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Near-zero effective impedance with finite phase
velocity for sensing and actuation enhancement by
resonator pairing
Kiyean Kim 1, Chung Il Park 1, Hyuk Lee1 & Yoon Young Kim1

In spite of the extensive studies of zero-index metamaterials, the realization of zero impe-

dance with finite phase velocity has not been explored. Here, we show that this extreme case,

realized by elaborately-tuned paired resonators, can effectively enhance sensing and actua-

tion. To explain the formation mechanism of the near-zero effective impedance with finite

phase velocity by paired resonators at a target frequency, a theory using an equivalent model

based on mechanical longitudinal waves is developed. If the frequency of the extreme

property is further tuned at a Fabry–Pérot resonance frequency, highly efficient enhancement

is possible. Experiments using a piezoceramic transducer (PZT) installed on the plate region

bounded by two resonators confirm that the proposed extreme property mechanism highly

enhances the sensing and actuation outputs of the transducer.
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The intrinsic material properties, such as density ρ (per-
meability μ) and stiffness E (permittivity ε), determine the
phase velocity and impedance in media carrying mechan-

ical (electromagnetic) waves. To realize extraordinary wave phe-
nomena, these material properties have been manipulated by
various means including metamaterials1–6. For instance, the
effective impedance (z ¼ ffiffiffiffiffi

ρE
p

or
ffiffiffiffiffiffiffi
μ=ε

p
) can be manipulated for

perfect matching7–10 and the phase velocity11–16 (cp ¼
ffiffiffiffiffiffiffiffi
E=ρ

p
orffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðμεÞp
) can be manipulated for tunneling and other applica-

tions. While zero-index metamaterials requiring extreme effective
material properties such that ρ/E→ 0 (με→ 0) are repor-
ted13,14,17–19, another extreme case of zero or near-zero impe-
dance requiring that

ffiffiffiffiffi
ρE

p ! 0
ffiffiffiffiffiffiffi
μ=ε

p ! 0
� �

is little studied.
Furthermore, the realization of the near-zero impedance with
finite phase velocity, which will be mainly invested here, has not
been explored so far. Because the mechanical impedance z is the
ratio of a given force F to the resulting particle velocity _u, the
decrease in impedance for a force of fixed magnitude would
increase the particle velocity (displacement). Therefore, actuation
and sensing can be substantially enhanced if near-zero impedance
is realized.

With extreme material properties of (ρ→ 0 and finite E) or
(ρ→ 0 and E→∞), zero-index metamaterials yielding the
infinite phase velocity can be realized. The former case yields
zero impedance (z→ 0) while the latter case could yield finite
impedance18 for which impedance match with a neighboring
medium may be possible. Here we investigate another unex-
plored extreme case that ρ→ 0 and E→ 0, yielding z→ 0 while
cp can be kept finite. Our analysis will show that, when an
external force of a given magnitude through a transducer
excites a segment of a waveguide, the radiated power output can
be highly increased if the medium forming the segment has
near-zero mechanical impedance and finite phase velocity (i.e.,
near-zero effective z and finite cp). If this extreme effective
material state is further coupled with the Fabry–Pérot reso-
nance, the output enhancement is most efficient. This
enhancement should work for both actuation and sensing by
reciprocity. A specific application of this phenomenon may be
the ultrasonic excitation by a transducer for health monitor-
ing20–23 in a waveguide such as the (curved) plates of an oil
tank and pipelines in a nuclear power facility. For instance, a
large metal plate structure is inspected with the lowest sym-
metric guided wave mode (S0 mode)24 where highly enhanced
signal-to-noise ratios by this zero impedance and finite velocity
phenomenon can be critically useful. In spite of a big potential
application of the zero impedance concept with finite phase
velocity, however, the mechanism to achieve zero or near-zero
effective impedance has not been explored. Widely used
metamaterials typically made of an array of periodic resonant
or non-resonant unit cells do not seem to be effective in this
extreme case.

Here we propose a unique mechanism to form near-zero
effective impedance by using only a finite number of elaborately
tuned discrete resonators. Specifically, we show that if a target
segment of a medium is surrounded by paired discrete resonators,
its effective impedance can become near zero while its finite phase
velocity is unaltered. To verify the realization of near-zero
effective impedance and show its effectiveness for highly
enhanced wave actuation and sensing, we design an experiment
with a mechanical longitudinal wave excited inside the region
surrounded by a pair of discrete resonators. Then we show that
the high enhancement is the consequence of the near-zero
effective impedance observed in the wave actuated zone. Fur-
thermore, we tune the frequency of the near-zero effective
impedance at a Fabry–Pérot resonance frequency of the finite-
sized effective medium for the maximized efficiency. Obviously,

sensing and actuation should take place at this frequency. It is
worth noting that this zero-impedance-based output enhance-
ment method is different from a common method using impe-
dance matching because the near-zero effective impedance makes
a big contrast in impedance with a neighboring medium.

Results
Effects of near-zero impedance. To begin with a motivation to
investigate the near-zero effective impedance and demonstrate its
effect on wave motion, we consider the wave radiation problem
depicted in Fig. 1. Figure 1a shows two thin plates functioning as
waveguides carrying plane longitudinal waves propagating in the
x direction. The radiated wave field outside of point P is plotted in
Fig. 1b when the plates are excited by piezoceramic patch
transducers. Here a Fabry–Pérot resonance frequency of the
partially thinned plate is selected as the excitation frequency.
Figure 1b suggests that the radiated wave field can be increased as
t̂=t0 is reduced, where t0 and t̂, respectively, represent the thick-
nesses of the nominal and machined parts of the plate. If ρ is
understood as the line density, the reduced plate thickness cor-
responds to the lowered mechanical impedance. Therefore, the

magnitude of power radiation F2
inp=2ẑ

� �
can increase if ẑ

decreases because the transducer can be regarded to provide a
force of constant magnitude Finp. However, it is neither realistic
nor practical to lower its impedance by machining some part of a
test waveguide specimen. Hence, there ought to be a non-
destructive method to lower an impedance or to even make it
nearly zero.

In this work, we show that if a region of a waveguide is
surrounded by a pair of resonators, its effective impedance can be
lowered to nearly zero. It is well known that a single resonator
can eliminate the vibrations of a harmonically excited system as a
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Fig. 1 The concept of lowered impedance for wave emission enhancement.
a Thin plates of uniform and non-uniform thicknesses carrying plane
longitudinal waves. The piezoceramic patch transducers (PZT) are installed
to excite the S0 Lamb waves in the plates simulating the longitudinal waves
in a bar. b The amplification effects of the non-uniformity (expressed in
terms of t̂=t0, where t̂ is reduced thickness of the transducer installed zone
and t0 nominal thickness) on the magnitude of the generated displacement
field
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dynamic absorber25 and that a set of periodically arranged
resonators frequently used to make metamaterials can yield an
extreme density or stiffness value26–29. In the subsequent analysis,
we will demonstrate that a pair of resonators can affect the
effective impedance of the region surrounded by them. Through
this investigation, it is shown that if a pair of resonators is used,
the effective density and stiffness of the region that they surround
vary identically as functions of the frequency. Thereby, only the
effective impedance can attain an extremely low value, while the
effective phase velocity remains unchanged. The frequency of
near-zero effective impedance with finite phase velocity should be
further tuned at a Fabry–Pérot resonance frequency; otherwise,
big impedance mismatch between the region of the near-zero
effective impedance medium and the surrounding origin medium
prohibits wave radiation to the surrounding medium. The
detailed analysis will be given below.

Analysis of system with paired resonator. Figure 2a shows a thin
plate with C-shaped box beams installed. The beams function as
resonators. At each of the installation locations x= ±W, two
beams, one on the top surface and the other on the bottom
surface, are symmetrically arranged to couple with pure long-
itudinal waves. The waveguide is assumed to be actuated by a thin
piezoceramic patch transducer with a size of 2LT (LT <W). The
actual wave propagating in the plate is the lowest symmetric
Lamb wave (S0) in the frequency of interest. As demonstrated in
earlier works6,16,30, the one-dimensional longitudinal wave has a
good correspondence to the S0 wave. Therefore, the wave motion
in the plate will be modeled using one-dimensional longitudinal
waves in a bar, as depicted in Fig. 2b. To facilitate the theoretical
wave analysis, the actuation mechanism is described by a pin-
force model31,32 using two concentrated forces (−Finp, Finp), as in
Fig. 2b. This pin-force model is accurate when the mechanical
impedance of the piezoceramic transducer (PZT) is negligible
compared to that of the plate. To characterize accurately
the actual actuation mechanism with the pin-force model,
the locations of the pin forces are adjusted to (−L, L) by
matching the frequency response of the PZT plate system
obtained with the analytic pin-force model and that of the full
finite element model. Accordingly, we used 2 L= 36.6 mm, while
2LT= 30 mm.

In this analysis, each resonator can be regarded as a discrete
mass-spring system coupled at a single point with the bar having
the nominal mechanical impedance z0. We will show that, owing
to the installation of the paired resonators, the effective
impedance z of the region that they surround can become
near-zero. To estimate the effective impedance of the surrounded
region, we consider an equivalent bar model consisting of the
original medium of impedance z0 and another uniform medium
of lowered impedance z; this model is illustrated at the bottom of
Fig. 2b. To construct the equivalent model, the effective length
2W′ defining the lowered-impedance zone should be also
determined.

As depicted in Fig. 2b, two concentrated harmonic pin forces
acting in opposite directions are applied at x= ±L31,32. They are
denoted by Finp and ~Finp in the two models in Fig. 2b. Throughout
the analysis, the harmonic dependence eiωt (ω: angular frequency,
t: time, i ¼ ffiffiffiffiffiffiffi�1

p
) will be omitted. Note that ~Finp≠Finp, where ~Finp

is the pin force in the equivalent system in which the effects of the
two resonators are smeared.

To analyze the wave motion in the original one-dimensional
model with two resonators, we only consider the longitudinal
motion and thus use the field variables shown in Fig. 2c. The
resonator consists of mass m and stiffness s, and it is attached

onto the bar at point Q (and Q′). The longitudinal displacement
of mass m is defined as uR. The displacement field in the bar will
be denoted by u, and its value at point Q is denoted by uQ.
Depending on the values of x ≥ 0, u is expressed using different
formulas such as u= u1e−ikx− u1eikx(0 ≤ x ≤ L−), u= u2e−ikx+
u3eikx(L+ ≤ x ≤W−), and Ue−ikx(W+ ≤ x). Here the frequency
dependence eiωt is also omitted, and k denotes the wavenumber.
Considering the field symmetry, the displacement in the bar can
be written as:

u ¼

�Ueikx ðx � �WÞ
�u2e

ikx � u3e
�ikx ð�W � x � �LÞ

u1e
�ikx � u1e

ikx ð�L � x � LÞ
u2e

�ikx þ u3e
ikx ðL � x � WÞ

Ue�ikx ðW � xÞ

8>>>>>><
>>>>>>:

ð1Þ
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Fig. 2 The sketch of proposed paired resonator system. a Sketch of a thin
plate with two resonators installed at x= ±W. Each resonator at x=W or x
=−W consists of two symmetrically configured C-shaped beams to ensure
the generation of pure thickness-symmetric longitudinal waves without
generating thickness-antisymmetric bending waves. (The dimension of the
C-channel box beam aluminum resonators are tR= 3mm, wR= 6mm, hR=
4.5 mm, bR= 1.5 mm, and test plate thickness t0= 2mm.) b One-
dimensional bar models describing the longitudinal motion in the plate
shown in a. The model in the top illustration depicts a bar equipped with
two point resonators, while the model in the bottom illustration is an
equivalent bar model with a modified effective impedance to account for
the effects of resonators on wave motion. The actuation by the PZT patch is
modeled with two concentrated pin forces. c Analysis of bar model in which
the displacements in various locations are specified
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The continuity and equilibrium conditions at x= L (and x=
−L) yield:

u1e
�ikL � u1e

ikL ¼ u2e
�ikL þ u3e

ikL; ð2Þ

�iz0ω u1e
�ikL þ u1e

ikL
� � ¼ Finp � iz0ω u2e

�ikL � u3e
ikL

� � ð3Þ

Note that the internal force considered in the force equilibrium
in Eq. (3) is calculated as EA0∂u/∂x, where the stiffness E
denotes Young’s modulus of elasticity, and A0= b0t0 (b0: width),
which is the cross-sectional area of the bar. If ρ is defined as the
volume density, the characteristic impedance z0 is given by
A0

ffiffiffiffiffi
ρE

p
.

The continuity and equilibrium conditions at point Q yield:

u2e
�ikW þ u3e

ikW ¼ Ue�ikW � uQ; ð4Þ

� iz0ω u2e
�ikW � u3e

ikW
� � ¼ sðuR � uQÞ � iz0ωUe�ikW : ð5Þ

On the other hand, the equation of motion for resonator mass
m is given by:

�mω2uR þ sðuR � uQÞ ¼ 0: ð6Þ

The expression for U can be obtained by solving Eqs. (2)–(6):

U ¼ 2Finp
iz0ω

sin kL
αð1� e�2ikWÞ � 2i

; ð7Þ

with

α ¼ 1
z0

mωs
s�mω2

¼ 1
z0

ωs
ω2
R�ω2

: ð8Þ

where ωR ¼ 2πfR ¼ ffiffiffiffiffiffiffiffi
s=m

p
is the resonance frequency of the

resonator. If no resonator is installed (i.e., m= 0 or s= 0), the
resulting displacement will be denoted as U0:

U0 ¼
Finp
z0ω

sin kL: ð9aÞ

The strain that is defined as S= ∂u/∂x=−ikU (S0=−ikU0) is
more convenient to use because the PZT transducer generates
and measures the strain33:

S ¼ �k
2Finp
z0ω

sinkL
αð1� e�2ikWÞ � 2i

¼ � 2Finp
EA0

sinkL
αð1� e�2ikWÞ � 2i

;

ð9bÞ
and

S0 ¼ �i
kFinp
z0ω

sin kL ¼ �i
Finp
EA0

sin kL: ð9cÞ

The strain magnitude |S0| will reach its maximum value SfT0

��� ��� ¼
Finp

��� ���=EA0 at the frequency of fT= c/4L, which corresponds to kL

= π/2. Here |Finp| is assumed to be frequency independent.

Analysis of equivalent system using effective impedance. The
wave behavior observed in the original model shown at the top of
Fig. 2b can also be analyzed using the equivalent model shown at
the bottom of Fig. 2b. In the equivalent model, we must estimate

the new effective impedance z of the region confined between x=
−W′ and x=W′. The displacement field ~u in the equivalent
model shown in Fig. 2b may be expressed as

~u ¼

� ~Ueikx ðx � �W′Þ
� ~u2e

ikx � ~u3e
�ikx ð�W′ � x � �LÞ

~u1e
�ikx � ~u1e

ikx ð�L � x � LÞ
~u2e

�ikx þ ~u3e
ikx ðL � x � W′Þ

~Ue�ikx ðW′ � xÞ

8>>>>>><
>>>>>>:

ð10Þ

The field variables ~uj (j= 1, 2, 3) and ~U are related to each
other by the continuity and equilibrium conditions at x= L and x
=W′ as

~u1e
�ikL � ~u1e

ikL ¼ ~u2e
�ikL þ ~u3e

ikL ð11Þ

�izω ~u1e
�ikL þ ~u1e

ikL
� � ¼ ~Finp � izω ~u2e

�ikL � ~u3e
ikL

� � ð12Þ

~u2e
�ikW′ þ ~u3e

ikW′ ¼ ~Ue�ikW′ ð13Þ

�izω ~u2e
�ikW′ � ~u3e

ikW′� � ¼ �iz0ω~Ue�ikW′ ð14Þ

Because the size L of the PZT patch should remain the same in
the equivalent and the original systems, the wavenumber k for the
region of −L ≤ z ≤ L should also be the same both in the
equivalent and original systems. As the equivalent system is
regarded as a homogeneous effective medium, the same k should
be used over the entire equivalent system, as in Eqs. (10)–(14).

Our approach to evaluate z and W' is to make the wave field in
the equivalent system equal to that in the original system with
two point resonators. Accordingly, we require that the following
conditions be fulfilled:

~U ¼ U ; ðfor x � W′Þ; ð15Þ

~u1
u1

¼ ~u2
u2

¼ ~u3
u3

¼ gðωÞ; ð16Þ

~Finp
Finp

¼ hðωÞ; ð17Þ

where g(ω) and h(ω) are unknown functions of ω to be
determined for the exact equivalence. Based on the analysis given
in Supplementary Note 1, it can be shown that waves in the
equivalent system behave in the same way as those in the original
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system if the following relations hold:

z
z0

¼ 1� rj j
1þ rj j andW′ ¼ W þ 1

2k
�βþ ð2nþ 1Þπ½ �; n : integerð Þ

ð18a; bÞ

z
z0

¼ 1þ rj j
1� rj j andW′ ¼ W þ 1

2k
�βþ 2nπð Þ; n : integerð Þ

ð19a; bÞ

gðωÞ ¼
ffiffiffiffi
z0
z

r
eiðβþpπ=2Þ; hðωÞ ¼

ffiffiffiffi
z
z0

r
eiðβþpπ=2Þ; ðp ¼ signðω� ωRÞÞ

ð20a; bÞ

where r and β are defined as

r ¼ ωs
2iz0ðω2

R � ω2Þ � ωs
; ð21aÞ

β ¼ argðrÞ: ð21bÞ

Equations (18)–(19) show that z and W′ vary as functions of ω,
m, and s, while Eq. (18a) yields an effective impedance z that is
smaller than z0, Eq. (19a) yields a value of z that is larger than z0.
Because we are interested in the case where z < z0 given in
Eq. (18a), the effective length W' should be estimated from
Eq. (18b). Equation (18) shows that the solution for W′ is not
unique, but it is possible to select a value close to W for
convenience. It should be noted that, ifW'=W, the magnitude and
phase of ~U cannot be the same as those of U. (Moreover, it can also
be shown that the solution in Eq. (19) also magnifies the radiated U
field, but we use Eq. (18) here because our work is motivated by the
realization of a near-zero or lowered effective impedance.)

Using the above analysis, it is possible to derive the explicit
formula for U (for x > W') as

U ¼ ~U ¼ ~FinpsinkL
z0ω

z0e
ikW′

iz0sinkW′þz cos kW′

¼ U0

ffiffiffiffiffi
zz0

p
eiðkW′þβþpπ=2Þ

iz0sinkW′þzcoskW′ ; p ¼ sign w� wRð Þð Þ
: ð22Þ

where U0 is the nominal displacement defined in Eq. (9). From
Eq. (22), the following can be derived (see Supplementary
Note 1):

S ¼ ~S ¼ S0

ffiffiffiffiffiffi
zz0

p
eiðkW′þβþpπ=2Þ

iz0sinkW′þ z cos kW′
; ðp ¼ signðw� wRÞÞ: ð23Þ

Because the near-zero impedance can increase the radiated
field, as demonstrated in Fig. 1, we also aim to increase |S| in Eq.
(23). Therefore, it is possible to consider the case where both |S0|
and

ffiffiffiffiffiffi
zz0

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20sin

2kW′þ z2cos2kW′
p

are maximized. (Because
we can experimentally measure |S|, an analysis of |S| is needed to
estimate z.) If f= fT is selected, |S0| will be the largest, which is

denoted by SfT0

��� ���. Therefore, the expression for the normalized

magnitude S=SfT0

��� ��� becomes

SðωÞ
SfT0

�����
����� ¼

ffiffiffiffiffiffi
zz0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20sin

2kW′þ z2cos2kW′
p S0ðωÞ

SfT0

�����
�����: ð24Þ

Equation (24) reveals that |S| can be amplified by a factor offfiffiffiffiffiffiffiffiffi
z0=z

p
compared to nominal amplitude |S0| as long as sinkW′ ¼

0 is satisfied. Because k= ω/c (c: phase velocity) and W'=W'(ω,

m, s, W), S=SfT0

��� ��� can always be amplified at some frequencies.

Furthermore, the frequency satisfying sinkW′ ¼ 0 can be
adjusted to match fT. This means that it is always possible to

select a value of W that maximizes S=SfT0

��� ��� at f= fT, yielding the

maximally amplified radiated wave field. The maximally
enhanced radiated wave field is possible because z becomes
smaller than z0.

At this point, it is worth explaining how the effective
impedance in the region bounded by the resonator pair near
their resonance frequency approaches zero. To this end, an
analogy will be made between the wave reflection inside the
original region bounded by the resonator pair and the wave
reflection inside the region of a lowered effective medium in the
equivalent system. First we note that the resonators near their
resonance frequency work as dynamic absorbers, making the
displacement of the plate nearly zero at the point of the resonator
installation. Therefore the wave u2 propagating towards the
resonator is mostly reflected at the point, resulting in u3eikW ≈
−u2e−ikW. The wave is reflected with out of phase as if the region
bounded by the resonators was surrounded by a medium of much
higher impedance compared with the impedance of the bounded
region. Since ω ≈ ωR, r ≈−1 and β ≈ π by Eqs (21a, b). Then e
±ikW ≈ e±ikW′ by Eq. (18b) and ~u3e

ikW′ � �~u2e
�ikW′ by Eq. (16).

Here ~u2 can be viewed as an incident from the medium of
impedance z towards the medium of impedance z0 in the
equivalent system while ~u3, a reflected wave. Because the
condition of ~u3e

ikW′ � �~u2e
�ikW′ is satisfied at a hard wall

boundary, the impedance z can be regarded to reach a near-zero
value because the impedance value of z0 is finite.

Effects of finite phase velocity on output power. At this point,
we will explain why the condition of finite phase velocity is cri-
tical for the enhanced output power from a transducer in a
medium of near-zero effective impedance. Using the expression
in Eq. (9a) for the output displacement U0 by a transducer in a
medium of impedance z0 without any resonator installed, one can
write the output displacement U in a medium of impedance z as:

Uj j ¼ Finp
zω

sin kL

����
���� ¼ Finp

zω
sin

ωL
c

����
����: ð25Þ

The following two cases will be now considered:
Case 1:
zero impedance z ¼ ffiffiffiffiffi

ρE
p

A0 ! 0ð Þ and infinite phase velocity c ¼ ffiffiffiffiffiffiffiffi
E=ρ

p ! 1� �
.

Case 2
(proposed case): zero impedance z ¼ ffiffiffiffiffi

ρE
p

A0 ! 0ð Þ and finite phase velocity
c ¼ ffiffiffiffiffiffiffiffi

E=ρ
p ¼ finite

� �
.

In terms of ρ (density) and E (stiffness), Cases 1 and 2
correspond to finite E and zero E, respectively, while zero ρ
applies to both cases. Note that, for the subsequent analysis, Finp
is assumed be a fixed finite value.
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First, we examine the output displacement |U| and power P as
ρ→ 0 with finite E. From Eq. (25),

lim

ρ ! 0

E ¼ finite

Uj j ¼ lim

ρ ! 0

E ¼ finite

Finp
zω

sin
ωL
c

����
���� � lim

ρ ! 0

E ¼ finite

FinpL

zc
;

ð26Þ

where sinωL=c � ωL=c is used because c→∞ as ρ→ 0 with
finite E. Eq. (26) can be further simplified by using z ¼ ffiffiffiffiffi

ρE
p

A0
and c ¼ ffiffiffiffiffiffiffiffi

E=ρ
p

:

lim

ρ ! 0

E ¼ finite

Uj j � lim

ρ ! 0

E ¼ finite

FinpL

zc

¼ lim

ρ ! 0

E ¼ finite

FinpLffiffiffiffiffi
ρE

p
A0

ffiffiffiffiffiffiffiffi
E=ρ

p ¼ FinpL

EA0
:

ð27Þ

Equation (27) suggests that |U| remains to be finite as ρ→ 0
and E= finite. Considering the output power P in the limit,

lim

ρ ! 0

E ¼ finite

P ¼ lim

ρ ! 0

E ¼ finite

1
2
z iωUj j2

� lim

ρ ! 0

E ¼ finite

1
2

ffiffiffiffiffi
ρE

p
A0

ωFinpL

EA0

����
����
2

! 0:

ð28Þ

The result in Eq. (28) is an indication that the power output
vanishes in the limit of zero impedance and infinite phase
velocity.

Second, we investigate |U| and P for Case 2 (zero impedance
and finite phase velocity). Using Eq. (26) and assuming that ω
and L are properly selected so that sinωL=cj j ¼ 1,

lim

z ! 0

c ¼ finite

Uj j ¼ lim

z ! 0

c ¼ finite

Finp
zω

sin
ωL
c

����
���� ¼ lim

z ! 0

c ¼ finite

Finp
zω

! 1

ð29Þ

lim

z ! 0

c ¼ finite

P ¼ lim

z ! 0

c ¼ finite

1
2
z iωUj j2¼ lim

z ! 0

c ¼ finite

1
2
z
Finp
z

����
����
2

! 1

ð30Þ

Comparing the expressions in Eqs. (28) and (30), the finite
phase velocity is critical to enhance the power output of a
transducer in near-zero impedance media.

Frequency behavior of field variables. To examine the frequency

behavior of S=SfT0

��� ���, we used two C-channel box beams made of

aluminum, where tR= 3 mm, wR= 6 mm, bR= 1.5 mm, and hR
= 4.5 mm, as shown in Fig. 2a (Young’s modulus E= 69 GPa,
Poisson’s ratio ν= 0.3, and density ρ= 2700 kg m−3). They were
2W= 78.8 mm away from each other and installed on a 2-mm-
thick aluminum plate. In a finite element analysis (see the
Methods section for more details), the mass and stiffness of the
resonator were estimated to be m= 103.0 g and s= 35.3 GNm−1,
yielding fR= 93.1 kHz. The nominal impedance and phase velo-
city in the aluminum plate for plane longitudinal wave motion
were z0= 28350 kg s−1 and c= 5250m s−1, respectively. A PZT
patch with a size of L= 18.3 mm was used, for which the peak
frequency fT= c/4L was 71.7 kHz.

Figure 3a, b show the behaviors of S=SfT0

��� ��� and z/z0 as functions
of the excitation frequency f. Note that, because ρ and E behave
identically as functions of the frequency, the phase velocity
remains unchanged. It is shown in Fig. 3b that z/z0 approaches
zero as the frequency f approaches to fR.

Figure 3a also shows that, at f= fT where the nominal output
strain |S0| is maximized, |S| increases by a factor of 4.24 compared

with the nominal value of SfT0

��� ���. This amplification at f= fT is due

to the two facts that z < z0 at f= fT and fT is tuned to be one of the
Fabry–Pérot resonances of the effective medium confined within
the width of 2W'. In fact, there is a set of Fabry–Pérot resonances
satisfying sin kW′ ¼ 0. These Fabry–Pérot resonance frequencies
can be more easily identified by examining the transmission
coefficient |T|= |C/A| shown in Fig. 3c. Here A, B, and C,
respectively, denote the magnitudes of the incident, reflected, and
transmitted waves through a slab of width 2W′ and impedance z
that is inserted inside a homogeneous medium of impedance z0.
Equation (24) also indicates that S=S0j j ¼ ffiffiffiffiffiffiffiffiffi

z0=z
p

>1 for sinkW′ ¼
0 and S=S0j j ¼ ffiffiffiffiffiffiffiffiffi

z=z0
p

<1 for coskW′ ¼ 0. Accordingly, S=SfT0

��� ��� at
f= fT can be amplified because f= fT satisfies sinkW′ ¼ 0.

The effects of fR on S=SfT0

��� ��� near f= fT= 71.7 kHz are
investigated in Fig. 3d. As fR approaches fT, |S| increases rapidly
because zr= z/z0 becomes smaller (and the Q value becomes
larger). Therefore, by tuning the value of z using an appropriate
value for fR, a tradeoff can be always made between the amplitude

and bandwidth in S=SfT0

��� ��� at target frequency fT. The effect of the

distance (2W) between the two resonators on |S| is shown in
Fig. 3e, where fR is assumed to be fixed. Because only W is varied,
the effective impedance z does not vary. However, the
Fabry–Pérot resonance frequencies in a medium of impedance
z in the region confined between 2W' are varied becauseW' varies
with W, as shown in Eq. (18). Therefore, the peak frequency of
the locally maximized |S| is significantly affected by W. We argue
that the phenomenon in Fig. 3e cannot be observed if only a
single resonator is installed because it only functions as a dynamic
absorber25. The wave interference occurring between the paired
resonators is unique in that it can lower the effective impedance z
of the region surrounded by the resonators, even making it nearly
zero.

Experimental results. Finally, we present the results of an
experiment performed to verify the near-zero impedance, or
more realistically, a lowered impedance. This experiment was
designed to estimate the effective impedance z and demonstrate
the magnification of |S| in the radiated wave field. Figure 4a shows
the experimental set-up. The geometric data and material prop-
erties used to plot Fig. 3a were also used for the experiment. The
magnitude S0

�� �� was measured for frequencies between 68 and 76
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kHz around the target frequency fT= 71.7 kHz and it was nor-

malized with respect to SfT0

��� ���. The detailed experimental procedure

is described in the Methods section. The experimental results for

S=SfT0

��� ��� are plotted using a red dashed line with circles in Fig. 4b.

It is shown that |S| at f= fT= 71.7 kHz is increased by 307%. The
plot also shows the finite element simulation result obtained using
a detailed two-dimensional continuum model, which includes the
C-shaped paired resonators (having fR= 93.1 kHz). COMSOL
Multiphysics was used for the simulation. The finite element
result obtained without considering any damping effect is deno-
ted by “FEM” in Fig. 4b and is in a fairly good match to the
theoretical result calculated by Eq. (9). To account for the
damping effect occurring in the experiment, the loss factor of
0.065 was estimated from the experimental result and considered
for the resonators in the finite element simulation. The corre-
sponding result denoted by “FEM+damping” matches fairly well
with the experimental result.

Next, we extract the value of zjexp from the experimental result
at f= fT using the following formula:

z
z0

¼ sin2 kL
�� �� SfT0

S

�����
�����
2

: ð31Þ

Equation (31) is valid when sinkW′ ¼ 0. If the value of S=SfT0

��� ���
in Fig. 4b is substituted into Eq. (31), it is possible to estimate

z=z0jexp = 0.053. The effect of damping is considered for the
estimation. This value agrees fairly well with the theoretical value
z/z0|Theory= 0.056 at f= fT.

Discussion
We found that the effective impedance z of a region bounded by a
pair of point resonators can become near-zero, or more practi-
cally, lower than the nominal impedance z0. When the paired-
resonator mechanism is used, the effective density and stiffness
behave identically as functions of the frequency. Therefore, only
the effective impedance can be affected, while the effective phase
velocity or refractive index remains unchanged. If the frequency
of a lowered effective impedance is selected to match the
Fabry–Pérot resonance frequency of the equivalent system of
effective impedance z, the wave emission by external excitation
inside the region bounded by the resonators can be highly
enhanced.

To show that the high enhancement achieved in this study is
not due to the impedance matching concept but due to the
unique zero-impedance concept, the related simulation results are
presented as Fig. 5 (See the Methods section for the detailed
simulation process.). Figure 5a is a reference model considered to
investigate the effects of the impedance matching where the
effective impedance z of the plate region between x=−W′ and x
=W′ is varied. This model is the counterpart of the paired-

resonator model in Fig. 2b. The values of S=SfT0

��� ��� for the models in

Figs. 5a and 2b are compared in Fig. 5b with varying effective
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impedance values z at f= fT= 71.7 kHz (the same frequency
considered for Fig. 4), a Fabry–Pérot resonance frequency. Note
that the impedance zPZT of the PZT patch (E= 63 GPa, ρ= 7500
kg m−3) bonded on the top of the plate is zPZT/z0= 0.398 for the
model in Fig. 5a. When z/z0 becomes zPZT/z0 in the reference
model in Fig. 5a, the strain output |S| becomes locally maximized,
as expected from the impedance matching concept. In case when
the present zero-impedance concept model is used, much larger |
S| value than the value obtained in the impedance matched model

can be obtained as |S|= 4.24 SfT0

��� ��� at z/z0= 0.056.

The demonstrated high enhancement can be a critically useful
application of the near-zero effective impedance because attach-
ing paired resonators is an efficient non-destructive method to
increase the transduction efficiency of any transducer for both
actuation and sensing (see the Methods section for sensing).
Because this method does not require the alteration of a test
waveguide or an additional active element, it is not limited to the
ultrasonic transducers considered as an example in this study but
can open a new way to boost the efficiency of various transducers.
It can also be used to block wave transmission using the realized
near-zero effective impedance.

Methods
Realization of resonators and experimental set-up. In the experiments, we used
the lowest symmetric Lamb wave (S0 wave) in a plate because it has a good
correspondence to the longitudinal wave propagating in a bar, which can be
modeled as a one-dimensional waveguide. Thus we assumed that the particle
displacement in the plate and the motions of the resonators were all along the x
direction. The resonators were bonded onto the plate using epoxy resin (3M
DP460). The cross-sectional geometry of the C-shaped resonators in Fig. 2a was the
same as that used in Fig. 4 (tR= 3 mm, wR= 6mm, hR= 4.5 mm, and bR= 1.5
mm). They were designed in this way to exhibit dominant vibrations along the x
direction. Indeed, they functioned as mass-spring systems in the frequency range of
interest.

To estimate the equivalent stiffness s and mass m of the resonator, we used its
resonance frequency and static stiffness, as determined using a detailed continuum
finite element model. The lowest eigenfrequency fR was found to be 93.1 kHz in a
numerical simulation. Following the procedure described in Supplementary Note 2
and Supplementary Figure 1, we estimated s= 35.3 GNm−1 from the formula s=
fx/uR. Then the mass was calculated to be m= 103.0 g from m= s/(2πfR)2.

Referring to Fig. 4a, three 30 × 70 × 0.5 mm3 PZT patches were installed on a 2-
mm-thick aluminum plate. We used three patches to ensure plane longitudinal
waves. Sine pulses of 50 periods generated by a function generator (Agilent
33250A) were input to the PZT transducer for wave generation. The center
frequencies were varied from 68 to 76 kHz. The frequency increments are 0.2 kHz
between 71 and 74 kHz, and 0.5 kHz in elsewhere frequencies. Another set of PZT
patches was installed 1.6 m away from the transmitters for sensing. The signals
from the sensor were amplified through a preamplifier (SR 560) and recorded using
a digital oscilloscope (LeCroy Waverunner 104MXI). The measurements were
performed using a pitch-catch mode. The measured peak-to-peak voltage value V0

was proportional to the strain S0 and the sensing characteristics of the PZT patch in
the plate without the resonators installed. Thus V0 ¼ C1j j S0j j2 or S0j j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V0= C1j jp
,
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where C1 was a calibration constant. If we write Smax
0

�� �� ¼ maxð S0j jÞ, the normalized
value can be determined to be S0=S

max
0

�� �� ¼ ffiffiffiffiffiffi
V0

p
=max

ffiffiffiffiffiffi
V0

pð Þ. The frequency of the
maximum |S0| was found to be 74 kHz in our experiment. However, around the
target frequency f= fT= 71.7 kHz, S0=S

max
0

�� �� reached a value of >0.99 or nearly the
maximum value. Therefore, the discrepancy was found to be within the acceptable
tolerance. If the measured peak-to-peak voltage in the plate with the installed
resonators is denoted by V, it can also be expressed as V= |C1||S0||S|, where S is the
corresponding strain. Therefore, it is possible to obtain a relation such that
S=Smax

0

�� �� ¼ V=
ffiffiffiffiffiffi
V0

p
max

ffiffiffiffiffiffi
V0

pð Þð Þj j. The results are plotted in Fig. 4b.

Near-zero impedance for enhanced sensing. At this time, we report the use of
the near-zero effective impedance concept for sensing. For the sensing enhance-
ment analysis and experiment, we considered exactly the same geometric and
layout configurations as used for the main part of this work, including the reso-
nance frequency fR and target Fabry–Pérot frequency fT. In this case, the PZT
transducer located inside the region bounded by the two C-shaped resonators
worked as a sensing unit. Therefore, a longitudinal wave generated outside of the
region was incident to the transducer. The behavior of the normalized sensor

output M=MfT
0

��� ���� �
is depicted in Fig. 6. Because of the reciprocity between the

actuation and sensing mechanisms, it was not surprising that the theoretical/

numerical prediction of M=MfT
0

��� ��� for sensing was the same as the counterpart

S=SfT0

��� ��� for wave actuation (see Fig. 6) (Because of this reciprocity, the detailed

analysis is skipped here.). It can be seen that the experimental result agrees fairly
well with the numerical prediction. This analysis and experiment showed that zero
effective impedance is useful for both wave actuation and sensing when a trans-
ducer is installed in a zone of lowered impedance, and the actuation/sensing fre-
quency is properly selected.

Simulations. First, we used the reference model shown in Fig. 5a and varied the
effective impedance z of the plate region between x=−W′ and x=W′. Here we
used W′= 36.6 mm estimated from Eq. (18b) for the Fabry–Pérot resonance fre-
quency at fT= 71.7 kHz. The PZT patch (E= 63 GPa, ρ= 7500 kg m−3) sized of
30 × 0.5 mm2 is bonded onto the plate. Considering the actuation mechanism of a
PZT patch, a uniform time-harmonic longitudinal strain was prescribed in the PZT
patch. To determine the actual driving force ~Finp in the PZT patch, we used Eq.
(17) where hðωÞj j ¼ ffiffiffiffiffiffiffiffiffi

z=z0
p

by assuming that the pin force in the model in Fig. 2b
is Finp. The longitudinal strain on the middle plane of the plate at any x >W′ is
calculated and plotted in Fig. 5b with a black solid line.

To obtain the simulation result with the paired-resonator model in Fig. 2b, we
fixed the resonant frequency fR at 93.1 kHz and varied the values of mass m
(simultaneously s) in order to consider different values of the effective impedance z.
As in other simulations, W was tuned to match with the Fabry–Pérot resonance

frequency at fT= 71.7 kHz using Eq. (18b). The result of S=SfT0

��� ��� is then plotted in

Fig. 5b by red circles.

Data availability
The FEM data that support the findings of this study are available in “Figshare”
with the identifier https://doi.org/10.6084/m9.figshare.7188194.v234.
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