activity builds up over the course of tone sequence
presentation. To this end, we plotted time-resolved neural activity
(i.e., broadband event-related fields) over the course of the entire
sequence and contrasted it between tone sequences converging on
low vs. high p*34 (see Methods). In predictive processing clusters,
neural activity increasingly diverged between low vs. high p*34
trials, manifesting in continuous epochs—towards the end of the
sequence—showing a significant difference in all tone duration
conditions (see Fig. 3b, top for an example from the 300 ms
condition; see Supplementary Fig. 3 for other conditions).

As a comparison, we also investigated neural activity projected
through a spatial filter focusing on early sensory processing
(subsequently labeled early sensory filter). Spatial filters were
constructed based on sensor weights determined by the sensor-
wise signal contribution during time windows covering the M100
evoked response to each tone (Fig. 3b, bottom). The M100
response represents a common auditory functional localizer30

known to focus on the initial stages of auditory stimulus
processing in Heschl’s gyrus and primary auditory cortex31.
Neural activity in this filter exhibited prominent event-related
fields following the onset of each tone. However, no epochs
showing a significant difference between low vs. high p*34 trials
emerged in any tone duration condition (Fig. 3b, bottom; see
Supplementary Fig. 3 for other conditions).

Since all predictive information must stem from integration of
past sensory information, we next quantitatively assessed how
SHI is embodied in neural activity. To this end, we determined
how neuromagnetic activity at a given moment depends on the
pitch of previously presented tones (analysis schematic in Fig. 4;
see Methods). Non-baseline-corrected neuromagnetic activity
after the onset of a given tone during the 2nd half of a sequence
was extracted and averaged across 50-ms-length time windows.
Subsequently, the activity at each sensor and time window was
regressed onto the pitch of the current tone and k0 previous tones,
with k0 ranging from 0 to 15 (corresponding to 1–16 integrated
tones). A cross-validation approach was used to determine the
k0-value exhibiting the best model fit for the experimental data;
these best-fit k0-values indicate the number of previously
presented tones whose pitch influences neural activity at the
present moment. To statistically assess if SHI effects were
significant, k0-values from experimental data were compared
against a null distribution generated by repeating the same
analysis but with shuffled tone order within each sequence
(k0shuff ), corresponding to the null hypothesis that there is no
systematic integration of previously presented tones. Widespread

sensor clusters exhibiting significant SHI effects were identified
for all tone duration conditions and across all time windows
(see Supplementary Fig. 4). Next, we quantitatively assessed the
dependence of neural SHI underlying prediction on stimulus
presentation rate, and adjudicated between the informational
bottleneck and temporal bottleneck hypotheses.

Prediction relies on integrating a stable number of tones across
stimulus presentation speeds. According to our two alternative
hypotheses, SHI underlying prediction might operate over fixed
time windows (Hypothesis 1: Temporal bottleneck) or fixed
amounts of information (Hypothesis 2: Informational bottle-
neck). When the rate of stimulus presentation changes, these two
hypotheses predict that the number of tones integrated by neural
activity (estimated by k0) either scales accordingly (Hypothesis 1)
or remains the same (Hypothesis 2; Fig. 1a). Thus, Hypothesis 1
predicts a k0150msTD ¼ 2k0300msTD ¼ 4k0600msTD relationship
between k0 across-tone duration conditions. Hypothesis 2, on the
other hand, predicts k0150msTD ¼ k0300msTD ¼ k0600msTD. These two
predictions can be visualized as two orientation lines in a three-
dimensional space, where each dimension corresponds to
k0-values from a given tone duration condition (Fig. 4-III, red:
duration line corresponding to Hypothesis 1; blue: information
line corresponding to Hypothesis 2).

To test these hypotheses, we investigated where neural data lie
in relation to these two hypothesis-derived orientation lines. To
this end, we adopted two complementary approaches. First, we
tested sensors within predictive processing clusters (i.e., sensor
clusters showing a significant p*34 prediction effect) to focus on
neural SHI underlying sensory prediction. Second, we made no a
priori sensor selection and tested the two hypotheses across the
entire sensor array (with cluster-based permutation test to correct
for multiple comparisons) to check whether there is positive
evidence for each hypothesis.

To focus on SHI underlying the p*34 prediction effect,
comparison of k0-values across different tone duration conditions
was performed for predictive processing clusters defined from the
300 ms tone duration data (analysis schematic in Fig. 4; see
Methods). For each sensor in the predictive processing cluster, its
k0-values from the three tone duration conditions computed for
time windows corresponding to the respective predictive proces-
sing cluster were plotted as a point in the 3-D space (Fig. 4-III,
left, green dots for illustration). To determine the overall
magnitude of k0-values (i.e., the length of SHI), we computed
vector norm as the distance of each point to the origin. To
determine the distance between neural data and hypothesis-
derived orientation lines, we computed the angle between a vector
connecting the origin and neural data and the respective
orientation lines. Vector norm and angle were averaged across
sensors and statistically evaluated by comparison against a null
distribution generated from the norm and angle of shuffled data
(i.e., k0shuff -values from the three tone duration conditions; Fig. 4-
III, left, gray dots and center histograms).

Results for both sensor clusters during the 50–100 ms time
window following tone onset are presented in Fig. 5a (see
Supplementary Fig. 5 for the other time windows). Vector norm
for k0-values was found to be significantly larger than expected
under the null distribution (mean norm: 10.67 ± 0.43 (SD), p <
0.001; upper histograms in Fig. 5a and Supplementary Fig. 5; all
n= 20), as can be seen from the real data lying further away from
the origin than shuffled data (3-D plots). This suggests that there
is significant sensory history integration in predictive processing
clusters, as expected. Vector angle to the information line for
k0-values was significantly smaller than expected under the null
distribution in the left sensor cluster (mean angle: 0.055 ± 0.033,
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p= 0.014; left middle histogram in Fig. 5a; data from the
100–150 ms time window showed a trend effect: mean angle:
0.061 ± 0.027, p= 0.065, Supplementary Fig. 5b). No significant
effect was found for vector angle to the duration line in any of the
predictive processing clusters. In a control analysis (Fig. 5, 2-D
plots), we projected data onto a two-dimensional plane defined by
the two hypothesis-derived orientation lines and recomputed
vector norm and vector angle towards both orientation lines in
this 2-D plane, which replicated all results from the 3-D analysis
(Supplementary Table 1).

To investigate how SHI operates outside of sensors under-
lying prediction, we performed a data-driven analysis across the
entire sensor array for time windows shared across all tone
duration conditions (0–150 ms). For each sensor, k0-values from
each tone duration condition were used to compute vector norm
and vector angle to each hypothesis-derived orientation line.
Comparison of these values against the null distribution derived
from shuffled data (k0shuff ) allowed us to identify sensor clusters

showing significant effects (p < 0.05, cluster-based permutation
test, one-tailed; all n= 20; see Methods). Vector norm was
significantly larger than expected under the null distribution
(in the top 5th percentile of shuffled data) in widespread
sensor clusters covering the whole head across all time windows
(0–50 ms, 267 sensors, mean norm: 10.46 ± 0.67, p < 0.001,
dcluster = 101; 50–100 ms: 260 sensors, mean norm: 10.45 ± 0.64,
p < 0.001, dcluster = 76.9; 100–150 ms: 268 sensors, mean norm:
10.44 ± 0.67, p < 0.001, dcluster = 82.7; Supplementary Fig. 6),
which is in line with the aforementioned SHI results
(Supplementary Fig. 4). Analysis of vector angle towards the
information line revealed a right central-lateral sensor cluster in
the 0–50 ms window that was significantly smaller than expected
under the null distribution (in the bottom 5th percentile of
shuffled data; Fig. 5b; 4 sensors, mean angle: 0.017 ± 0.008, p=
0.042, dcluster = 2). Notably, these significant sensors completely
overlapped with the right predictive processing cluster during
the same time window (see Fig. 3a), reinforcing our conclusion
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that SHI underlying predictive computation operates over a
fixed amount of information. For vector angle towards the
duration line, an anterior-central sensor cluster where angles
were significantly smaller than expected under the null
distribution was present from 0–100 ms (Fig. 5c; 0–50 ms:

19 sensors, mean angle: 0.39 ± 0.029, p= 0.008, dcluster = 4.4;
50–100 ms: 15 sensors, mean angle: 0.4 ± 0.027 (SD), p= 0.011,
dcluster = 3.8). This cluster had minimal overlap with predictive
processing clusters (2/19 sensors for 0–50 ms; 1/15 sensors for
50–100 ms). Thus, positive evidence for the temporal bottleneck
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Fig. 5 Sensory history integration operates differently across spatial locations, but predictive processing clusters exhibit flexible scaling to sensory
input rate (n= 20 participants). a Across-tone duration-condition comparison of the number of preceding tones best explaining neuromagnetic activity
(k0-values) from the left and right predictive processing cluster (300 ms tone duration condition, 50–100ms time window). k0-values from experimental
data in both sensor clusters (3-D and 2-D plots, green dots) reside significantly (top histograms, p < 0.001, nonparametric permutation test, one-tailed)
further away from origin at k0 ≈ 6 (i.e., 7 integrated tones) than shuffled data (gray dots). Experimental k0-values in the left sensor cluster reside
significantly closer to the information line than shuffled data (left middle histogram, p= 0.014, nonparametric permutation test, one-tailed). Additional
results from predictive processing clusters defined using other time windows are shown in Supplementary Fig. 5. b A data-driven analysis across the
entire sensor array identified a sensor cluster in which SHI behaves according to the informational bottleneck hypothesis. This sensor cluster overlaps
with the right predictive processing cluster shown in a. Topoplot shows the angle between experimental data and the information line for all sensors.
Significant sensors where the angle is smaller than shuffled data are shown in white (p < 0.05, cluster-based permutation test, one-tailed). Here,
k0-values reside significantly further away from origin (left histogram, p < 0.001) and significantly closer to the information line than shuffled data
(middle histogram, p < 0.001). c A sensor cluster in which SHI behaves according to the temporal bottleneck hypothesis, identified by the data-driven
analysis. This sensor cluster has minimal overlap with the predictive processing clusters. Topoplot shows the angle between experimental data and the
duration line for all sensors, and significant sensors where the angle is smaller than shuffled data are shown in white (p < 0.05, cluster-based
permutation test, one-tailed). Here, k0-values reside significantly further away from origin (left histogram, p < 0.001) and significantly closer to the
duration line than shuffled data (right histogram, p < 0.001).
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hypothesis exists, but appears spatially distinct from predictive
neural activity.

Neural and behavioral indices of sensory history integration
are correlated across subjects. Finally, we investigated whether
neural and behavioral effects of SHI are correlated across subjects.
Similar to the above analysis, we first investigated sensors in
predictive processing clusters and then conducted a data-driven
analysis across the entire sensor array. To obtain a summary
metric of neural SHI, we averaged k0-values across the three tone

duration conditions for each sensor and time window shared
across all tone duration conditions (0–150 ms). To measure the
influence of past tone pitches on the final tone pitch likelihood
ratings (i.e., an influence of sensory history on a subject’s pre-
diction responses), we used the F-statistic from the p*34 × p34
interaction effect derived from a three-way repeated-measures
ANOVA (factors: tone duration, p*34, p34; dependent variable:
final tone pitch likelihood ratings). This F-statistic quantifies how
strongly the subject’s final tone pitch likelihood rating depends
not only on the presented final tone pitch (p34), but also on the
theoretically predicted final tone pitch given the previous
sequence (p*34).

In the first analysis, we assessed predictive processing clusters
defined from the 300 ms condition (Fig. 3a). k0-values were
averaged across sensors in the predictive processing cluster for
each subject, and a significant negative correlation with the
behavioral SHI metric was found for the right predictive
processing cluster in the first two time windows (0–50 ms:
Spearman ρ=−0.55, p= 0.014; 50–100ms: ρ=−0.56, p=
0.012; both p < 0.05 after FDR correction; all n= 20; Fig. 6a).
This suggests that subjects whose predictive neural activity
integrates a smaller number of tones (to a minimum of four)
exhibited a stronger behavioral prediction effect (i.e., a larger p*34
× p34 interaction effect on final tone pitch likelihood ratings).
Mechanistically, this finding can be explained by the considera-
tion that integrating only the very last few tones produces
exaggerated predictions for the upcoming final tone pitch
(Fig. 1b): when p*34 is low, the subject’s prediction might be even
lower, which would result in an excessive p*34 × p34 interaction
effect, producing an overshoot in the present metric for capturing
predictive behavior.

Next, we performed a data-driven analysis across the entire
sensor array. k0-values in a right hemisphere sensor cluster were
found to negatively correlate with behavioral SHI effects as
measured by the p*34 × p34 interaction effect (Fig. 6b; 50–100 ms:
14 sensors, average ρ: −0.61, p= 0.002, dcluster = 6.5; two-tailed
cluster-based permutation test; n= 20). This sensor cluster
partially overlaps with the predictive processing clusters, reinfor-
cing our conclusion that SHI underlying predictive neural activity
correlates with an individual subject’s predictive capability.

Discussion
Effective prediction of future sensory input requires the nervous
system to successfully integrate past sensory information.
Variations in the rate with which the nervous system receives
sensory information represent a fundamental computational
challenge for prediction. Although such variations in sensory
input rate are pervasive in natural settings12,13, it remains
unclear how the nervous system achieves effective integration of
sensory information and generates robust predictions in spite of
such variation. Here, we investigated if neural integration win-
dows subserving prediction are determined by a fixed temporal
duration or a fixed amount of information (Fig. 1a). To adju-
dicate between these hypotheses, we systematically varied the
presentation speed of stimulus sequences which capture the
temporal statistical regularities of natural stimuli and assessed
how the neural integration window depends on presentation
speed. After confirming that subjects were able to make effective
predictions across all presentation speeds, we found that the
number of stimuli integrated in neural activity underlying pre-
diction remains stable across a four-fold change in presentation
speed (Fig. 5a). This indicates that neural integration windows
subserving prediction are limited by an informational bottleneck
and scale flexibly in time. Moreover, the length of neural
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Fig. 6 Number of neurally integrated tones correlates with behavioral
indices of sensory history dependence across subjects (n= 20
participants). a Across-subject Spearman correlation of the number of
preceding tones best explaining neuromagnetic activity (k0-values;
averaged across-tone duration conditions and sensors in predictive
processing clusters defined from the 300ms condition) and F-statistics of
the interaction effect between theoretically predicted final tone pitch (p�34)
and presented final tone pitch (p34; derived from a three-way repeated-
measures ANOVA, factors: tone duration, p�34, p34). In the scatter plots,
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who received behavioral training, for whom data from the behavioral
training session (with identical task paradigm as during the MEG session)
were used. Results obtained using behavioral data from the MEG session
for all subjects were qualitatively similar. Significant negative correlations
(0–50ms: p= 0.014; 50–100ms: p= 0.012; all p < 0.05 after FDR
correction) were found for right sensor clusters at 0–50ms and 50–100
ms. b Sensor-wise across-subject Spearman correlation of k0-values
(averaged across-tone duration conditions for each sensor and TW) and
F-statistics of the p34 × p�34 interaction effect (derived from a three-way
repeated-measures ANOVA, factors: tone duration, p�34, p34) computed
across the entire sensory array. White dots indicate significant sensor
clusters (p= 0.002, cluster-based permutation test, two-tailed).
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integration windows in sensors carrying predictive information
correlated with the behavioral sensory history integration effect
across subjects.

Flexibly scaling neural integration windows discovered
herein represent a core mechanism underlying predictive
computation based on natural temporal regularities. Previous
studies have shown successful sensory prediction despite
varying sensory input rate at the behavioral level21,22, as well as
adaptive neural responses to time-varying sensory input at the
single-cell23 and population14,21 level. The connection of these
findings to predictive computation, however, remained unclear.
Using a novel and robust paradigm to tease apart predictive
processing from instantaneous sensory processing, we were able
to specifically probe the form of SHI underlying predictive
computation and fill in the gap between these previously
separate fields of inquiry.

Although predictive neural activity integrated over a fixed
number of stimuli, analysis of the entire sensor array revealed that
neural integration in frontal sensors acted according to the
temporal bottleneck hypothesis (Fig. 5c). This frontal effect was
spatially distinct from sensors in which neural activity contained
predictive information. Our results therefore demonstrate that
both temporally fixed and flexible integration windows govern
SHI, but effects are located in spatially distinct sensor clusters,
with flexible integration directly underlying predictive computa-
tion. The finding of parallel yet distinct modes of SHI beckons the
question of how these integration processes are connected, which
is an important topic for future investigation. One possibility is
that temporally fixed integration windows in frontal areas act as
temporary information storage32, which itself is not directly
linked to prediction, but allows processes underlying prediction
to selectively read out (or compare) relevant information origi-
nating in the past to optimize SHI subserving prediction.

Our study complements previous human neuroimaging work
showing a hierarchy of temporal receptive windows involved in
process memory33, as well as animal work showing a hierarchy of
intrinsic timescales across the cortex34. At the lower end of this
hierarchy, sensory cortices, with short temporal receptive win-
dows (up to hundreds of milliseconds in humans), show rapid
and transient responses to external stimulation35. Consistent with
this finding, we observed instantaneous but short-lived responses
to sensory input in the early sensory filter (Fig. 3b). At the other
end of the hierarchy, higher-order association cortices are known
to have long temporal receptive windows (spanning multiple
seconds up to minutes in humans), enabling task-related accu-
mulation of sensory information underlying decision making and
working memory35,36. Here, we found that predictive information
localized to anterior-lateral sensors overlying associative areas
(Fig. 3a), and neural activity in these sensors contains a con-
tinuous buildup of predictive activity spanning multiple tones
over extended periods of time (Fig. 3b). Importantly, the present
study empirically connects this rich prior literature on a hierarchy
of timescales with predictive computation (but see ref. 37 for a
computational approach), revealing that predictive neural activity
directly emerges from flexible neural integration of sensory his-
tory with an extended time scale.

The respective contributions of the left and right hemisphere to
sensory history integration and predictive computation require
further investigation. We found bilateral predictive neural activity
(Fig. 3a and Supplementary Fig. 1) and bilateral SHI. Significant
evidence for the information bottleneck hypothesis was also
found bilaterally (Fig. 5a, b). Yet, the length of neural integration
windows correlated strongly with behavior only for the right
predictive processing clusters (Fig. 6). Taken together, these
results suggest that both the left and right hemispheres participate
in SHI and predictive processing.

It is important to consider whether the present neural pre-
diction effects and their dependence on sensory history integra-
tion relate to the well-known neural adaptation effects. Despite
being an extensively studied topic in neuroscience38, adaptation
remains a relatively broad term capturing a variety of context- or
history-dependent neural response dynamics. The distinction
between neural adaptation and prediction effects is subtle, with
terminology differing for micro (i.e., single cell) vs. macro (i.e.,
population level) recordings, mechanistical vs. functional models,
and computational vs. cognitive literature39. Unsurprisingly, both
concepts are tightly linked and increasing evidence23,40 points
towards adaptation as a single-neuron correlate of mismatch
negativity, a cortical potential difference between a deviant and a
standard stimulus in repetition-based paradigms classically used
in prediction studies. The predictive processing framework pro-
vides a unifying conception since it interprets repetition and
expectation suppression, neural implementations of adaptation
and prediction, as manifestation of prediction error signals on
different temporal and spatial scales41,42. However, adaptation
alone is unable to account for multiple prediction-related mis-
match negativity findings, such as increased mismatch negativity
in response to stimulus omissions and unpredicted versus pre-
dicted deviant tones43. Specifically, (stimulus specific) adaptation
depends on the frequency with which a stimulus is presented,
whereas mismatch negativity relies mainly on transitional prob-
abilities and not stimulus frequency itself43. Furthermore, neural
adaptation is known to influence evoked neural responses com-
paratively early (from 50ms onward), whereas effects of predic-
tion are visible in later responses (after 100 ms)44,45. Given the
extended duration of the current prediction and history tracking
effects, it is therefore unlikely that these can be explained solely by
adaptation. In addition, adaptation effects are mainly found in
primary23 and nonprimary40 sensory cortex areas, and non-
primary sensory areas show surprise-based enhancement of
neural responses that cannot be explained by adaptation46. The
wide spatial extent of the present prediction and sensory history
integration findings, along with the lack of prediction effects in
neural recordings focusing on early sensory processing, under-
scores that adaptation alone cannot explain the current findings.
This is further supported by the stability of the prediction-related
behavioral and neural results across the first and second halves of
the experiment (Supplementary Fig. 2). Finally, in contrast to
oddball tasks, the present stimuli set does not rely on repeated
presentation of identical stimuli (the classic approach to induce
stimulus-specific adaptation), rendering our paradigm less reliant
on adaptation effects. This is especially true for sequences with
low beta level, which nonetheless produce prominent prediction
and sensory history tracking effects (Supplementary Fig. 7). A
clean distinction between adaptation and prediction or SHI
effects, however, requires specific experimental manipulations
(e.g., systematic control for item frequency) and use of conditions
known to distinguish between adaptation and prediction (e.g.,
omission responses47).

Interpretation of the present results requires consideration of
some limitations. First, the flexibly scaling integration windows
observed herein likely break down at extreme stimulus pre-
sentation rates. We employed a limited range of tone durations,
selected to be conducive for human task performance. Future
studies will determine at which sensory input rates flexible inte-
gration breaks down. Second, the present study does not specify
the anatomical sources underlying prediction and SHI effects.
This is mainly because a reliable and temporally stable source
localization of the corresponding neural generators is impeded by
the use of non-baseline-corrected activity, as accumulating neural
activity increasingly affects source localization precision over the
course of sequence presentation. Future work employing
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intracranial recordings will shed light on the anatomical sources
giving rise to the integrative and predictive neural activity
uncovered in the present work. Third, additional work remains to
be carried out to fully reveal the computational mechanisms
underlying subjects’ predictive behavior. While the present find-
ings and our earlier study25 show that the sensory history inte-
gration carried in neural activity follows a weighted-linear-sum
form (with weights differing by temporal position, see Fig. 7 in
ref. 25) and directly contributes to predictive neural activity,
whether such a computation fully captures subjects’ predictive
strategy as evidenced in their behavior remains to be tested. This
question can be addressed by conducting model-fitting and
model-comparison on subjects’ single-trial behavior; such an
endeavor would also illuminate whether subjects use simple
heuristics (e.g., continue the recent past) or a more complex
strategy (e.g., involving nonlinear extrapolation, but note that the
theoretically optimal prediction, p*34, embodies a linear compu-
tation) in forming predictions.

Prediction about future sensory input has been commonly
studied through statistical learning paradigms involving repeated
presentations of an item (such as variations of the oddball
paradigm48) or a sequence with certain transition probabilities
embedded (e.g., frequent ABC49). These paradigms offer precise
control of various statistical regularities (e.g., item frequency,
alternation frequency, transition probability), which in turn
allows for a systematic analysis of the neural processes related to
sequence dependence and its dissection into local and global
components29,45,50. The present paradigm departs from these
earlier paradigms by generating predictive content with a con-
tinuous value25 that relies on more complex statistical regularities
going beyond repetition. This approach allows us to specifically
probe predictive computation based on temporal statistical reg-
ularities that are inherent to and prevalent in natural stimuli—a
brain process that remains poorly understood. Because the brain
evolved in the natural environment where effective predictions
about future stimuli is crucial to survival10, understanding pre-
dictive processing of natural statistical regularities sheds light on a
fundamental brain function. Future studies will further illuminate
how neural mechanisms underlying predictions based on these
naturalistic statistical regularities compare with those serving
predictions in classic statistical learning paradigms.

In conclusion, the present work demonstrates that neural
activity integrates past sensory information both over fixed
amounts of information and fixed durations, and that these
processes are spatially separated. However, integration underlying
prediction of upcoming sensory input mainly operates over a
fixed amount of information and is limited by an informational
bottleneck. Flexible sensory history integration enables precise
prediction in the face of varying stimulus input rates and repre-
sents a fundamental mechanism underlying humans’ ability to
make robust predictions in natural environments.

Methods
Participants. Twenty six healthy right-handed subjects with normal hearing took
part in the experiment. Seven subjects were prescreened for behavioral perfor-
mance in a training session prior to the MEG recording. Six subjects were excluded
due to either poor performance (i.e., not using the full range of the rating scale) or
excessive MEG artifacts, yielding a final group of 20 subjects (11 females; mean age
25.0, 19–34 y). A reduced version of the behavioral and neural prediction results
obtained from the 300 ms tone duration condition of this dataset was previously
reported as an independent replication of main results in ref. 25. The study was
approved by the Institutional Review Board of the National Institute of Neurolo-
gical Disorders and Stroke (protocol #14-N-0002). All subjects provided written,
informed consent.

Experimental stimuli. The present study employed naturalistic auditory tone
sequences with pitch fluctuations exhibiting statistical regularities similar to those
prevalent in natural stimuli26,27. Specifically, each sequence consisted of 34

concatenated pure tones presented without temporal overlap or gap. Within the
same sequence, tone pitches were temporally dependent upon each other (i.e.,
autocorrelated over time), allowing for the prediction of future tone pitches as a
function of previously presented tone pitches. The degree of autocorrelation within
each sequence was determined by β, which defines the relationship between the
frequency of pitch fluctuations over time and the power of fluctuations at the
respective frequency, such that P ≈1 / f β (i.e., the temporal power spectrum of pitch
fluctuation). Consequently, a β of 0 means that pitch values between any two time
points are uncorrelated, while a high β implies temporally adjacent tone pitches are
positively dependent on one another. Further details regarding the tone sequence
creation are described in detail in ref. 25. The present auditory tone sequences were
constructed with three levels of autocorrelation strength β: 0.5, 0.99, and 1.5.

In accordance with ref. 25, each tone series was scaled such that its pitches
ranged from log(220) to log(880). Tone series were discretized so that each tone
was assigned to one of 25 values evenly spaced on the log scale with semitone
distance. A circulant embedding algorithm51 was used to create nine unique 33-
element long series, three for each β level:

xβ;i ¼ x1; ¼ ; x33
� �

; β 2 0:5; 0:99; 1:5f g; 1≤ i≤ 3 ð1Þ
where each element xj of xβ;i is taken to represent the pitch of the jth tone in the

sequence. Importantly, the choice of autocorrelation strength β lies within the
range of natural acoustic signals, for which β commonly ranges between 0 and 226.
The full set of tone sequences can be downloaded at:

https://med.nyu.edu/helab/sites/default/files/helab/Baumgarten_etal_stim_
wav_files_and_figs.zip

All tone sequences converged on an identical penultimate (33rd) tone pitch
(440 Hz), p33. This allowed us to disentangle sensory processing of p33 from
predictive processing relying on p1�32. Specifically, since p33 was held constant
across trials, it can be excluded from a regression which seeks to explain differences
in neural activity during the presentation of the 33rd tone as a function of the
previous tone sequence and the predicted upcoming tone pitch based on it.

For each tone sequence, a specific theoretically predicted final (34th) tone pitch
(p*34; see refs. 10,25 for further details) was computed, representing the optimally
fitting final tone pitch given the pitch information provided by the first 33 tones.
Nine unique sequences (Fig. 1b) were selected to represent all combinations of
temporal autocorrelation level β (0.5, 0.99, 1.5) and three bins of theoretically
predicted final tone pitch (p*34: low [370 Hz, 392 Hz], medium [440 Hz], high
[494 Hz, 523 Hz]).

To probe subjects’ ability to predict the final tone pitch, the actually presented
34th tone of each sequence (p34) was independently drawn from one of six possible
pitches located four [349 Hz/554 Hz], eight [277 Hz/699 Hz], or twelve [220 Hz/
880 Hz] semitone steps below/above the mean pitch value of 440 Hz. Consequently,
for a listener who can optimally extract the sequence information provided by the
temporal autocorrelation within a given tone sequence, the tone pitch distance
between p34 (i.e., the presented final tone) and p*34 (i.e., the theoretically predicted
final tone) should determine if p34 is considered likely or unlikely given the
information provided by p1�33.

Identical tone sequences were presented in different tone duration conditions,
comprising short (150 ms per tone/5.1 s per sequence), medium (300 ms/10.2 s), or
long (600 ms/20.4 s) tone duration. The medium condition was used as the
representative condition to determine sensor clusters of interest in later analyses.

In total, nine unique sequences (3 β levels × 3 p*34) × 3 tone durations
constituted 27 distinct auditory sequences. Each distinct sequence was presented
once within each of 12 blocks in random order, resulting in a total of 324 trials per
subject.

Paradigm. Auditory tone sequences were presented with a sampling frequency of
44,100 Hz using the PsychPortAudio function of the Psychophysics Toolbox52 in
MATLAB (The Mathworks Inc., Natick/MA, USA) and specialized MEG-
compatible ear tube (Etymotic ER-3 Insert Headphones). The plastic tubing from
the transducer to the earpiece had a speed-of-sound delay of approx. 10 ms, which
was corrected for in MEG data analyses.

Each trial began with the presentation of a blank screen (duration: 0.5 s),
followed by the central presentation of a fixation point (0.7 s, Fig. 1c). Next, tone
sequences were presented (5.1/10.2/20.4 s) while the fixation point remained on the
screen. Subjects were instructed to fixate on the fixation point during its entire
presentation to minimize eye movements. Next, a blank screen was presented for
0.4 s after which subjects rated how likely the final tone pitch was given the
previously presented tone sequence. In other words, subjects rated how well p34
agreed with the overall pattern of tone pitches present in the preceding tone
sequence. Final tone pitch likelihood ratings were given on a scale of 1 (least
expected) to 5 (most expected) within a response window of 5 s and without
feedback. Next, subjects rated the trend strength (i.e., autocorrelation) of the
presented tone sequence within a response window of 5 s. The trend strength
ratings were given on a scale from 1 (most random) to 3 (most trend-like).
Feedback about the performance in the trend strength rating task was presented
visually for 2 s after entry of both behavioral responses. The feedback indicated
which trend strength rating had been entered by the subject, what the true trend
strength of the sequence was, and whether the subject’s trend strength rating was
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correct, close to correct (off by one level), or incorrect (off by two or more levels).
Responses were entered using two separate button boxes, with final tone pitch
likelihood ratings being entered by the left hand and trend strength ratings being
entered by the right hand.

Across the entire experiment, trials were split into 12 blocks with 27 trials each.
Subjects were given the option to take self-terminated rest periods after each block.
Head position within the MEG sensor array was measured after each block by
means of coils placed on the left and right preauricular points and the nasion.
Subjects self-corrected their head position in order to closely match the position at
the start of the experiment25. The entire experiment lasted for approximately 3 h
including setup time.

Analyses of prediction task performance. Subjects’ final tone pitch likelihood
ratings indirectly allow us to investigate if subjects are able to extract the infor-
mation provided by the preceding tone sequence and correctly predict the future
final tone’s pitch. If this is the case, final tone pitch likelihood ratings should be a
function of both p34 and p*34, since p

*
34 represents which final tone is most likely to

be presented given the preceding tone sequence. Final tone pitch likelihood ratings
were analyzed by means of within-subject effects of a three-way repeated-measures
ANOVA at the group level with factors: tone duration, p*34, and p34. To analyze if
final tone pitch likelihood ratings were higher for trials with low p34 when the
preceding tone sequence converged on a low p*34 instead of a high p*34 (and vice
versa for trials with high p34), paired t-tests across subjects were used. To deter-
mine prediction effects per tone duration condition, final tone pitch likelihood
ratings were analyzed by means of a two-way repeated-measures ANOVA at the
group level with factors: p*34 and p34. In addition, a three-way (factors: p34, p

*
34, tone

duration) repeated-measures ANOVA was performed at the single-subject level to
resolve an F-statistic for the interaction effect of p*34 and p34 on final tone pitch
likelihood ratings, which was used as an individual index quantifying the history
dependence of final tone pitch likelihood ratings across all tone duration condi-
tions. Sphericity was tested with Mauchly’s test and sphericity violations were
corrected by means of Greenhouse-Geisser correction.

For the seven subjects who underwent behavioral prescreening, results reported
in Figs. 2 and 6 used their behavioral data from the training session, ensuring that
assayed task performance was always based on the initial task encounter. For the
remaining subjects who performed the task only during MEG recording, behavioral
data from the MEG session were used. Data calculation based on behavioral data
from the MEG recording session for all subjects produced qualitatively similar
results for all analyses.

MEG data acquisition and preprocessing. Whole-head neuromagnetic activity
was recorded during the task with a 275-channel CTF MEG scanner (VSM
MedTech, Coquitlam, BC, Canada). Three malfunctioning sensors were excluded
from analysis (leaving 272 channels in total). Scans were completed at a sampling
rate of 600 Hz, with an anti-aliasing filter applied at <150 Hz. Custom-written
MATLAB scripts and the Fieldtrip Toolbox (http://www.fieldtriptoolbox.org/;53)
were used for all preprocessing and analyses steps. MEG data from each block were
demeaned and detrended. No high-pass filter was applied, in order to retain low-
frequency information (see refs. 25,29). A Butterworth band-stop filter for 58–62 Hz
and 118–122 Hz was applied to remove line noise. Independent component ana-
lysis was applied on filtered data to remove artifacts due to eye blinks and ocular
motion, heartbeat, breathing, and movement-related slow drift.

Computing neuromagnetic correlates of prediction. We tested whether neural
activity during the presentation of p33 contains information about the theoretically
predicted upcoming final tone pitch (p*34). To this end, a linear regression was
performed separately for each tone duration condition. First, neuromagnetic
activity during presentation of p33 was segmented into nonoverlapping time win-
dows of 50 ms duration (e.g., 0–50 ms, 50–100 ms, …). This resulted in a different
number of time windows entering the regression analysis for the three tone
duration conditions (i.e., 3, 6, and 12 time windows for the 150, 300, 600 ms tone
duration conditions). Sensor-wise non-baseline-corrected neuromagnetic activity
was averaged within a time window, resulting in an estimate for neuromagnetic
activity per sensor, time window, and trial. For each subject, neuromagnetic activity
N at each sensor s, time window w, and trial n during p33 was linearly regressed
onto p*34:

Ns;w;33;n ¼ β*0;s;w þ β*1;s;wp
*
34;n þ εs;w;33;n ð2Þ

Any neuromagnetic activity associated with the processing of p33 could be
assumed to remain constant across trials, since the pitch of the 33rd tone was
always 440 Hz, such that this term could be excluded from the regression analysis.
β*1;s;w describes how neuromagnetic activity during p33 depends on p*34. At the

group level, all subjects’ β*1;s;w regression weights were submitted to a one-sample
t-test against 0, yielding an uncorrected t-value for each sensor and time window.
Sensor-wise t-values then underwent permutation-based cluster correction.
Spatially contiguous sensors exhibiting a significant effect were defined by
comparison to a permutation-derived null distribution. For each subject, data were

permuted by randomly shuffling the across-trial dependence between the
dependent variable (MEG activity during p33) and the independent variable (p*34).
Clusters were defined as significant if their summary statistic ( ∑tj j, where t-values
had the same sign) was in the top 2.5th percentile of shuffled data, corresponding
to a two-tailed test at p < 0.05. Significant sensor clusters are referred to as
predictive processing clusters.

To visualize neuromagnetic activity during p33 as a function of p*34, trials were
binned into low, medium, and high p*34 for each subject. For each timepoint,
neuromagnetic activity was averaged across each group of trials for sensors within a
predictive processing cluster, and then averaged across subjects.

The time course of predictive information buildup in slow arrhythmic neural
activity over the course of the tone sequence presentation was investigated by
comparing time-resolved neural activity time-locked to tone presentation between
sequences converging on low vs. high p*34. Sensor-wise time-locked neural data
were low-pass filtered at 35 Hz and subtracted by the mean amplitude from a
500 ms time window preceding the first tone. For each subject and tone duration
condition, neural data was averaged across all trials converging on low or high p*34,
respectively. Group-level comparison of time-locked data was performed for all
samples ranging from the offset of the first tone to the start of the response window
by means of a one-sample t-test yielding an uncorrected t-value for each sample.
To account for multiple comparisons, t-values were statistically assessed with a
cluster-based nonparametric randomization approach54. To differentiate the effects
of early sensory processing from predictive processing, time-locked neural activity
was calculated using two different methods. First, predictive processing was
investigated using predictive processing clusters carrying significant predictive
information about p*34 for each tone duration (defined using 50–100 ms window for
300 ms, and 100–150 ms window for 150 and 600 ms, so all clusters are in the right
hemisphere; see Fig. 3 and Supplementary Fig. 3). Early sensory processing was
investigated using a spatial filter focusing on early sensor processing, defined as
follows.

Definition of spatial filters focusing on early sensory processing. The M100
response represents a common auditory functional localizer30 known to underlie
the initial stages of auditory stimulus processing31, which originates in Heschl’s
gyrus and primary auditory cortex. Separately for each subject and tone duration
condition, sensor-wise responses time-locked to each tone were first computed for
the M100 time window (75–125 ms after tone presentation) for each of the 34 tones
within a sequence, yielding a time-locked response to auditory stimulation. Next,
this tonal response was averaged across tones and across trials. Resulting ERF time
course values were squared and averaged across the M100 time window. Based on
these average M100 amplitude values, the relative contribution of each sensor
towards the overall signal was determined. The resulting sensor weights were
multiplied with the nonsquared neuromagnetic data and subsequently averaged
across sensors, yielding a weighted spatial filter for each subject. Neural activity
projected through these spatial filters highlight tone processing in auditory cortex
areas, referred to as early sensory filter.

Computing neuromagnetic correlates of SHI. Effective prediction requires
accumulation and integration of past sensory history information (SHI). To assess
SHI, we analyzed the dependence of neural activity during the second half of a tone
sequence on the pitch of preceding tones (Fig. 4). p33 was excluded since it was
constantly presented at 440 Hz and p34 was excluded since its pitch was determined
independently of the preceding tone sequence. Analyses were performed separately
for each tone duration condition, yielding 108 trials per analysis. Similar to the
prediction analysis, sensor-wise non-baseline-corrected neuromagnetic activity was
averaged across time using nonoverlapping windows of 50 ms duration. Next, the
neuromagnetic activity N at each sensor s, time window w, and trial n during the
presentation of the current tone i (16 ≤ i ≤ 32) was linearly regressed onto the pitch
p of the current tone and k0 previous tones as follows:

Ns;w;i;n ¼ β0;s;w þ ∑
k¼k0

k¼0
βkþ1;s;wpi�k;n þ εs;w;i;n ð3Þ

The parameter k0 represents how many previous tones explain MEG activity at
the current timepoint. We tested 16 models with 1–16 regression terms,
corresponding to k0-values ranging from 0 (current tone pitch) to 15 (current tone
pitch and 15 previous tones).

To determine which model (i.e., which value of k0) best accounts for
neuromagnetic activity, a six-fold cross-validation approach was used. Each
subject’s data were split into six folds, with each fold being used as a test fold once
and as a training fold in the remaining five runs. The allocation of trials to a fold
was balanced for each of the nine unique tone sequence (i.e., determined by p1�33).
Since 12 repetitions for each unique tone sequence were presented for each tone
duration, two randomly selected repetitions for each unique tone sequence were
allocated to each fold.

First, regression coefficients for each sensor, time window, and linear model
were calculated based on the training set. The resulting regression coefficients were
then used to calculate the current model’s prediction of MEG activity in the test set.
Model selection was based on the minimized sum of squared errors. The winning
k0-value indicates how many previous tones in a sequence best explain the recorded
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MEG activity per sensor, time window, and tone duration. After computing k0 for
all folds, we averaged the k0-values across folds to calculate the final k0-value
computed for experimental data for each subject, at each sensor and time window.

Statistical significance of sensor clusters showing SHI effects was assessed by
means of a nonparametric permutation test comparing k0 against a null
distribution based on shuffled tone order. By shuffling tone order within each
sequence, the temporal dependence between neural activity and tone sequence was
destroyed, in line with the null hypothesis that there is no systematic integration of
previously presented tones. To assess significance of the (across-subject) average
k0-values against this null hypothesis, we repeated the abovementioned cross-
validation regression analyses but with randomly permutated tone order within
each sequence in the training set, while leaving tone order in the test set
unperturbed. The order of the first 32 tones in the training set was shuffled, with
the exception that the value of the current (i-th) tone pitch was kept the same as in
the original sequence. Thus, information about current tone pitch was retained,
whereas information about tone sequence history was destroyed. This procedure
was repeated 100 times for each dataset (i.e., for each of the six folds, separately for
each tone duration condition and each subject). Tone pitch order was shuffled
differently for each of the nine unique tone sequences, but was kept constant across
the 12 repetitions of each unique tone sequence. Importantly, to enable a valid
comparison across-tone duration conditions, shuffle order for each unique
sequence was preserved across tone duration conditions. Tone order was shuffled
anew for every test/training fold combination. Identical to the computation of
k0-values, the same six-fold cross-validation technique was applied to extract the
optimal k0-value computed for shuffled data (k0shuff ) for each sensor and time
window in each tone duration-specific dataset per subject. This yielded a shuffled
null distribution of 600 k0-values per sensor, time window, tone duration condition,
and subject. k0shuff -values were subsequently averaged across folds to yield
100 shuffled values per subject.

Effects at the group level were assessed by first averaging k0-values across
subjects for each sensor and time window within each tone duration separately.
Group-level effects of SHI in neuromagnetic activity were compared against the
null hypothesis that there is no systematic SHI across a tone sequence. To create
the null distribution against which to compare group-level effects of SHI in
neuromagnetic activity, repeated samples (with replacement) were drawn 1000
times from the null distribution of each subject, with each draw subsequently
averaged across subjects. This formed a null distribution of 1000 across-subject-
averaged k0shuff -values. This shuffling procedure instantiates sampling under the
null hypothesis since k0shuff -values reflect the magnitude of k0 that can be expected
due to unspecific noise, since the shuffled tone order was not presented to the
subject and therefore neuromagnetic activity cannot contain genuine SHI of the
shuffled tone sequence. An uncorrected p-value was assigned to each sensor for
each time window, calculated as the proportion of k0shuff -values larger than or equal
to the k0-value. Subsequently, uncorrected p-values were used to define clusters for
the cluster correction analysis. Clusters were considered significant if their cluster
statistics calculated for experimental data lied in the top 5th percentile of shuffled
data, corresponding to a one-tailed test at p < 0.05.

Comparing sensory history integration across tone duration conditions.
Comparing estimates of SHI across tone duration conditions allows us to test if the
brain integrates sensory history over a fixed temporal duration or over a fixed
amount of information (Fig. 1a). k0-values for sensors in predictive processing
clusters were used to estimate neurally integrated tone information relevant for
prediction (Fig. 4). Analysis was performed separately for each sensor cluster (i.e.,
left vs. right hemisphere) in time windows from 0–150 ms after tone onset. For
each sensor and time window, k0-values were averaged across subjects separately
for each tone duration condition. Group-averaged k0-values were projected into a
three-dimensional coordinate system, where each axis was defined as k0-value for a
specific tone duration condition. To differentiate between the abovementioned
hypotheses, two hypothesis-derived orientation lines were projected on the coor-
dinate system. Integration over a fixed duration corresponds to a line with the slope
k0150msTD ¼ 2k0300msTD ¼ 4k0600msTD (red line in Figs. 4 and 5); integration over a
fixed amount of information corresponds to a line with the slope k0150msTD ¼
k0300msTD ¼ k0600msTD (blue line in Figs. 4 and 5).

SHI per sensor s and time window w can now be conceptualized as a vector~us;w
in the 3-D k0-space, spanning from the point of origin to the coordinates
determined by the k0-values in the xs;w (150 ms), ys;w (300 ms), and zs;w (600 ms)
dimension. For each vector ~us;w , we computed norm (i.e., vector magnitude
measured from the point of origin) and angle to the respective orientation lines.
Whereas norm indicates the overall number of integrated tones, angle indicates
how close the vector is to the respective orientation line. Vector norm was
computed as:

jj~us;wjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s;wþy2s;w þ z2s;w

q
ð4Þ

Vector angle θs;w was defined as the angle between ~us;w and the vector
determined by the respective orientation line, i.e., either duration (~vdur ¼ ð4; 2; 1Þ)
or information line (~vinf o ¼ ð1; 1; 1Þ). Vector angle (Eq. (7)) was computed based

on the cross-product (Eq. (5)) and the dot-product (Eq. (6)):

~u ´~v ¼ ðuyvz � uzvy ; uzvx � uxvz ; uxvy � uyvxÞ ð5Þ

~u �~v ¼ ux ´ vx þ uy ´ vy þ uz ´ vz ð6Þ

θs;w ¼ tan�1ðjj~u ´~vjj;~u �~vÞ ð7Þ
and expressed in radians. To investigate the effect of SHI underlying prediction,

norm and angle were averaged across all sensors within a specific predictive
processing cluster, (jj~upred;wjj, θpred;w).

As can be seen in Fig. 5, k0-values generally cluster closer to the information line
compared to the duration line. However, k0shuff -values likewise generally cluster
closer to the information line, because shuffling tone order within a sequence
should yield similar k0-values across all tone durations. To account for this, we
compared k0-values against k0shuff -values, which allows us to statistically determine
if k0-values are closer to the respective orientation line than chance. Significance of
both vector norm and angle was assessed by means of a nonparametric
permutation test comparing k0-values against a null distribution constructed from
k0shuff -values. Computation of the null distribution was performed as specified
above. Effects of vector norm were considered significant if their cluster statistic
(summed norm) lies in the top 5th percentile of shuffled data, corresponding to a
one-tailed test at p < 0.05. Effects of vector angle were considered significant if their
cluster statistic (summed angle) lies in the bottom 5th percentile of shuffled data,
corresponding to a one-tailed test at p < 0.05.

To allow for an easier visualization of data in relation to the two hypotheses, we
additionally projected k0-values onto a two-dimensional plane (k02�D), defined by
the two hypothesis-derived orientation lines. To this end, we computed the cross-
product (Eq. (5)) of ~vdur and ~vinfo , resulting in the vector ~Ndur�info normal to a
plane spanned between~vdur and~vinfo. Next, we projected both k0- and k0shuff -values
for each sensor and time window from the 3-D space to the nearest point on this
plane (Eq. (8)).

k02�D ¼ k03�D þ jð0�∑ðk03�D: � ~Ndur�infoÞ=∑ð~Ndur�info: � ~Ndur�infoÞj � ~Ndur�info ð8Þ
k0- and k0shuff -values projected to this 2-D space were plotted, and vector norm

and angle in the 2-D space were computed in the same manner as in the 3-D space.
Effects of vector norm and angle were also analyzed across the entire sensor

array. Vector norm and angle were computed for each sensor and for time
windows from 0–150 ms. Sensor- and time window-specific norm and angle
derived from k0-values were compared against a null distribution computed from
k0shuff -values. Cluster correction was applied to determine significant sensor
clusters.

Correlating behavioral and neural sensory history tracking effects across
subjects. Finally, we tested whether neural and behavioral effects of SHI correlated
across subjects. To increase analytic power and to assess general task performance,
we computed correlations for data reflecting general effects across tone durations,
resulting in one data point per subject. For each subject, we used the F-statistic for
the interaction effect of p*34 and p34 derived from a three-way repeated-measures
ANOVA (factors: tone duration, p*34, p34) to indicate how strongly sensory history
affected a subject’s prediction responses. Likewise, we averaged k0-values across
tone duration conditions for each sensor and time window present in all tone
duration conditions (i.e., 0–150 ms).

First, we investigated predictive processing clusters. Individual k0-values were
averaged across all sensors within each respective predictive processing cluster
determined for the 300 ms condition. Spearman correlation was calculated between
the resulting k0-values and F-statistics across subjects. p-values were corrected for
multiple comparisons by means of false discovery rate (FDR).

Next, we conducted a sensor-wise analysis across the entire sensor array to see if
k0-values correlated with behavioral effects of history dependence in sensors
outside of predictive processing clusters. To this end, we computed across-subject
Spearman correlations between k0-values (for each sensor and time window) and
F-statistics. To correct for multiple comparisons, a group-level null distribution
based on k0shuff -values was constructed. For this, each of the 100 repetitions of
individual k0shuff -values was averaged across tone duration conditions for each
sensor and time window. Next, one repetition per subject was chosen randomly,
which was repeated 1000 times to construct a shuffled distribution containing 1000
random draws of k0shuff -values for each subject. The resulting k0shuff -values were
then correlated with F-statistics to create a null distribution of correlation values
for each sensor and time window. Sensor clusters showing a significant correlation
were compared against the null distribution. Clusters were defined as significant if
their cluster statistics ( ∑ρ

�� ��, where ρ-values had the same sign) calculated for
experimental data lie in the top 2.5th percentile of shuffled data, corresponding to a
two-tailed test at p < 0.05.

Cluster correction. Cluster-based permutation testing54 was used to define clusters
of spatially contiguous sensors showing a significant prediction, SHI, or correlation
effect and to correct for multiple comparison across sensors. For a given statistical
test performed at sensor-level, clusters were defined as spatially neighboring
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sensors exhibiting test statistics of the same sign (i.e., t-values for the analysis of
neuromagnetic prediction correlates; Spearman ρ-values for the behavioral corre-
lation analysis) or positive input parameters (i.e., k0 , vector norm, or vector angle
for the SHI analyses) and p < 0.05 (uncorrected). Adjacent sensors were defined
based on the CTF275_neighb.mat template in Fieldtrip53.

For each resulting cluster, absolute values of the test statistics across all sensors
within the current cluster were summed up to create a cluster summary statistic.
Null distributions of cluster statistics were computed by randomly permuting the
data independently for each subject, while permutation order was kept constant
across sensors. Based on this permuted data, statistical assessment was again
performed for each sensor, retaining the maximum cluster statistic across all
clusters. This process was repeated 1000 times, yielding a null distribution of
1000 shuffled cluster statistics. p-values were assigned to clusters computed for
experimental data relative to cluster statistics computed for the shuffled null
distribution. For the analyses of final tone pitch prediction and behavioral
correlation, clusters were considered significant if their cluster statistic lies in the
top 2.5th percentile of shuffled data, corresponding to a two-tailed test at p < 0.05.
For the effects of k0 , vector norm, and vector angle, clusters were considered
significant if their cluster statistic lies in the top (for k0 and vector norm) or bottom
(for vector angle) 5th percentile of shuffled data, corresponding to a one-tailed test
at p < 0.05. Measures of effect size for clusters in the original data (dcluster) were
defined as the number of SDs by which the original cluster statistic exceeds the
mean of the null distribution derived from permutated data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data and code to reproduce all main text and supplementary figures are provided
as supplementary information. Due to the large file size of raw MEG datasets, the raw
dataset generated during the current study is available by request to the corresponding
author. Source data are provided with this paper.

Code availability
We used publicly available open source software toolboxes and custom scripts written in
MATLAB to analyze our data. Code supporting this study is available at a dedicated
Github repository [https://github.com/BiyuHeLab/NatCommun_Baumgarten2021].
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