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Abstract: The diverse repertoires of cellular mechanisms that progress certain cancer types are
being uncovered by recent research and leading to more effective treatment options. Ovarian cancer
(OC) is among the most difficult cancers to treat. OC has limited treatment options, especially for
patients diagnosed with late-stage OC. The dysregulation of miRNAs in OC plays a significant role in
tumorigenesis through the alteration of a multitude of molecular processes. The development of OC
can also be due to the utilization of endogenously derived reactive oxygen species (ROS) by activating
signaling pathways such as PI3K/AKT and MAPK. Both miRNAs and ROS are involved in regulating
OC angiogenesis through mediating multiple angiogenic factors such as hypoxia-induced factor
(HIF-1) and vascular endothelial growth factor (VEGF). The NAPDH oxidase subunit NOX4 plays
an important role in inducing endogenous ROS production in OC. This review will discuss several
important miRNAs, NOX4, and ROS, which contribute to therapeutic resistance in OC, highlighting
the effective therapeutic potential of OC through these mechanisms.

Keywords: ovarian cancer; miRNA dysregulation; ROS; NOX4; HIF1-α; VEGF; angiogenesis; HER3;
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1. Ovarian Cancer

Known as the silent killer, ovarian cancer (OC) has the lowest survival rate and the
worst prognosis among all gynecologic malignancies in the US; and is the eighth most
common cancer in women worldwide [1,2]. In 2022, the American Cancer Society estimates
about 21,000 new cases of OC will be diagnosed, and approximately 14,000 women will die
from this type of cancer. The overall 5-year survival rate is only 48% due to OC’s ambiguous
symptoms and inadequate screening capabilities at the early stages of the disease. Due
to late detection, about 60% of new cases are diagnosed when the disease has already
progressed to the advanced stage [2]. OC is a heterogeneous disease with several subtypes
that differ in their gene expression, tumor origin, pathway alterations, and pathogenesis.
The majority of OC originates from three main cell types: epithelial cells (90%), stromal
cells (7%), and germ cells (3%) [1,3,4]. In general, epithelial OC can be further divided into
five histotypes: high-grade serous (HGSOC; 70%), endometrioid (ENOC; 10%), clear cell
(CCOC; 10%), mucinous (MOC; 5%), and low-grade serous (LGSOC; less than 5%) OC [4].
In addition, another classification system was introduced a decade ago that divided OC
into type I and II tumors. Type I tumors are low-grade neoplasms, including mucinous
carcinomas, endometrioid carcinomas, malignant Brenner tumors, and clear cell carcino-
mas. Type I tumors are typically characterized by mutations in BRAF, KRAS, and PTEN
with DNA instability. Type II tumors are high-grade serous carcinoma, carcinosarcoma,
and undifferentiated carcinoma, which are frequently observed with mutations in p53,
BRCA1/2, HER-2/HER-3 overexpression, and p16 inactivation [5–8]. Depending on the
specific subtype and histopathology, OC treatment involves a combination of surgery and
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chemotherapy. For patients with advanced-stage tumors, debulking surgery is recom-
mended; however, large tumors or residual tumors may show negative side effects leading
to blockage of the perfusion area and the possibility of developing drug resistance [1,9].
Platinum-based chemotherapy is the standard line of treatment for OC, either in conjunc-
tion with or following surgery [10–12]. The combination of paclitaxel/carboplatin has been
recognized as the standard postoperative chemotherapy for many years [13]. In recent
years, PARP inhibitors have been incorporated into clinical treatment as a recommended
maintenance drug [14]. However, due to the aggressive growth rates and the propensity of
advanced tumors to evade treatment, there are critical limitations to the current lines of
therapy. A better understanding of the molecular biology of OC is allowing more research
efforts to establish new effective treatment options for advanced-stage tumors.

2. ROS

Reactive oxygen species (ROS) have remained a highly relevant topic over the last
few decades due to their expansive effects on normal cellular function. Oxidative stress
is generated through the accumulation of ROS, either through exogenous exposure or
endogenous production. ROS are oxygen ions with unpaired electrons (singlet oxygen
1O2, superoxide O2·−) or oxygen-containing molecules, such as hydroxyl radicals (OH·−),
hydrogen peroxide (H2O2), nitric oxide (NO), and nitrogen dioxide (NO2) [15]. Superoxide
radicals are converted into H2O2 by the enzyme superoxide dismutase (SOD). However,
superoxide can also react with nitric oxide to produce peroxynitrite (ONOO−), a strong
oxidizer with damaging cellular effects [16]. The accumulation of H2O2 has detrimental
effects on nuclear and mitochondrial DNA, which may lead to genetic instability to drive
cancer progression with increased expression of oncogenes and decreased expression of
tumor suppressors [17,18]. Several enzymes work in conjunction to convert H2O2 into
the water, including catalase, glutathione peroxidases 1 and 4, and peroxiredoxins 3 and
5 [19–22]. Furthermore, H2O2 can also participate in the Fenton reaction, in which free iron
Fe(II) reacts with H2O2, generating highly reactive hydroxyl radicals (·OH)(shown below).
The production of hydroxyl radicals (·OH) by the Haber–Weiss reaction (shown below)
further perpetuates the damaging effects of the accumulation of ROS.

Fenton Reaction:

Fe(II) + H2O2 ←→ Fe(III) + ·OH + OH−

Haber–Weiss Reaction:

O2·− + H2O2 ←→ OH + OH− + O2

Original studies implicated the mitochondria as primary endogenous sources of su-
peroxide through the process of cellular respiration, a process dependent on the availability
of O2 [23–25]. Based on this view, the production of ROS was thought to be a harmful
by-product of intracellular metabolism. Then a family of transmembrane enzymes known
as NADPH oxidase (NOX) proteins was identified, whose primary function was the pro-
duction of endogenous ROS. NOX2, the first NOX protein discovered, was the primary
producer of endogenous ROS in leukocytes to generate an oxidative burst, an essential
process for the neutralization of pathogens [26–29]. The characterization of a disease called
chronic granulomatous disease (CGD) caused by a mutation in the phagocytic NOX gene
provided insight into the emerging role of endogenous ROS production on cellular function-
ality [30,31]. Subsequent work demonstrated a pivotal role of NOX proteins in mammalian
cell transformation through the production of superoxide radicals and H2O2 [32,33]. Our
group demonstrated that the accumulation of ROS in OC cells was attributed to H2O2
increased levels induced by NOX4 [34], identifying an endogenous mechanism for the
overproduction of ROS and alteration of intracellular signaling in OC tumor development.

Under normal cellular conditions, low levels of endogenous ROS activate several
signaling pathways involved in cell proliferation. However, the accumulation of ROS causes
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extensive damage to DNA, RNA, proteins, and lipids, thus causing a significant hindrance
to normal cellular functions and contributing to the development of multiple human
pathologies [35–38]. The damage can induce cell death pathways or trigger the mutation of
DNA, as commonly found in cancer [39,40]. In addition to the endogenous production of
ROS and oxidative stress, external or environmental exposure to ROS can have detrimental
effects on mammals [41]. For instance, many chemotherapeutic agents induce oxidative
stress as a means of inducing cellular damage and cell death pathways [42]. However, as
demonstrated by more recent findings, ROS play an important role in the progression and
advancement of human diseases. The counterweight for endogenous ROS is the genetically
programmed redox system. This includes groups of genes coding for antioxidant proteins
such as superoxide dismutase (SOD), catalase, and the glutathione system, which neutralize
the ROS produced in cells [43–45]. The failure to neutralize endogenous ROS leads to a
build-up of harmful oxygen species and, consequently, oxidative stress. In normal cells,
oxidative stress leads to deleterious cellular effects, such as protein, lipid, and DNA damage,
organelle dysfunction, and cell cycle arrest [46]. Higher levels of oxidative stress cause
the activation of cell death pathways such as apoptosis and necrosis [46], which may be
mitigated in cancer cells by an increase in antioxidant production. The upregulation of
nuclear factor erythroid 2-related factor 2 (NRF2), a master transcriptional regulator of
antioxidant genes, contributes to the neutralization of endogenous ROS in OC cells [47–49],
making NRF2 a viable target for chemotherapeutic treatment in certain cases of OC. In
addition, the genetic mutation of cellular pathways that induce cell death mechanisms
in response to increased oxidative stress allows cancer cells to evade the activation of
cell death pathways [50], thus providing cancer cells the ability to continue continuous
proliferation in the presence of adverse cellular conditions, such as oxidative stress.

3. ROS in the Development of Ovarian Cancer

There is an established link between an increase in ROS production and cancer de-
velopment in humans [51]. As secondary cellular signaling molecules, ROS are involved
in the activation of several signaling pathways involved in cell proliferation and growth.
Consequently, these pathways are constitutively activated in cancer cells with increased
ROS levels that contribute to tumorigenesis [51]. For example, endogenously derived
ROS activate the ERK1/2 MAPK signaling pathway and the AKT signaling pathway in
OC, both of which promote cell proliferation [52,53]. The increased ROS generation also
contributes to a genetic mutation in cancer cells, further contributing to cell transforma-
tion [54,55]. As opposed to the traditional view of ROS generation in cancer as a harmful
secondary by-product, the increasing knowledge of cancer cell metabolism and signal
transduction is exposing ROS as a positive contributing factor in tumorigenesis and cancer
development. The increased metabolic activity of cancer cells was originally thought to be
responsible for the accumulation of ROS as a byproduct of increased glycolytic metabolism
and mitochondrial respiration [56]. However, the discovery of the role of NOX proteins
in endogenous ROS production revealed a more important role for ROS production in
non-phagocytic cells, particularly in cancer [57–59]. The endogenous production of ROS
by NOX1 was found to be responsible for increased viability and proliferation in colon
cancer [60,61]. Similarly, the role of NOX2-mediated ROS production was discovered to be
critical for cell viability and proliferation in breast, colorectal, myelomonocytic leukemia,
gastric, and prostate cancers [62–67]. NOX4 overexpression contributed to an oncogenic
proliferation in renal cell carcinoma, melanoma, glioblastoma, ovarian, prostate, and lung
cancers [34,68–72]. In OC cell lines, there is a significant increase in ROS production, which
contributes to tumorigenesis [34]. The increase in ROS is a result of NADPH oxidase
activity and mitochondrial metabolism, as this increase is diminished by NADPH oxidase
and mitochondrial complex I inhibitors [34]. Moreover, the increased levels of ROS result
from the upregulation of the NADPH oxidase subunit NOX4, which serves as the main
contributor to ROS production in OC cells to promote tumor growth and angiogenesis [34].
Furthermore, the activation of NOX4 is positively correlated with TGF-β1 and NF-κB activ-
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ity, which is suppressed by their inhibitors [34]. This system demonstrates that endogenous
NOX4-derived ROS are a driving force in OC development. Moreover, NOX4 is a potential
target for the therapeutic resistance of OC which is dependent on ROS production for an
increase in oncogenic signaling.

4. miRNA Dysregulation in Cancer

The progression of cancer is often associated with dysregulation of non-coding RNAs,
including microRNAs (miRNAs) [73,74]. miRNAs are 18–25 nucleotide long, non-coding
single-stranded RNA molecules that regulate the expression of messenger RNA (mRNA) [75].
The discovery of miRNA in 1993 by Ambros and colleagues in the nematode C. Elegans
revealed the critical role of miRNAs in the post-transcriptional regulation of mRNA [76,77].
In these studies, the miRNA lin-4 was found to regulate the expression of the critical
developmental transcription factor, lin-14 [76,77]. The primary transcripts of miRNA
(pri-miRNA) are modified within the nucleus by the RNase III DROSHA and its cofactor
DGCR8 before being exported to the cytoplasm as pre-miRNA [78,79]. Mature miRNA
molecules are the result of the cleavage of pre-miRNA at the terminal loop by the RNase III
endonuclease, DICER [80,81]. The regulation of miRNA processing can have expansive
effects on cellular processes, as demonstrated by the gain-of-function mutation of DICER as
a contributory factor in cancer development [82]. As transcriptional regulatory molecules,
miRNAs typically recognize and bind the 3′-UTR of target mRNAs to repress expression or
induce degradation [83]. The activation of genes by miRNAs occurs through association
with the promoter region and upstream regulatory regions of target genes [84]. The search
for the role of miRNA in humans yielded a plethora of data that are still accumulating,
particularly the dysregulation of miRNAs in oncogenesis. The original studies identify-
ing the role of miRNAs in human oncogenesis demonstrated the effect of miR-15a/16a
repression on promoting the oncogenic protein Bcl-2 in chronic lymphocytic leukemia [85].
Most human miRNAs function as tumor suppressors by directly targeting and inhibiting
oncogenes, such as RAS and MYC. For instance, the downregulation of Let-7 family of
miRNAs, which target KRAS and C-MYC, is found in OC, which induces tumor growth and
development [86,87]. However, some miRNAs function as oncogenes by directly targeting
and inhibiting tumor suppressors such as p53 [88,89]. For example, miR-25 and miR-30d
target p53 for degradation and contribute to colon cancer development; the downregulation
of both miR-25 and miR-30d led to an increase in p53 protein expression and increased
apoptosis in multiple cancer types [90]. Many miRNAs are dysregulated in multiple can-
cers, including the upregulation of miR-155 in lymphomas and colorectal cancers [91,92],
indicating a commonality in the mode of miRNA dysregulation in multiple cancer/tissue
types. The molecular effects of miRNA dysregulation include feedback mechanisms, such
as the miR-17-92 cluster/E2F family/c-MYC loop. In this feedback mechanism, miR-17-92
is activated by c-MYC and inhibits E2F family protein translation [93,94]. The E2F family
of proteins (E2F1, E2F2, E2F3) are critical cell-cycle regulated inducers of proliferation,
therefore proper regulation of these proteins is necessary under normal conditions [95].
Further investigation revealed that c-MYC activation of E2F family proteins activates miR-
17-92, leading to a feedback loop to tightly control the expression of E2F proteins in healthy
cells [96,97]. However, in cancer cells the amplification and overexpression of miR-17-92
disrupts this feedback loop and contributes to high cell proliferation and tumorigenesis [98].
In another example, miR-221/222 upregulation in cancer cells contributes to oncogenesis
through the inhibition of cell cycle regulating protein p27 [99–101]. The dysregulation of
particular miRNAs can differ between subtypes of OC. For instance, the overexpression of
miR-483 occurs in serous epithelial ovarian cancer (EOC), but does not occur in non-serous
EOC [102]. As demonstrated in voluminous publications, miRNA dysregulation affects
a variety of cellular processes that contribute to oncogenesis in a wide variety of cancers.
The complex role of miRNAs in cancer development highlights the potential for therapies
targeting specific miRNAs that are dysregulated in different cancers.
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5. ROS and miRNA Dysregulation in Angiogenesis and Ovarian Cancer Development

The development of tumors involves a wide variety of cellular processes. In this
regard, ROS contribute to critical cellular processes that occur within tumors, including
angiogenesis and micro-RNA (miRNA) dysregulation. Angiogenesis is the creation of
new blood vessels within existing vasculature, which is essential for processes such as
embryogenesis, tissue repair, and organ regeneration [103]. Unsurprisingly, angiogenesis
plays a pivotal role in cancer development through the establishment of nutrients and blood
supply to newly formed tumors [104]. A significant contribution to angiogenic signaling
is made by vascular endothelial growth factor (VEGF), which is highly upregulated in
developing embryonic cells and tumor cells [105–107]. The limited oxygen availability
in tumors often leads to hypoxic conditions, in which signaling pathways are activated
to initiate tumor growth and angiogenesis [108]. The hypoxia-inducible factor 1 alpha
(HIF-1α) plays a vital role in the hypoxic response in tumor cells, partially through the
upregulation of VEGF [109–111]. The dysregulation of HIF1-α occurs in a wide variety of
cancers which contributes to tumorigenesis [112]. The upregulation of HIF-1α and VEGF
are positively correlated with NOX4-derived ROS production in OC cells and promotes
angiogenesis and tumor growth [34]. In turn, HIF-1α induces the expression of VEGF;
and promotes the production of NOX4 through an alternative splicing mechanism [34,113].
This positive feedback system demonstrates the capacity of OC cells to utilize the overpro-
duction of NOX4-derived ROS to activate HIF-1α and VEGF and promote angiogenesis
and tumor growth.

This regulation system is complicated more by the dysregulation of miRNAs by in-
creased intracellular ROS, which contributes to OC tumorigenesis. For instance, miR-199a
and miR-125b downregulate the expression of the oncogenic proteins HER2 and HER3
under normal cellular conditions [114]. However, increased ROS in OC cells results in
the downregulation of miR-199a and miR-125b through DNA hypermethylation, thereby
increasing the expression of HER2/3 and contributing to tumorigenesis [114]. More impor-
tantly, this demonstrates the role of epigenetic regulation of miRNA expression. Another
example of epigenetic regulation of miRNA expression is the increased acetylation of miR-
466-5p in response to increased ROS, thereby inducing the expression of miR-466-5p, which
then activates pro-apoptotic genes [115,116]. The expression of some miRNAs is regulated
by ROS-stress-responsive transcription factors, which contribute to molecular signaling cas-
cades. The tumor suppressor p53 is induced in response to ROS and subsequently activates
the miR-200 family of miRNAs [117]. The miR-200 family members have been implicated
as tumor suppressors, and overexpression of these miRNAs inhibits tumor development in
OC [118,119]. However, two members of this family of miRNAs, miR-141 and miR-200a,
directly target p38α in response to increased levels of ROS, resulting in evasion of apoptosis
induction and upregulation in antioxidant production [120,121], thus demonstrating the
complexity of molecular roles of a single family of miRNAs in OC progression. As contribut-
ing factors to the pathway described above, miR-21 and miR-27a induce angiogenesis in
OC through the upregulation of HIF1-α and VEGF, respectively [122,123]. Additional path-
ways affected by miRNA dysregulation also contribute to angiogenesis in OC. For instance,
miR-141 is upregulated in OC to induce the expression of VEGFR2, resulting in an increase
in angiogenesis [124]. By a differing mechanism, the upregulation of miR-205 in OC results
in an increase in angiogenesis through the downregulation of tumor suppressor PTEN
and an increase in AKT signaling [125]. Similarly, miR-204 upregulation in OC contributes
to angiogenesis through the downregulation of anti-angiogenic protein THBS1 [126,127].
The miRNAs listed in Table 1 are upregulated in OC cells and contribute positively to
tumor growth, development, angiogenesis, and therapeutic resistance. However, there
are substantial data demonstrating a tumor suppressor role for various miRNAs in OC,
whose downregulation results in tumorigenesis, angiogenesis, and treatment resistance
(Table 2) [128]. For instance, miR-145 acts as a tumor suppressor, and the downregulation
of miR-145 in OC contributes to angiogenesis through the upregulation of HIF-1α and
VEGF [129]. The overall role of the miRNAs in OC development described here is shown
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in Figure 1. Another important avenue of miRNA research involves the dysregulation of
specific circulatory miRNAs, which has the inherent propensity to impact a multitude of
tissue types. Recent work has shown that the expression levels of miR-200b, miR-200c,
miR-141, and miR-1274A in OC patients’ circulatory systems are negatively correlated
with survival [130]. Therefore, the roles of miRNA dysregulation in OC angiogenesis
and development remain to be fully understood which warrants further investigation to
provide therapeutic options and/or targets in the future.

Table 1. miRNAs upregulated in OC cells that contribute to tumor growth and development,
angiogenesis, and therapeutic resistance.

miRNA Target mRNA(s)/Function Ref

miR-21 APAF1/Promotes angiogenesis and treatment
resistance (paclitaxel) [131,132]

miR-22 MXI1/Promotes tumor growth [133]

miR-27a VEGF/Promotes VEGF expression to promote angiogenesis [123]

miR-30a FOXD1/Promotes cell cycle progression and growth [134]

miR-92a DKK1/Promotes Wnt signaling and tumor growth [135]

miR-99a FN1, VTN/Promotes tumor metastasis [136]

miR-106a CASP7/Promotes treatment resistance (paclitaxel) [137]

miR-141 p38α, KEAP1/Promotes tumor growth and treatment
resistance (cisplatin) [121,138]

miR-181a SMAD7/Promotes tumor growth, angiogenesis, and
treatment resistance [139]

miR-182 MTSS1, PDCD4/Promotes tumor growth, metastasis, and
treatment resistance (cisplatin and paclitaxel) [140–142]

miR-200a p38α/Promotes tumor growth [121]

miR-203 PDHB/Promotes cell proliferation [143]

miR-204 THBS1/Promotes angiogenesis and tumor growth [126,127]

miR-205 SMAD4, PTEN/Promotes metastasis and angiogenesis [144]

miR-210 PTPN1/Promotes survival and evasion of cell death mechanisms [145]

miR-214 PTEN/Promote cell survival and treatment resistance (cisplatin) [146]

miR-223 PTEN/Promote tumor growth and treatment resistance (cisplatin) [147]

miR-376a KLF15/Promotes cell cycle progression and growth [148]

miR-443 MAD2/Promote tumor growth and treatment
resistance (paclitaxel) [149]

miR-551b STAT3/Promotes tumor growth [150]

miR-552 PTEN/Promotes tumor metastasis [151]

miR-622 KU70, KU80/Promotes treatment resistance (cisplatin and
PARP Inhibitors) [152]

miR-939 APC2/Promotes Wnt signaling and tumor growth [153]

miR-1246 CAV1/Promotes treatment resistance (paclitaxel) [154]



Int. J. Mol. Sci. 2022, 23, 6702 7 of 17

Table 2. miRNAs downregulated in OC cells that function as tumor suppressors.

miRNA Target mRNA(s)/Function Ref

Let-7 Family KRAS, c-MYC/Tumor suppression through KRAS and c-MYC downregulation. [86,87]

miR-31 CDKN2A/Tumor suppression through CDKN2A downregulation. [155]

miR-125b VEGF, HER3, HIF1-α/Tumor suppression through VEGF, HER3 and HIF1-α downregulation. [114]

miR-135a CCR2/Tumor suppression through CCR2 degradation. [156]

miR-145 P70S6K1/Tumor suppression through P70S6K1 downregulation. [129]

miR-181 RTKN2/Tumor suppression through RTKN2 downregulation. [157]

miR-199a HER3/Tumor suppression through HER3 downregulation. [114]

miR-200b/200c DNMT3A/3B/Tumor suppression through DNMT3A/3B downregulation. [158]

miR-206 c-MET/Tumor suppression through c-MET downregulation. [159]

miR-298 EZH2/Tumor suppression through EZH2 downregulation. [160]

miR-424 CCNE1/Tumor suppression through CCNE1 downregulation. [161]

miR-490 CDK1/Tumor suppression through CDK1 downregulation. [162]

miR-508 MAPK1/Tumor suppression through MAPK1 downregulation. [163]
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miRNAs shown above are dysregulated in OC that contribute to angiogenesis, cell proliferation, and
therapeutic resistance. The dysregulation of each miRNA is denoted by an up arrow (upregulation)
or a down arrow(downregulation). The regulation of proteins affected by the dysregulation miRNAs
is denoted in the same manner.

6. Potential Mechanism of ROS in Therapeutic Resistance in Ovarian Cancer

The two major obstacles facing efficient treatment of OC are late detection/diagnosis
and acquired therapeutic resistance. The standard treatment for OC includes preliminary
debulking surgery followed by platinum-based (carboplatin and cisplatin) and/or taxane
family-based (paclitaxel and docetaxel) chemotherapy [164,165]. The mode of action of
platinum-based therapies is oxidative stress-induced cellular damage and initiation of
cell death pathways, such as apoptosis, which is triggered by this class of chemother-
apeutics [166]. The taxane family-based drugs are used to inhibit cell division through
microtubule stabilization [167]. However, due to toxic side effects associated with high-dose
treatment and acquired resistance to carboplatin and cisplatin treatment, this traditional
route of therapy has critical limitations. The mechanisms of drug resistance to these
treatment options include an increase in DNA damage repair and an increase in antiox-
idant production to detoxify cancer cells [168]. Regarding this, other chemotherapeutic
agents are used to treat resistant tumors, including gemcitabine, doxorubicin, and beva-
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cizumab [169–171]. There are additional combinations of chemotherapy used to treat OC,
such as targeted treatment of anti-apoptotic proteins that are overexpressed in OC cells. For
instance, the anti-apoptotic protein Bcl-2 is overexpressed in OC, and treatment of tumor
cells with a combination of cisplatin or carboplatin and Bcl-2 inhibitors show an increased
level of cancer cell death induction [172–175]. The class of VEGF regulators known as spe-
cific proteins (Sp) are also targeted by small molecule inhibitors to induce cell death [176].
Another important mechanism for cancer cells to evade treatment is the upregulation of
the glycoproteins that form the molecular pumps to export chemotherapeutic agents out
of the cancer cells, driving the process of multi-drug resistance [177,178]. The complexity
of miRNA dysregulation in OC also contributes to treatment resistance. For instance, OC
cells evade apoptosis in response to paclitaxel treatment through upregulation of miR-
21 and miR-106a, that target and downregulate the pro-apoptotic proteins APAF1 and
CASP7, respectively [131,132]. Similarly, miR-182 upregulation in OC results in evasion
of apoptosis in response to cisplatin/paclitaxel treatment through the downregulation
of pro-apoptotic protein PDCD4 [142]. Regarding therapeutic efficacy, the ROS-induced
miRNAs mentioned previously, miR-200a and miR-141, although shown as oncogenic,
can increase the sensitivity of OC to paclitaxel treatment through the downregulation of
p38 [121,179]. Similarly, overexpression of miR-522 can increase the sensitivity of OC to
paclitaxel treatment [180]. A better understanding of the molecular mechanisms driving
treatment resistance in OC is of vital importance for the design of therapies that will
effectively treat aggressive, resistant tumors.

The increase in intracellular ROS levels in OC has been shown to contribute to thera-
peutic resistance. For instance, an increase in ROS in OC results in the overexpression of
dCTP pyrophosphatase I (DCTPP1), which has a role in DNA damage repair and plays a
major contribution to cisplatin resistance [181]. By a differing mechanism, the upregulation
of calcium/calmodulin-dependent protein kinase II gamma (CAMK2G) in response to
increasing levels of ROS reprograms the cellular redox system through the phosphorylation
of inositol triphosphate3-kinase B (ITPKB), resulting in adaptive redox homeostasis and
increased resistance to cisplatin treatment [182]. Similarly, the upregulation of PGC1-α
by increasing intracellular ROS contributes to chemotherapy resistance through the up-
regulation of drug resistance-related proteins, MDR1 and ABCG2, leading to increased
antioxidant production and drug efflux [183]. The increase in ROS in OC downregulates
miR-199a and miR-125b, resulting in the increased expression of HER2 and HER3 and
therapeutic resistance [114]. Thus, another mode of treatment for OC is vaccines targeting
human HER2 and HER3 [184,185]. In work highlighted here, the increase in NOX4-derived
ROS contributes to therapeutic resistance in OC through the upregulation of HER3. The
upregulation of HER3 is a clinical marker for OC, which is positively correlated with poor
prognosis [186]. NOX4 directly activates HER3 and contributes to the increased resistance
of OC cells to chemotherapy and radiation treatments [113]. The deletion of NOX4 results
in a reduction in the therapeutic resistance of OC cells [113]. Similarly, inhibition of NOX4
acts synergistically with HER3 inhibition to decrease tumor growth in OC [113]. The knock-
down of NOX4 using siRNA also results in enhanced sensitivity to radiation treatment
in OC cells, proving this pathway relevant in multi-modal therapeutic resistance [113].
The NOX4-driven system of endogenous ROS production demonstrates a new mechanism
in OC cells to promote tumor development, angiogenesis, and an increase in therapeutic
resistance through the upregulation of HER3, reflecting a candidate for targeted therapy of
treatment-resistant OC (Figure 2). These findings shed light on the importance of endoge-
nous NOX4-derived ROS production in cell signaling and the progression of OC and the
propensity of tumors to evade current lines of treatment.
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Figure 2. NOX4-driven pathways of OC tumor progression, angiogenesis and therapeutic resis-
tance. The overexpression of NOX4 in OC results in an increase in intracellular ROS production.
Increased ROS leads to an increase in HIF1-A through activating PI3K and AKT signaling. HIF1-α
then activates the critical angiogenic factor, VEGF. Increased ROS also activates NF-κB and TGF-β1
signaling, which lead to the direct upregulation of NOX4. The increase in NOX4 contributes, in a
positive-feedback manner, to increased ROS production. NOX4 also activates the expression of HER3,
contributing to therapeutic resistance in OC tumors.

7. Future Directions

The key to effective treatment of OC is the understanding of the molecular mechanisms
that drive tumor development and resistance to current treatments. In the system described
above, the increased levels of endogenous ROS produced by NOX4 is utilized by OC
cells to stimulate tumorigenesis, angiogenesis, and treatment resistance (Figure 2). This
adaptation in cellular signaling allows OC tumors to proliferate and develop resistance to
chemotherapeutics through ROS production and upregulation of HER3, thus identifying
this NOX4-driven pathway as a potential target for the treatment of chemoresistant tumors.
In support of this, clinical trial studies show HER3 upregulation is associated with poor
prognosis in OC, which serves as a clinical marker of tumor development, and HER3
expression is induced in response to current chemotherapeutics agents [186,187]. Therefore,
this pathway provides an explanation for the ineffectiveness of traditional therapies for
advanced OC and the development of therapeutic resistance. The implications of the
findings reviewed here include the potential for NOX4 overexpression and increased
levels of ROS to be utilized as a diagnostic biomarker in OC. Furthermore, there is clinical
relevance for identifying new treatable targets in OC affected by this NOX4-driven system,
particularly in resistant tumors.

As a significant mediator of miRNA dysregulation, ROS can have widespread effects
on cellular processes. The roles of miRNA dysregulation in OC complicate the understand-
ing of signaling pathways altered by tumors, with some acting as oncogenes and others
acting as tumor suppressors. Similarly, the dysregulation of miRNAs in a cell-type-specific
manner provides an opportunity to target specific miRNAs in different types of cancers.
This could be accomplished by targeting the suppression of oncogenic miRNAs, which are
typically upregulated in tumors, whereas the expression levels of tumor suppressor-like
miRNAs are typically downregulated or lost in tumors [188]. The suppression of oncogenic
miRNAs can be achieved with the use of anti-miRNA molecules targeting specific miRNA
for inhibition or degradation [189]. For instance, anti-miR-21 treatment in breast cancer
and glioblastoma induces apoptosis through the inhibition of PI3K signaling [190,191]. Al-
ternatively, the upregulation of tumor suppressor miRNAs can be achieved with the use of
miRNA mimics, which are delivered as mature miRNA molecules [192]. The use of miRNA
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mimics in combination with other forms of therapies improves treatment efficacy and the
elimination of tumor cells. For example, the delivery of miR-204-5p in combination with
oxaliplatin in colon cancer reduced tumor growth and induced apoptosis [193]. In further
support of this, the treatment of relapsed, multidrug-resistant OC tumors with anti-Let-7
improved the efficacy of paclitaxel-induced cell death [194]. Since miRNAs are upstream
regulators of a variety of cellular processes, the manipulation of their expression could
cause adverse effects on surrounding tissues [195]. However, current research focusing on
miRNA dysregulation is deciphering the mechanisms by which miRNAs affect different
types of cancer. The increasing understanding of miRNA dysregulations in OC will allow
for more direct targeting of the molecular pathways that are altered at each stage of tumor
development. In addition, the up or downregulation of certain miRNAs in OC can also
act as diagnostic biomarkers, as they have been demonstrated to have potential in many
different cancer types [196]. Altogether, the altered molecular mechanisms driving OC de-
velopment and treatment resistance are in part regulated by increased levels of endogenous
ROS production and miRNA dysregulations. There are potentially new opportunities for
more effective treatment of advanced OC by targeting the overlap in signaling pathways
between these two mechanisms. However, limitations in our complete understanding of
the roles of increased ROS and miRNA dysregulations in OC development necessitate more
research efforts in these areas of study.
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