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Abstract

Background

The advance of omics technologies has made possible to measure several data modalities

on a system of interest. In this work, we illustrate how the Non-Parametric Combination

methodology, namely NPC, can be used for simultaneously assessing the association of

different molecular quantities with an outcome of interest. We argue that NPC methods

have several potential applications in integrating heterogeneous omics technologies, as for

example identifying genes whose methylation and transcriptional levels are jointly deregu-

lated, or finding proteins whose abundance shows the same trends of the expression of

their encoding genes.

Results

We implemented the NPC methodology within “omicsNPC”, an R function specifically tailored

for the characteristics of omics data. We compare omicsNPC against a range of alternative

methods on simulated as well as on real data. Comparisons on simulated data point out that

omicsNPC produces unbiased / calibrated p-values and performs equally or significantly better

than the other methods included in the study; furthermore, the analysis of real data show that

omicsNPC (a) exhibits higher statistical power than other methods, (b) it is easily applicable in

a number of different scenarios, and (c) its results have improved biological interpretability.

Conclusions

The omicsNPC function competitively behaves in all comparisons conducted in this study.

Taking into account that the method (i) requires minimal assumptions, (ii) it can be used on

different studies designs and (iii) it captures the dependences among heterogeneous data

modalities, omicsNPC provides a flexible and statistically powerful solution for the integra-

tive analysis of different omics data.
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Introduction

Recent developments in various high-throughput technologies have heightened the need for
integrative analysis methods. Nowadays, several studies measure heterogeneous data modali-
ties, as for example methylation levels, protein abundance, transcriptomics, etc., on the same or
partially overlapping biological samples/subjects. The key idea is to measure several aspects of
the same system in order to gain a deeper understanding of the underlying biologicalmecha-
nisms. In such settings, a common tasks is identifyingmolecular quantities that are (a) mea-
sured by different omics technologies, (b) related to each other (e.g., associated to the same
gene), and (c) that are conjointly affected by the factor(s) under study or associated to a rele-
vant outcome, in a statistically significant way. A typical example is the identification of differ-
entially expressed genes that are also characterized by one or more differentially methylated
epigenetic markers [1–3]. Other studies investigate factors that simultaneously enhance the
expression of a given protein and the abundance of its related metabolites [4,5]. Another sce-
nario (somewhat less common) is the measurement of the same molecular quantities with dif-
ferent technologies, as for example when previously producedmicroarray gene expression
profiles should be co-analyzed with newly produced RNA-seq data [6].

More in general, the presence of multiple omics data allows the identification of “differen-
tially behaving genes”, i.e., genes that are affected by the factors under study in one or more of
the transcription, translation or epigenetic levels.

In this work we introduce and evaluate a novel application of a known statistical methodol-
ogy, the Non-Parametric Combination (NPC) of dependent permutation tests [7], for the inte-
grative analysis of heterogeneous omics data. NPC has been described in several scientific papers
and books [7–9], and it has been applied in the fields of industrial production [10], face/expres-
sions analysis [11] and neuroimaging [12]. However, to the best of our knowledge, this method-
ology has never been applied in molecular biology. NPC provides a theoretically-sound statistical
framework for the integrative analysis of heterogeneous omics data measured on correlated sam-
ples. NPC assumes a global null-hypothesis of no association between any of the data modalities
and an outcome of interested. This global null-hypothesis is first broken down in a set of “partial
null hypotheses”, one for each omics dataset. NPC then uses a permutation procedure that pre-
serves correlations among datasets for simultaneously producing a single p-value assessing the
global null-hypothesis, as well as a partial p-value for each partial null-hypothesis.

NPC has several advantages that make it especially suitable for being applied on the analysis
of multiple, heterogeneous omics data. Particularly, NPC:

▪ allows the integration of data modalities characterized by different encodings, ranges and
data distributions

▪ employs minimal assumptions; particularly, it does not assume independence across data
modalities, taking in due account correlations among datasets

▪ provides an interpretable metric as final output, a p-value, which reflects the overall evi-
dence of rejecting or not the global null hypothesis

▪ identifies changes that are supported by at least one modality, assigning a lower p-value to
findings which are supported by more modalities

▪ provides the user with the flexibility of weighting differently the information from each
dataset based on biological knowledge and experience

▪ exhibits higher statistical power than analyzing each data modality in isolation and thus
increase the number of true findings.
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NPC is a general methodology, and must be tailored on the idiosyncrasies of the specific
data at hand. In order to allow the application of NPC on omics data, we realized the R func-
tion omicsNPC, freely available in the STATegRa R-Bioconductor package [13]. The
omicsNPC function is able to process and co-analyze different types of omics data, and to com-
bine their results following the NPC principles.

We characterize the performances of omicsNPC in comparison with other methods for the
integrative analysis of omics information. To this end simulated as well as real data are used. In
the simulated data, each data modality is first analyzed independently using an appropriate sta-
tistical approach, and then all data modalities are conjointly analyzed using in turn omicsNPC
and other, alternative integrative methods. The results show that the p-values provided by
omicsNPC are calibrated, meaning that they follow a uniform distribution when no association
is present between any data modality and the outcome of interest. Leek and Storey [14] showed
that a number of procedures for controlling the false discovery rate strongly control their
respective error measure when applied on calibrated p-value. Moreover, omicsNPC exhibits
increased statistical power in all simulated scenarios conducted in this study, by retrieving true
findings equally well or better than the other methods, especially when correlation structures
are introduced into the data.

We further explored NPC/omicsNPC capabilities on three separate, real data applications:
(a) the identification of gene/protein pairs that are deregulated in Glioblastoma, (b) pathway
enrichment analysis on expression / methylation profiles in Schizophrenia, and (c) the integra-
tion of RNA-seq and microarray expression profiles measured on the same Breast Cancer sub-
jects. The results of these different case-studies pointed out that applying omicsNPC provides
more biological insights than analyzing each modality in isolation.

Related work

The simplest approach adopted in the literature for assessing the conjoint deregulation of mul-
tiple, linkedmolecular quantities consists in analysing each data modality separately, using one
of the numerous available methods [15,16], and then try to combine the results in an ad-hoc
way. Common integration strategies are verifyingwhether linkedmolecular quantities are both
associated with the outcome of interest (see for example [17,18]), or graphically inspecting
whether their expression / abundance follow similar patterns [19]. These methods do not pro-
vide quantitative scores for assessing the overall evidence of conjoint differential behaviour,
and the lack of an overall evidencemakes the user to decide if the observeddifferences are rele-
vant or not.

Meta-analysis methods are a more theoretically grounded alternative [20]. Meta-analysis
has emerged an effectivemethodology for data integration, showing that combining informa-
tion of several studies is more powerful than analysing each study/ data-modality separately,
and results can be reproducible and robust by following well defined frameworks [21,22].
Regarding the identification of differentially expressedmolecular quantities, meta-analysis
methods can be grouped in the following four categories: combining p-values, combining
ranks, combining effect sizes and directly merging data modalities [23]. Here we further ana-
lyse the first two as more relevant to the problem under discussion; the latter two are usually
unfeasible for integrating heterogeneous omics data.

Combining p-values approaches has become popular in the integrative analysis of datasets
with common properties [23], where the underlying distributions of the data are assumed to be
the same. According to this method datasets are analysed independently using the same statis-
tical test and the resulting p-values, partial p-values, are combined using a proper function,
usually Fisher or Stouffer method. The resulting statistic is transformed into a p-value, overall
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p-value. Partial and overall p-values are generated either parametrically, under the assumption
that p-values are uniformly distributed or not-parametrically by permutation-based analysis
[24]. However, different data types require different statistical tests, characterized by diverse
statistical distribution, and the resulting partial p-values could be inappropriate to combine, as
discussed in the supplementary material of a recent study [25].

Combining ranks approaches require the genes to be ranked in each study / data modality
according to somemeasure of differential expression. Then a combined rank is computed by
taking the product, the mean, or the sum of the partial ranks. The statistical significance of the
combined rank is usually assessed through a permutation-based procedure [23]. The initial
impression is that combining ranks methods could be applied in the integrative analysis of dif-
ferent omics data. On one hand the underlying assumptions are minimal: permutation-based
testing assumes that samples are independent and identically distributed [26]. However, several
questions remain unanswered. In which cases these methods provide calibrated p-values?
What is the effect of choosing a combination method over the others? Rankingmethods return
findings which are supported by all modalities, but what if the researcher is interested in
retrieving elements that are supported by at least one modality?

Finally, meta-analysis approaches typically do not consider correlations that may be present
among the different data modalities [24,26]. In a typical meta-analysis schema, datasets are
assumed to be produced by independent studies. Yet, when different data modalities have been
measured on samples from the same subjects / patients, correlations among datasets are
expected and should be taken into account. Failure to do so may lead to severe inflation of
Type I error rates in the final findings [27]. A considerable amount of literature has been pub-
lished on extending combining p-values algorithms in order to take correlations into account,
which is a non-trivial task [27–29]. The problem is evenmore complex if a single dataset is
expected to be more informative than the other and thus a weighted combining function is
desired [29].

Methods

The Non-Parametric Combination methodology

The omicsNPC function relies heavily on the Non-Parametric Combination (NPC) methodol-
ogy. Here we use an example to overview the method, state some important points and show
the modifications we employ in the case of omicsNPC. Let us assume that we have measured
different omics modalities (M1, M2, . . ., Mi) over the same biological samples. We also make
the simplistic assumption that each modality provides exactly one measurement for each gene;
dropping this assumption is discussed later in the text. Our question of interest is which genes
(Gs) are associated with a given outcome of interest / experimental factor, e.g., which genes
behave differently between two conditions. NPC is applied by following the steps reported
below and depicted in Fig 1.

Step 1: Divide the question of interest to a set of i partial null hypotheses, Fig 1A.
Partial null hypotheses:

▪ H1

0
: the level of G is NOT associatedto the outcomeof interestin M1.

▪ H2

0
: the level of G is NOT associatedto the outcomeof interestin M2.

▪ . . .

▪ Hi
0
: the level of G is NOT associatedto the outcomeof interestin Mi.

Globalnull: all partialnull hypothesesare true
Globalalternative:at least ONE of partialnull is NOT true

Step 2: For each partial null hypothesis i, select a test statistic Ti sensitive to the alternative
and calculate its value in the observeddata, ðT1

b¼0
; T2

b¼0
; . . . ;Ti

b¼0
Þ, Fig 1A. For each partial null

Applying the Non-Parametric Combination Methodology for Analysing Heterogeneous Omics Data

PLOS ONE | DOI:10.1371/journal.pone.0165545 November 3, 2016 4 / 23



hypothesis a suitable statistic should be employed, depending by the nature of the correspond-
ing omics dataset.

Step 3: Estimate the permutation distribution of each test statistic. To this end perform the
following B times: a) permute the samples in a manner consistent with the global null hypothe-
sis, and b) calculate the test statistic in the permuted data, ðT1

b; T
2

b; . . . ;Ti
bÞ, b 2 {1,. . .,B}. Note

that each time the samples must be permuted in the same exact way across all data modalities,
in order to preserve dependencies among the measurements (Fig 1B). This is an essential tech-
nicality of the NPC permutation schema.

Step 4: Calculate the permutation p-values of the partial tests, namely partial p-values,
ðl

1

b¼0
; l

2

b¼0
; . . . ; l

i
b¼0
Þ. For each statistic Ti calculate its partial p-value on the observeddata, by

comparing its values on the observeddata, Ti
b¼0

, against its empirical distribution approxi-
mated through permutation, Ti

b, b 2 {1,. . .,B}. Partial p-values are computed as:

l
i
b¼0
¼ ½1þ SIðTi

b6¼0
� Ti

b¼0
Þ�=ðBþ 1Þ ð1Þ

where the indicator function I( ) assumes value 1 if its argument is true. Compute partial
“pseudo” p-value ðl1

b; l
2

b; . . . ; l
i
bÞ, for each permutation b 2 {1,. . .,B}, Fig 1C. Note that with

respect to the standard estimators, both the numerator and denominator of formula (1) have
been augmented by one unit. This is a subtle yet important detail: in a multiple testing context,
permutation p-values should never be zero in order to avoid serious inflation of type I error
rate, as discussed by Phipson and Smyth [30].

Step 5: Use an appropriate convex function to combine p-values across data modalities into a
single “global” test statistic. A final vector of length B + 1 is produced by combining the p-values
computed at step 4. The first element Tglobal

b¼0 summarizes the partial p-values ðl1

b¼0
; l

2

b¼0
; . . . ; l

i
b¼0
Þ

observedon the initial datasets, whereas the remaining elements Tglobal
b , b2 {1,. . .,B} are derived by

combining the corresponding “pseudo” p-values, Fig 1D.

Fig 1. Combining p-values in the NPC framework. See section “Non-Parametric Combination methodology” for an extensive description of the

figure.

doi:10.1371/journal.pone.0165545.g001
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Step 6: Calculate a p-value of the global test. Similarly to the partial p-values, the global p-
value is computed by equation (1), Fig 1E. Note that also global p-values are never allowed to
assume zero value.

Step 7: Assess the evidence of the global null hypothesis by using the global p-value. Each
partial hypothesis is evaluated based on its partial p-value. If necessary, both global and partial
p-values should be adjusted for multiple testing.

An important point of this methodology is the selection of a convex function to combine p-
values in step 5. Pesarin and Salmaso [7] discuss three different functions that are suitable for
the NPC framework: Tippet, Liptak and Fisher. Each function corresponds to a different rejec-
tion region for the global null hypothesis, as shown in Fig 2.

The Tippett function, ΤΤ ¼ maxð1 � l
i
bÞ, rejects the null hypothesis as soon as any of the

partial p-values are below the significance threshold. However, this functions fails in summing
up the contribution of several partial p-values that, considered together, may indicate that the
global null-hypothesis should be rejected. Thus, the Tippett function yields the most powerful
global test when only one or few, but not all, sub-alternatives may occur.

In contrast, the normal combining function, Liptak, TL ¼
P

F� 1ð1 � l
i
bÞ, would reject the

global null-hypothesis when several partial tests are slightly significant, but would accept it if
one or more partial tests support it. Fisher's function summarizes p-values as follows,
TF ¼ � 2 �

P
logðli

bÞ, and its behaviour is intermediate between those of Tippett and Liptak.
Other functions, such as Mahalanobis and Lancaster's distance could also be used, however we
did not employ them in the experiments conducted in this study. Selected combining functions
also allow weighting differently the contribution of each data modality. Given a set of positive
weights wi such that ∑wi = 1, the Fisher function becomes TF ¼ � 2 �

P
wi � logðli

bÞ, while the
Tippet and Liptak functions become ΤΤ ¼ maxðwi � ð1 � l

i
bÞÞ and TL ¼

P
wi � F� 1ð1 � l

i
bÞ,

respectively. The weights to use can be selected on the basis of biological or technical consider-
ations (e.g., the expected amount of noise in each data modality).

Applying the NPC on heterogeneous omics data in practice

Mapping measurements across omics modalities. In the simplified explanation pre-
sented in the “Non-Parametric Combination methodology” section, each omics dataset was
assumed to provide exactly one measurement for each gene. This is often not the case in real
studies, where each data modality is usually defined over a distinct set of measurements, and
the relation among these sets is often complex and strictly dependent on their biological signifi-
cance. For example, multiple methylation markers can be associated with the transcriptional
activity of the same gene; furthermore, this association is not always certain, especially in case
of markers close to the genomic region of the gene but not physically laying on it. The same
applies for genomic variants, for the interplay between genes and proteins, or proteins and
metabolites.

The NPCmethodology requires features measured by different data modalities to be
mapped to each other. While the exact mapping strategy can be defined only in the context of
each specific study, general guidelines can be provided for the general case where each mea-
surement from data modalityM1 can bemapped to multiple features in data modalityM2. A
first possible approach is pairing eachM1 measurement in turn with all their corresponding
M2 measurements. Another solution is summarizing the information from each group of M2

measurements corresponding to a single feature in M1. If methylation and expression data are
available, the first approach leads to pairing the expression value of each gene with the methyl-
ation level of each epigenetic markers attributable to that gene, in turn. In contrast, the second
solution requires to compute a single methylation value for each gene.

Applying the Non-Parametric Combination Methodology for Analysing Heterogeneous Omics Data
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Fig 2. Combining functions’ rejection regions. Rejection regions at significance level 0.15 for the Tippett (blue, dashed), Liptak (green, dotted) and

Fisher (red, continuous) functions in combining two independent p-values. The rejection regions are the areas below the respective lines. The Tippett

function rejects the global null-hypothesis if at least one of the two partial tests is significant (violet and orange areas); in contrast, the Liptak function can

reject the global null hypothesis if both partial tests are not significant, but their combination is (yellow area). However, the presence of a single, extremely

high p-value will force the Liptak function to accept the global null hypothesis (orange areas). The Fisher function has an intermediate behavior between

the previous two.

doi:10.1371/journal.pone.0165545.g002
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Integrating more than two modalities requires more complicate mapping strategies. If suit-
able, a convenient solution is defining a reference set of elements, typically genes, and summa-
rizing all data modalities in such a way that there is one measurement for each element and
data type.

Analysing partiallyoverlapping samples across datasets. The NPC was originally con-
ceived for co-analyzing datasets measured over the exact same samples. This is often too
restrictive in biology, where different datasets might share only part of the samples. For exam-
ple, proteomics profiles might be available for all the patients involved in a study, while expres-
sion profiles are available only for a subset of them. The simplistic solution of co-analyzing
only the samples in common clearly discards potentially relevant information.We argue that a
better solution is co-analyzing all samples, by preserving the same permutation schema for the
overlapping ones. In such a way the correlation among datasets are preserved, while all avail-
able information is employed in the analysis.

Interpreting global and partialNPC p-values. A significant global p-value λglobal indi-
cates that not all data modalities comply with the global null-hypothesis; however, it does not
indicate which omics datasets departs from it. To this scope, the partial p-values
ðl

1

b¼0
; l

2

b¼0
; . . . ; l

i
b¼0
Þ can be used for a “post-hoc” analysis. There are a couple of cases of par-

ticular interest: (i) the global p-value is significant, along with only one partial p-value. In this
case the data modality corresponding to the significant partial p-value drives the results, and
should be further investigated; (ii) no partial p-value is significant, even if the global p-value is.
This latter case denotes findings that require cumulating information from several omics data-
sets in order to reach significance, and that would have not being retrieved by analyzing each
data modality in isolation.

The omicsNPC function. We implemented the “omicsNPC” functionwithin the STATe-
gRa [13] Bioconductor R package for facilitating the application of the NPCmethodologyon
omics datasets. The function accepts an arbitrary number of omics datasets, along with their
respective study designs represented as data frames. The datasets are expected to be defined
over the same (or overlapping sets of) samples. Datasets defined over disjoint sets of samples
can also be analyzed, even though between-datasets correlations cannot be defined in this
extreme case, and the NPCmethodologybecomes equivalent to a permutation-based, non-
parametric meta-analysis method. The function internally uses the limma function [15] for
computing the association betweenmeasurements and the factor under study / outcome of
interest, while adjusting for the remaining covariates. The factor under study can be a dichoto-
mous variable (as in case-control studies), a multi-class factor or a continuous outcome. The
limma function is directly applied on omics data that can be assumed to be (approximately)
normally distributed, as for examples microarray-derived measurements, proteomics, metabo-
lomics, while Next Generation Sequencing (NGS) data (e.g., RNAseq), are pretreated with the
voom function [16]. The output of the function is a matrix containing, for each measurement,
the partial p-values, as well the global p-values computed with Fisher, Liptak and Tippett func-
tions. A more exhaustive description of the function, as well as a detailed explanation regarding
its input arguments and output, can be found in the STATegRa help pages.

NPC comparative evaluation

We evaluated the performance of the omicsNPC function in an exhaustive comparative study
over simulated data. The scope of these analysis is to quantify the capability of each method in
retrieving the genes that show a deregulated behavior in one or more heterogeneous datasets.

Simulated data. These simulations investigate how omicsNPC and the other methods
behave when analysing data characterized by encodings and distributions that commonly
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occur in biological studies. Particularly, we simulated count data following a negative binomial
distribution (representative of RNA-seq data), continuous data distributed (approximately)
normally (microarray data), three-level ordinal data (Single Nucleotide Polymorphism, SNP),
as well as data generated by the uniform distribution (for reference purposes).

For sake of simplicity, across all experimentations we assume a case-control study design,
where the factor under study is a dichotomous variables and no additional covariates are taken
into account. The issue of mapping features across different data modalities is not addressed in
these analysis, and each data modality is assumed to provide one measurement for each gene.

For each simulation we fixed the total number of measurements, Num_genes, and Num_-
samples, the total number of samples per group. The RNAseq dataset, namely RNAseq_sim,
was simulated using the R package compcodeR [31], while the microarray data, Microarray_-
sim, were simulated using the R package OCplus [32]. SNP data SNP_sim were simulated by
randomly sampling values from the set {0, 1, 2}, while Unif_sim data were sampled from the
uniform distribution. For each dataset a number of measurements were deregulated between
the two groups, respectively RNAseq_DE for RNAseq data, Microarray_DE for microarray
data, SNP_DE for SNP_sim and Unif_DE for Unif_sim. Common_DE indicates the number
of elements deregulated at the same time across all modalities, while Cor_level is the correla-
tion among different datasets.

We perform two main experiments using simulated data, named Different Modalities and
CorrelatedModalities. The first investigates the impact of combining statistics / p-values com-
puted with different statistical tests, while the latter focuses on the impact of correlation among
data modalities. In both cases the objective is discriminating deregulated elements from the
others.

▪ Different Modalities: The purpose of this experiments was to identify how the perfor-
mances of the different integrative methods are influenced by a) the number of samples,
b) the number of modalities and c) the number of permutations. Regarding a), we set the
simulation parameters as follows: Num_genes = 2000, RNAseq_DE = 1600, Microar-
ray_DE = 1200, SNP_DE = 800, Unif_DE = 400 and Common_DE = 400. The number of
samples per group was varied within {4, 6, 8, 10}. Regarding b), we set the simulation
parameters as in a), except for the number of samples that was set to 10 and the number
of datasets that was varied between 2 and 4. Regarding c), we generated data for all four
data modalities as in a), with the Num_samples set to 10, and the number of permutations
varied within {100, 500, 1000, 2000, 5000}. We stress that no correlation structures were
added across data modalities in these experiments.

▪ Correlated Modalities: In this scenario we simulated two correlated microarray datasets.
We set Num_genes = 2000, Num_samples = 10, Microarray_DE = 1000, Com-
mon_DE = 1000. We introduced different levels of correlation among the non-differential
expressed genes of the two datasets, specificallyCor_level = {0.6, 0.7, 0.8, 0.9, 1}. We forgo
introducing a fixed amount of correlation among differentially expressed quantities, since
to the best of our knowledge there is no procedure able to ensure both a given amount of
correlation and the desired level of differential expression. We also avoid adding within-
dataset correlations, since in the NPC framework each gene is analysed across datasets
independently by the others, and thus within-dataset correlations would not affect the
behaviour of the omicsNPC function.

We analysed RNAseq_sim, Micr_sim, SNP_sim and Unif_sim either (a) independently
using respectively voom/limma, limma, the R package scrime [33] and the one sidedWilcoxon
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rank sum test, or (b) by employing the integrative analysis methods included in the compara-
tive evaluation.

Integrative methods included in the comparison. We compared omicsNPC against sev-
eral integrative analyses methods often used in the literature:

NPCno-correction: we use the standard NPCmethodologywithout correction for zero p-values,
in order to evaluate the relevance of this modification.

RankSum: this is a standard ranks combining method, where the sum of the ranks is used
for providing a statistic of global differential expression.

omicsNPCRankSum: we use the NPC permutation schema for providing p-values for the com-
bined rank computed with the RankSum approach. More specifically, the sum of the ranks is
used as global test statistic and its null distribution is generated through permutations, as
depicted in panels c) and d) of Figure A in S1 File. The global p-value is calculated by equation
(1), see also panel e) of Figure A in S1 File.

RankProd [26]: this approach follows the same steps as RankSum but the product of the
ranks is used as the global statistic instead of the sum.

omicsNPCRankProd: as in omicsNPCRankSum, the omicsNPC permutation schema is employed
to generate p-values for assessing the significance of RankProd statistics.

Combining P-values (CP): we use the standard meta-analysis process of combining p-values.
Specifically, here we employ the classical Fisher combination method [34]. Benjamini [35]:
Benjamini and Heller proposed a method for testing whether at least u out of n partial null-
hypotheses are false. Their method is valid also when some specific dependency structures hold
among the partial p-values, and the global p-value is computed as:

l
Benjaminiðu;nÞ

¼ min
j¼1;...;n� uþ1

ðn � uþ 1Þ

j
lðu� 1þjÞ

� �

where the partial p-values λj have been ordered so that λj� λj+1. When u = 1, the null hypothe-
ses of the Benjamini and NPCmethod coincide. Interestingly, for u = 1 the Benjamini equation
reduces to the Benjamini-Hochberg formula for controlling the false discovery rate [36].

The partial AUC metric. We evaluated the capability of each method in discriminating
differentially expressed quantities by employing the partial AUC, a metric commonly used in
Information Retrieval applications. The Receiver Operator Characteristic (ROC) Area Under
the Curve (AUC) [37], is a metric which combines sensitivity and specificity information for
all possible values of a decision threshold. AUC ranges in the interval of [0, 1], where one corre-
sponds to the perfect rank (i.e., all true findings receive a low p-value), 0.5 corresponds to ran-
dom ordering and zero to predictions that are perfectly inverted. AUC would evaluate the
whole list of p-values, providing a measure of global performance. However, researchers
attempting to identify relevant findings often restrict their attention to a few genes, the ones
deemedmore reliable for subsequent in vitro or in vivo experimental validation, which are usu-
ally too expensive or demanding to be performed on all findings. Thus, we are interested in
evaluating the partial performances of the methods on the genes corresponding to the lowest
p-values.We used a version of AUC known as partial AUC, pAUC [38], which considers a
restricted region of the whole sensitivity / specificity curve (specificity in [0.9, 1] for our experi-
mentations). The McClish formula [38] standardizes pAUC values in [0,1], so that the pAUC
has the same interpretation of the AUC.

In all experiments conducted in this study, the whole procedure from data simulation to
pAUC calculationwas performed 20 times and the median pAUC was calculated. Finally, we
applied the two sidedWilcoxon test to evaluate the significance of the differences in perfor-
mances between the best method and all the other ones.
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The joint null criterion

We performed a separated analysis for assessing the correctness (calibration) of the p-values
computed by each integrative method through the Joint Null Criterion, JNC [14]. According to
the JNC, calibrate methods should provide uniformly distributed p-values when applied on
multiple hypothesis testing tasks where all null-hypothesis are true.When the JNC holds, then
a number of procedures for multiple testing correction are ensured to strongly control the false
discovery rate. We applied the “double Kolmogorov-Smirnov test”, dks, for checking whether
the JNC holds, by performing the following process. We used the OCplus package for simulat-
ing two uncorrelated or two perfectly correlated microarray datasets, each containing 1000
genes and 20 i.i.d. samples. The samples were randomly and equally subdivided in two groups,
and the method to evaluate was applied for assessing the differential expression of each gene. A
two sided Kolmogorov-Smirnov test was performed for checking that the resulting p-values
follow a uniform distribution. The above process was performed 1000 times, producing 1000
distinct p-values from the Kolmogorov-Smirnov (KS) test. These p-values are also expected to
follow a uniform distribution, hypothesis that is assessed using a second Kolmogorov-Smirnov
test (hence the name double KS test).

Alternatively, the JNC criterion can also be checked by computing at each iteration the pos-
terior probability that the p-values come from a uniform distribution [14]. Both dks and the
posterior probability method are implemented in the “dks” R package [39].

Applications on real data

We further applied omicsNPC in three different case-studies, for demonstrating (a) omicsNPC
applicability on the integration of heterogeneous datasets, and (b) the increase in relevant bio-
logical findings obtained by integrating several omics datasets.

Integrative analysis of methylation–expression profiles in Schizophrenia. We co-ana-
lyzed a gene expression [40] and a methylation dataset [41] measured on whole blood of
Schizophrenic patients and healthy controls. Part of the subjects are common between the two
datasets, and the data are publicly available in the Gene Expression Omnibus (GEO) reposi-
tory, GEO id GSE38484 and GSE41037 respectively. First, each dataset was pre-processed inde-
pendently. The gene expression data were produced with the Illumina HumanHT-12 V3.0
expression beadchip; probesets without annotations and whose coefficient of deviation
(defined as the ratio between standard deviation and average value) was below 0.01 were
excluded from the analysis. The remaining probesets were collapsed by selecting for each gene
the probeset with highest average value. Subjects GSM943305 and GSM943331 were deemed
outliers and excluded after visual inspection of the Principal Component Analysis (PCA) plots.
Methylation data were measured with the Illumina HumanMethylation27 BeadChip, and were
adjusted for batch effects using the ComBat method [42] (known batches were indicated by the
original authors in private communications). Methylation probesets lacking annotations or
whosemethylation site was further than 500 kilo bases from the Transcription Start Site (TSS)
of the closest gene were excluded, as well as probesets whose values spanned an interval less
than 0.1. Following the single-dataset preprocessing, each methylation site was linked to the
closest gene measured in the expression dataset (cpg-to-the-closest-gene mapping, [43]);
unmatched genes or methylation sites were excluded. The final expression and methylation
datasets contain 200 (105 cases) and 658 (293 cases) subjects, respectively, out of which 50 sub-
jects are in common. The expression dataset is defined over 4962 genes, while 6428 methyla-
tion sites are reported in the methylation data.

Deregulation of protein and gene expression levels across Glioblastoma subtypes. Pro-
teomics and transcriptomics profiles of Glioblastoma patients were downloaded from the The

Applying the Non-Parametric Combination Methodology for Analysing Heterogeneous Omics Data

PLOS ONE | DOI:10.1371/journal.pone.0165545 November 3, 2016 11 / 23



Cancer Genome Atlas (TCGA) repository. We used the data as preprocessed by the TCGA
consortium (“Level 3” preprocessing); expression data were measured with the AffymetrixHT
Human GenomeU133 microarray, while proteomics information was produced with the
reverse phase protein array technique [44]. Both datasets were adjusted for known batches
with the ComBat method, and 114 protein measurements were associated to their correspond-
ing genes accordingly to the annotation of the data producer (RPPA Core Facility, MD Ander-
son Cancer Center, University of Texas). We focuses on the comparison between ‘Classical”
and “Mesenchymal” Glioblastoma. At the end of the preprocessing, the transcriptomics and
protein datasets contained respectively 315 (159 Mesenchymal) and 98 (45 Mesenchymal)
samples, out of which 97 were in common.

Co-analyzingNGS andmicroarray expression data in Breast Invasive Carcinoma. The
expression profiles of 16 distinct BReast invasive CArcinoma (BRCA) patients were down-
loaded from TCGA repository. For each patient two types of tissues are available, i.e., tumor
and healthy ones, and each tissue is profiled with three different technologies, “RNAseq”,
“RNAseqV2” and “Exp-Gene”, leading to a total of six expression profiles for each patient.
RNAseq and RNAseqV2 are both produced by mRNA sequencing but with slightly different
pipelines, while the Exp-Gene dataset is generated with microarray technology. The selected 16
patients belong to the same experimental batch, namely batch 93. We used the data as pre-pro-
cessed by the TCGA consortium at “Level 3”, meaning that count matrices are provided for the
sequencing datasets and normalized expression values for the microarray samples. In total,
16146 genes were in common among all datasets and were subsequently analyzed.

In all case-studies the datasets were first analyzed in isolation with limma (voom/limma for
RNAseq data). Furthermore, datasets were co-analyzed with omicsNPC by setting the number
of permutations to 10000. All Schizophrenia and Glioblastoma analyses were corrected for age
and gender.

Results

The JNC applied on integrative analysis methods

We applied the joint null criterion to evaluate whether the p-values produced by each method
follow the desired uniform distribution when the null-hypotheses are all true. To this end, we
simulated 1000 times either two uncorrelated or two perfectly correlated microarray datasets,
and we applied the double KS test process.

The omicsNPC function exhibited the same behavior in both the correlated and uncorre-
lated scenario, generating calibrated p-values with all combining functions (Figures B and G in
S1 File). NPCno-correction generated slightly non-calibrated p-values, in both uncorrelated and
correlated scenarios. In the uncorrelated scenario (Figure C in S1 File), the dks p-values for the
Fisher and Liptak methods were one order of magnitude lower than omicsNPC respective dks
p-values (p-value = 0.08 and 0.07, respectively). NPCno-correction combined with the Tippett
method was found to generate non-calibrated p-values (dks p-value = 0.012). In the correlated
scenario NPCno-correction generated non-calibrated p-values, regardless of the combining func-
tion used (Figure H in S1 File). Due to these findings we deemed the correction in the formula
for computing permutation-basedp-values necessary, and we use only omicsNPC in the subse-
quent experiments. Interestingly, assessing the JNC is not trivial when the sum or the product of
the ranks are used as combining functions in conjunction with the NPC permutation schema. In
both uncorrelated and correlated scenarios, omicsNPCRankSum and omicsNPCRankProduct obtain a
dks p-value� 0 (Figures D and I in S1 File, panels a and b). However, the empirical distribution
function of the first level KS test p-values is clearly shifted toward high p-values, indicating that
at each repetition the KS test accepts the null-hypothesis of uniformly distributed p-values, as
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also suggested by distribution of the posterior probabilities. Thus, assessing the JNC for these two
methods seem quite controversial. Notably, to the best of our knowledge, this is the first time that
the distribution of NPC p-values is evaluated through the joint null criterion.

We used an approximate algorithm [45] for estimating RankProd p-values, over which we
assessed the JNC for this method. The RankProd behaves similarly to omicsNPCRankSum and
omicsNPCRankroduct in the uncorrelated scenario (Figure D in S1 File, panel c). However, in the
correlated scenario this method produces uncalibrated p-values, as evident in the Q-Q plot of
Figure I in S1 File, panel c (dks p-value� 0). Also the CP method produced calibrated p-values
in the non-correlated scenario (dks p-value = 0.8, Figure E in S1 File), while producing uncali-
brated p-values when correlation structures were included in the data, dks p-value� 0
(Figure J in S1 File). Finally, the Benjamini method produced calibrated p-values in both
uncorrelated and correlated scenarios (Figures F and K in S1 File, respectively).

Results of simulation studies

We evaluated the capability of each method in retrieving true positive findings on simulated
data, where we could assess their performances on the known ground truth. In the different
modalities scenario we simulated several types of data (RNAseq_sim, Microarray_sim,
SNPs_sim, Unif_sim) and analyzed them either independently or by employing integrative
analysis methods.We evaluated performances by employing the pAUC metric. First, we
restricted our analysis on genes that have the same behavior across all modalities, i.e., they are
either deregulated in all datasets or in none of them, and examined the effect of the sample size
on the performances. Overall, integrative approaches performed better in identifying differen-
tial expressed genes, in comparison with methods that analyze each data modality indepen-
dently (Fig 3A, Table A in S1 File).

This stands also for low sample sizes (samples per group = 4). In all cases CP performed
equally or slightly better than omicsNPC, however the observeddifferences were often not

Fig 3. Median pAUCs in relation to the number of samples in the different modalities scenario. Each line corresponds to a specific method. The x

axis represents the number of samples per group used in the simulations, and y axis the median pAUCs. Circles suggest that the observed differences

from the best method were not statistically significant at level� 0.05. A) Only genes which exhibited the same behaviour across datasets were taken into

account. The integrative analysis yielded better results regardless the employed method. CP and omicsNPCFisher were the best method in most cases. B)

All genes were considered in this analysis. Again, omicsNPCFisher and CP achieved better performance than other methods in most cases; the Benjamini

method was also statistically indistinguishable from the best performing method when the sample size was 6 or 10.

doi:10.1371/journal.pone.0165545.g003
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statistically significant: when the sample size was equal to 4, CP performed equally well with
omicsNPCRankSum and RankSum, whereas for bigger sample sizes CP was as well performing as
omicsNPCFisher.

When all genes are taken into account, CP performed better than other methods for moder-
ated sample size, samples = 4, while omicsNPCFisher performed equally well with CP in all
other cases (Fig 3B, Table B in S1 File). Benjamini was also one of the best methods when the
number of samples was six and ten. Applying single-datasetmethods would have not been
meaningful in this case, since each dataset has different sets of deregulated quantities and
results would not be comparable.

Furthermore, we evaluated the effect of the number of modalities on integrative methods’
performances. Similarly to above, first we considered only the genes that behaved similarly
across all modalities. As evident from Fig 4A and the Table C in S1 File, CP and omicsNPCFisher

performed equally well. Furthermore, adding more modalities increased the performance of
omicsNPCFisher, omicsNPCLiptak, omicsNPCRankSum and RankSum.On the other hand when
we performed the same analysis taking into account all genes (Fig 4B and Table D in S1 File),
omicsNPCTippett, omicsNPCFisher, CP and Benjamini performed equally well in all cases. It is
worth noting that the performances of all rankingmethods and omicsNPCLiptak were slightly
decreasing as we were adding more data modalities.

Also, we examined the performance and the computational time of the algorithms in rela-
tion with the number of permutations (Figure L and Table E in S1 File). We observed that the
number of permutations had a relatively low influence on the performance of the ranking
approaches and omicsNPCLiptak, while omicsNPCTippett, omicsNPCFisher and CP reached their
maximum performances at 1000 permutations. In addition, the computational time of
omicsNPC presented a linear relation with the number of permutations.

In the correlated modalities scenariowe introduced different levels of correlation between two
microarray datasets. In all cases omicsNPCFisher and omicsNPCLiptak performed identically, and

Fig 4. Median pAUCs in relation to the number of modalities analysed in the different modalities scenario. Each line corresponds to a specific

method. The x axis represents the number of modalities analysed, and the y axis the median pAUCs. Circles suggest that the observed differences from

the best method were not statistically significant at level� 0.05. A) Only genes which exhibited the same behaviour across all datasets were taken into

account. In this experiment only the integrative approaches were evaluated. CP and omicsNPCFisher were the best method in all cases. B) All genes were

considered in this analysis. omicsNPCTippett, omicsNPCFisher, CP and Benjamini achieved better performance than other methods.

doi:10.1371/journal.pone.0165545.g004
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they were the best performingmethods (Fig 5, Table F in S1 File). All combining function that
employed the NPC permutation framework, as well as the Benjaminimethod, showed a stable
performance, as they were able to take into account the correlation structures between the data-
sets. On the contrary, the performance of methods which did not correct for correlations (CP,
RankProd, RankSum), behaved inversely as the level of correlation. It is worth noting that after a
specific correlation threshold, analyzing datasets in isolation with limma provides better perfor-
mances than methods overlooking between-datasets correlation structures.

Results on the real-data case-studies

The results on the three cases-studies underline how the non-parametric combination frame-
work is able to provide additional, biological insights with respect to analyzing each dataset in
isolation.

In the breast invasive carcinoma, BRCA, two RNA-seq and one microarray gene expression
dataset were generated from the same cancer patients; thus high between-datasets correlation

Fig 5. Median pAUCs in relation to correlation structures. Each line corresponds to a specific method. The x axis represents the level of

correlation introduced between the datasets, and the y axis the median pAUCs. Circles suggest that the observed differences from the best method

were not statistically significant at level 0.05. omicsNPCFisher and OmicsNPCLiptak were the best methods in all cases. All functions employing

omicsNPC framework, as well as Benjamini, showed a stable performance regardless the correlation intensity. On the other hand methods which did

not account for the correlations structures, showed decrease in performance as the correlation was higher. Note that single-dataset analyses, sky blue

lines, performed better than these methods when strong correlations are present.

doi:10.1371/journal.pone.0165545.g005
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structures should be expected. Indeed, the median Spearman correlation between the two
sequencing dataset is 0.93, while measurements in the Exp-Gene have a median Spearman cor-
relation with their respective counterparts in RNAseq and RNAseqV2 of 0.6 and 0.57, respec-
tively. This application seems an ideal test-bed for omicsNPC, and indeed we observe that
applying omicsNPC on all data-types allows to retrieve a higher number of differentially
expressed genes than analyzing each dataset in isolation, and this effect is independent by the
combining function or significance threshold used on the FDR adjusted p-values (Table G in
S1 File). For example, at 0.05 FDR level the Liptak combination function provides 7429 find-
ings, versus a maximum of 7116 retrieved analyzing the RNAseq dataset alone. Furthermore,
133 out of the 7429 Liptak significant genes are not significant in single-dataset analyses, and
24 out of these 133 genes were barely significant (adjusted p-value in [0.05–0.1]) for both
RNA-seq and the microarray data. This indicates how integrating several data sources with
OmicsNPC allows to retrieve findings that would not be identified by analyzing each omics
dataset in isolation. Interestingly, an enrichment analysis performed on these 24 genes over the
DiseaseOntology of the OBO Foundry [46] shows that six out of the ten most enriched dis-
eases are ovarian-related cancers (Table 1), a class of malignancies known to share similar hor-
monal [47] and genetic bases [48] with breast cancer.

Applying omicsNPC on the Schizophrenia data further confirmsNPC’s capabilities of
retrieving relevant biological findings. At an FDR level of 0.05, analyzing methylation data
alone identifies 3194 genes with at least one altered methylation site, against 1892 genes whose
expression is deregulated. Pairing methylation and expression data with omicsNPC and the
Fisher combining function leads to the identification of 3844 genes deregulated at the methyla-
tion / expression level. We analyzed the enrichment of these significant genes in KEGG [49],
Gene Ontology Biological Processes [50] and Reactome [51] pathways using the hypergeomet-
ric test, and excluding pathways with less than 20 or more than 200 elements (3918 pathways
to test in total). The enrichment analysis identified sixty-eight pathways enriched for
omicsNPC findings, out of which thirty-ninewere not significant when the enrichment was
performed on each data modality in isolation (FDR level 0.05 in all cases, S2 File). Fig 6 reports
the five most significant of them, comparing their level of significance according to omicsNPC
against methylation and expression data alone. The first pathway, the biological process “anti-
gen receptor-mediated signaling pathway” (GO id GO:0050851), represents a set of molecular
signals that are initiated in B or T cells by the cross-linking of an antigen receptor. Interestingly,

Table 1. Disease Ontology enrichment over the 24 BRCA genes identified solely by omicsNPC (Liptak combining function).

ID Description p-value Adjusted p-value

DOID:3369 peripheral primitive neuroectodermal tumor 0.000550441 0.131004856

DOID:3713 ovary adenocarcinoma 0.001650812 0.182356547

DOID:10534 stomach cancer 0.008751988 0.182356547

DOID:1856 Cherubism 0.009691775 0.182356547

DOID:3605 ovarian cystadenocarcinoma 0.009691775 0.182356547

DOID:2151 malignant ovarian surface epithelial-stromal neoplasm 0.009845306 0.182356547

DOID:2152 ovary epithelial cancer 0.009845306 0.182356547

DOID:4001 ovarian carcinoma 0.009845306 0.182356547

DOID:5828 endometrioid ovary carcinoma 0.011298616 0.182356547

DOID:2394 ovarian cancer 0.012482471 0.182356547

The table reports the enrichment result computed with hypergeometric test (function “enrichDO” from the R package “DOSE”) over the 24 genes identified

by omicsNPC equipped with the Liptak combining function and deemed barely significant by the single-dataset analyses.

doi:10.1371/journal.pone.0165545.t001
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Schizophrenia has been found associated to antigen processing and Human LeucocyteAntigen
(HLA) genes in numerous studies [52–54], findings that corroborate an implication of the
immune system in the disease [55,56]. Similarly several studies have hypothesized a role of
Chronic Inflammation in Schizophrenia [57–60]. Finally, deficiencies in Toll-like receptor-2, a
family of pattern recognition receptors, have been demonstrated to induce Schizophrenia-like
behaviors in mice [61].

In the Glioblastoma case-study, most of the proteins show a deregulation at 0.1 FDR level
betweenMesenchymal and Classical Glioblastoma; 53 deregulated proteins in the proteomics
data, 64 differentially expressed genes in the transcriptomics data, and 95 deregulated elements
in both data types combined (omicsNPC, Fisher combining function). Also in this case,
omicsNPC retrieves additional findings that seem to have biological relevance: proteins Myc,
MSH6 and STAT3 were significant at 0.1 FDR level for omicsNPC, even if they were not

Fig 6. Pathway enrichment analysis in the Schizophrenia case-study. Some pathways are enriched according to omicsNPC (Fisher combining

function) but not for the single-dataset analysis (FDR level 0.05 in all cases); the 5 most enriched of such pathways are reported on the y-axis. Each

dot represents the significance (color) and number of deregulated genes (size) in the respective pathway according to omicsNPCFisher (Fisher),

methylation (Methy), or transcriptomics data (Expr).

doi:10.1371/journal.pone.0165545.g006
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significant when proteomics and transcriptomics data were analyzed in isolation. Genes encod-
ing Myc, MSH6 and STAT3 are well known for their role as oncogenes [62–64]. More impor-
tantly, STAT3 has been found as an initiator and master regulator of brain tumor
mesenchymal transformation [65]; MSH6 mutations have reported to affect treatment
response in Glioblastoma [66]; and Myc has been found separately associated to glioma/glio-
blastoma [67][68] and mesenchymal transition of epithelial cells [69].

Discussion

In this study we have shown that the Non-Parametric Combination, NPC, is a valuable meth-
odology for the integration of heterogeneous omics datasets. NPC is particularly useful for
identifyingmolecular quantities that, considered together, are deregulated / associated to an
outcome of interested in a statistically significant way.

We realized the omicsNPC function for facilitating the analysis of omics data within the
NPC framework. The function is freely available in the R Bioconductor package STATegRa,
and is able to address a variety of different study designs as well as analyzing datasets having
only part of their samples in common.

We contrasted omicsNPC against two rank-based and two parametric approaches. The
results showed that OmicsNPCFisher performed better than other methods in most scenarios
conducted in this study. When no correlation structures were present in the data, the CP
method was slightly more performant than omicsNPCFisher, with the observeddifferences
often being not statistically significant. In contrast, when between-datasets correlation struc-
tures were introduced, omicsNPC outperformed all other methods, while approaches that did
not take those correlations into account performed poorly, achieving lower performances than
single-dataset analyses for moderate to high correlation levels (Fig 5).

Furthermore, we applied the joint null criterion, JNC, on all methods under study employ-
ing correlated as well as uncorrelated datasets. The omicsNPC function always presented the
same unbiased behavior, when Liptak, Tippett or Fisher combining functions were used (Fig-
ures B and G in S1 File), and permutation-based p-values were corrected for avoiding reaching
zero. RankProd and CP produced uncalibrated p-values when correlated datasets were consid-
ered (Figures I and J in S1 File), while the Benjamini method showed to comply with the JNC
in all simulations (Figures F and K in S1 File).

Furthermore, we explored NPC as a general framework for integrative analysis, by using
rankingmethods as combining functions (Figure A in S1 File). The key idea is using the per-
mutation strategy of the NPC framework for allowing different integration methods, RankSum
and RankProd in our analysis, to correctly address between-datasets correlations. Indeed, the
performances of the omicsNPCRankProd and omicsNPCRankSummethods were not negatively
affected by the level of correlation among data modalities, contrarily to the original RankSum
and RankProd approaches (Fig 5). Also the results of the dks tests did not indicated any differ-
ence due to the presence of correlation (Figures D and I in S1 File), even though it is not clear
whether the JNC holds for omicsNPCRankProd and omicsNPCRankSum.

Finally, we applied OmicsNPC on real data from three different case-studies. Taken
together, the results on the three real-data case-studies show that omicsNPC is (a) versatile
enough to be used for the integration of different omics data; (b) able to include co-variates
into the analysis and process sets of datasets that share only part of the samples; (c) finally,
omicsNPC have shown, at least in the context of our analysis, to produce additional, relevant
biological insights with respect to analyzing data modalities in isolation. Particularly, we con-
centrated on results deemed statistically significant by omicsNPC but discarded by single-data-
set analysis, retrieving interesting findings both at gene (Myc, STAT3 and MSH6 genes in the
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Mesenchymal vs. Classical Glioblastoma case study), pathway (the antigen and pattern recog-
nition signaling pathways in the Schizophrenia example) and disease levels (gynecologiccancer
diseases in BRCA).

In conclusion, several important features of the NPCmethodologymake it appropriate for
the integrative analysis of omics data. First, the underlying assumptions are minimal: NPC per-
mutation schema requires observations to be exchangeable under the null hypothesis, a
requirement common in permutation-based approaches. Furthermore, the partial p-values are
assumed to be adequate for assessing the partial null-hypothesis, marginally unbiased and con-
sistent [70], while the combining functionsmust respect a set of mild assumptions [71]. The
possibility of equipping NPCmethods with different combining functions provides the method
with great flexibility: researchers can select the function that best reflects their expectative on
the data or that are most suitable for answering their specific scientific questions. Last but not
least, NPC frees the researcher from the necessity to define and model the dependence relations
among different data modalities and partial tests.

Finally, we would like to underline the limitations of the present study. First, we restricted
our simulations to the special case where exactly one measurement per gene is provided by
each data modality, and this is rarely the case in real applications. All analyses were performed
solely in the context of case-control studies, without taking into consideration other types of
study designs. The performances of the different integrative methods, as well as the joint-null
criterion, were evaluated only on simulated data, since the ground-truth necessary for the eval-
uation is not available in the case-studies on real data.

Conclusions

To the best of our knowledge, this is the first study investigating the applicability of the Non-
Parametric Combination methodology in the analysis of heterogeneous omics data. Our results
indicate omicsNPC and the NPC framework as versatile and valuable tools for performing
integrative analyses in biological studies.

Supporting Information

S1 File. This file contains Figure A, which explain OmicsNPC employing rankingmethods,
Figures B–K which illustrate the diagnostic plots of the joint null hypothesis criterion. Further
it includes Figure L which demonstrates how omicsNPC performances are influenced by the
number of permutations. Finally it includes Tables A–F, which report the median pAUCs val-
ues for the experimentations on simulated data and their respective significance levels. Table G
reports the number of deregulated genes in the BRCA case-study.
(PDF)

S2 File. Results of the enrichment analysis on the Schizophrenia case-study.
(XLSX)
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