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Abstract

Recent studies identified signal peptidase complex subunit 1 (SPCS1) as a proviral host fac-

tor for Flaviviridae viruses, including HCV. One of the SPCS1’s roles in flavivirus propaga-

tion was attributed to its regulation of signal peptidase complex (SPC)-mediated processing

of flavivirus polyprotein, especially C-prM junction. However, whether SPCS1 also regulates

any SPC-mediated processing sites within HCV polyprotein remains unclear. In this study,

we determined that loss of SPCS1 specifically impairs the HCV E2-p7 processing by the

SPC. We also determined that efficient separation of E2 and p7, regardless of its depen-

dence on SPC-mediated processing, leads to SPCS1 dispensable for HCV assembly

These results suggest that SPCS1 regulates HCV assembly by facilitating the SPC-medi-

ated processing of E2-p7 precursor. Structural modeling suggests that intrinsically delayed

processing of the E2-p7 is likely caused by the structural rigidity of p7 N-terminal transmem-

brane helix-1 (p7/TM1/helix-1), which has mostly maintained membrane-embedded confor-

mations during molecular dynamics (MD) simulations. E2-p7-processing-impairing p7

mutations narrowed the p7/TM1/helix-1 bending angle against the membrane, resulting in

closer membrane embedment of the p7/TM1/helix-1 and less access of E2-p7 junction sub-

strate to the catalytic site of the SPC, located well above the membrane in the ER lumen.

Based on these results we propose that the key mechanism of action of SPCS1 in HCV

assembly is to facilitate the E2-p7 processing by enhancing the E2-p7 junction site presen-

tation to the SPC active site. By providing evidence that SPCS1 facilitates HCV assembly

by regulating SPC-mediated cleavage of E2-p7 junction, equivalent to the previously estab-

lished role of this protein in C-prM junction processing in flavivirus, this study establishes the

common role of SPCS1 in Flaviviridae family virus propagation as to exquisitely regulate the

SPC-mediated processing of specific, suboptimal target sites.
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Author summary

Host factor SPCS1 plays a critical role in the propagation of Flaviviridae viruses, including

HCV. However, it remained unclear whether the mechanism of action (s) of SPCS1 for

these different viral genera is similar or different. We elucidated that SPCS1 facilitates

HCV assembly by enhancing the intrinsically suboptimal, SPC-mediated processing of

the HCV E2-p7 precursor. By performing in silico analyses, we also found that the N-ter-

minal domain of the p7, succeeding the cleavage junction, maintains a rigid angle relative

to the membrane z-axis, potentially hiding the E2-p7 junction site within the membrane

and out of reach from the SPC catalytic site, providing an explanation for the suboptimal

processing of this junction. Enhancing the E2 and p7 separation in either SPC-dependent

or independent manner, made SPCS1 dispensable for HCV assembly. Based on these

results we propose that SPCS1 facilitates HCV assembly by enhancing E2-p7 junction sub-

strate presentation to SPC-mediated proteolysis. A previous study showed that flavivirus

propagation depends on SPCS1-mediated facilitation of SPC-mediated processing of C-

prM precursor, which also shows the SPC cleavage unfavorable substrate feature. There-

fore, our results establish that SPCS1 plays a common role in Flaviviridae family virus

propagation, which is to facilitate the SPC-mediated processing of specific, suboptimal

target sites.

Introduction

Hepatitis C virus (HCV) is the main causative agent of severe liver diseases, including chronic

hepatitis, cirrhosis, and hepatocellular carcinoma [1]. According to the World Health Organi-

zation (WHO) report, about 58 million people worldwide are estimated to have chronic HCV

infection, leading to 290,000 annual deaths. Despite the availability of highly effective direct-

acting antivirals that could cure >90% of HCV infections [2,3], HCV elimination is challenged

by continuing new infections (1.5 million per year according to WHO estimate), under-diag-

nosis, and under-treatment issues [4].

HCV is a positive-stranded RNA virus belonging to the Hepacivirus genus in the Flaviviri-

dae family. It encodes an open reading frame for a single polyprotein flanked by 5’- and 3’-

non-coding regions. Host signal peptidase complex (SPC) processes the N-terminal region of

HCV polyprotein encoding the structural proteins (Core, E1, and E2) and the two accessory

proteins (p7 and NS2) [5,6]. The Core protein is further processed by signal peptide peptidase

complexes [7,8]. The NS2 cysteine protease mediates autocleavage of NS2-NS3 junction, facili-

tated by the N-terminal region of NS3 [9,10]. The NS3-NS4A-NS4B-NS5A-NS5B polyprotein

is processed by NS3 serine protease together with its co-factor NS4A leading to replicase com-

plex formation involved in viral RNA replication [11,12].

With some exceptions, SPC-mediated processing of signal peptide from the nascent poly-

peptide chain occurs co-translationally [13–15]. Consistent with this general rule, most of the

SPC-mediated cleavages of HCV polyprotein precursor occurs during or shortly after transla-

tion [5,6,16]. The exception to this rule is the processing of E2-p7, and to a lesser extent,

p7-NS2 junction sites, which are delayed and incomplete [6,17–19]. E2-p7 junction cleavage

seems to occur post-translationally since the bulk of E2-p7 processing occurred during the

chase period lasting 6 hr or more in the pulse-chase analysis [20,21]. The study by Carrère-

Kremer et al. suggested that the structural constraints surrounding the p7 junction sites likely

caused the inefficient cleavage of these junction sites [17]. Importantly, delayed, suboptimal

processing of the E2-p7 junction site is critical for HCV assembly, since promoting the
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separation of E2 and p7 by introducing the mutations, epitope tags or EMCV IRES around the

E2-p7 junction inhibited HCV assembly [18,22,23]. On the other hand, mutations that severely

impaired E2-p7 processing resulted in complete inhibition of HCV assembly [18,23]. These

results suggest that efficient HCV assembly depends on the exquisite regulation of E2-p7 pro-

cessing. However, other than the contribution by structural determinants in the p7 region as

described above, the regulatory mechanism involved in the E2-p7 processing remains incom-

pletely defined.

The eukaryotic SPC is composed of five subunits including two isoforms of catalytic sub-

units [SEC11A (SPC18) and SEC11C (SPC21)] and three regulatory subunits including signal

peptidase complex subunit 1 [SPCS1 (SPC12)], SPCS2 (SPC25), and SPCS3 (SPC22/23) [24–

30]. Among the SPC subunits, SEC11 and SPCS3 are essential for signal peptidase activity and

cell survival [25,26,30]. SPCS2 interacts with the b subunit of Sec61 translocon complex likely

facilitating co-translational signal peptidase processing [31,32] and, at high-temperature con-

ditions, regulates the catalytic activity of the SPC and viability of yeast cells [27]. However, the

role of SPCS1 has been less clear. SPCS1 knockout minimally affected signal peptidase process-

ing and secretion of host proteins, as well as the survival of human cell lines [33]. Similarly, the

yeast homolog of SPCS1 (Spc1p) was nonessential for signal peptidase activity and cell survival

[28]. Interestingly, cleavage of the signal peptide from an ER-resident protein was inhibited in

SPCS1(-) yeast cells upon overexpression of abnormal membrane protein indicating that

SPCS1 could facilitate SPC-mediated cleavage under certain conditions [28]. On the other

hand, the processing of signal anchored or model transmembrane proteins was enhanced in

SPCS1(-) yeast cells proportional to increased length and hydrophobicity of the signal

sequence suggesting that SPCS1 may negatively regulate the signal sequence cleavage by the

SPC under other conditions [34]. These results imply that SPCS1 could either up or down-reg-

ulate SPC-mediated processing of selected substrates. However, the exact mechanism of action

of SPCS1 remains incompletely defined.

Previously, by performing genome-wide siRNA screening, Li et al. identified the SPCS1,

SPCS2, and SPCS3 as the proviral host factors involved in the late step of HCV replication

[35]. Subsequently, Suzuki et al. determined that the SPCS1 is an NS2 interactor using a split-

ubiquitin membrane yeast two-hybrid assay [36]. They further determined that SPCS1 partici-

pates in HCV assembly by interacting with E2 and NS2 without affecting HCV entry and viral

RNA replication. Interestingly, SPCS1 was also shown to interact with Japanese encephalitis

virus (JEV) NS2B, thereby facilitating its assembly [37]. These results suggest that SPCS1

enhances HCV and flavivirus assembly by interacting with different viral proteins.

Using CRISPR/Cas9-based screen, Zhang et al. also identified SPCS1 and SPCS3 as the pro-

viral host factors for Flaviviridae family viruses, including flavivirus and HCV [33]. According

to this report, loss of SPCS1 specifically impaired the SPC-mediated cleavage of the flavivirus

C-prM junction site resulting in a marked reduction in flavivirus yield [33]. They also showed

that lack of SPCS1 had little impact on the production of alpha viruses, bunyaviruses, rhabdo-

viruses, and the surface expression or secretion of diverse host proteins, despite that all these

processes require SPC-mediated signal sequence processing [33]. These results support the tar-

get exclusivity of SPCS1 action during SPC-mediated processing [28, 34].

The processing at HCV E2-p7 and flavivirus C-prM junction sites share similar phenotypic

consequences [19]. First, SPC-medicated cleavage at either of these substrate sites was a post-

translational, delayed event [17–19,38,39]. Second, enhancing or further inhibiting cleavage at

these sites led to inhibition of virus assembly [22,40,41]. Since SPCS1’s role in flavivirus assem-

bly depends on its regulation of C-prM junction cleavage, we hypothesize that SPCS1’s role in

HCV assembly also depends on its regulation of E2-p7 cleavage. To test this hypothesis, we

investigated two specific questions: First, does HCV also exploit the SPCS1 to regulate SPC-
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mediated E2-p7 processing? Second, does the SPCS1’s role in HCV assembly depend on the

SPC-mediated processing of the E2-p7 junction site? Our results indicate that SPCS1 does

facilitate E2-p7 processing. In addition, enhancing E2 and p7 separation, regardless of SPC

involvement in this process, leads to SPCS1 dispensable for HCV assembly. We believe that,

with this work, we established that HCV and flaviviruses, belonging to the same Flaviviridae

family, similarly exploit the function of host factor SPCS1 to exquisitely regulate SPC-mediated

cleavage of viral protein precursors to facilitate virus assembly.

Results

SPCS1 facilitates HCV E2-p7 processing regardless of HCV genotypes

We determined the role of SPCS1 in HCV E2-p7 cleavage by comparing the relative levels of

unprocessed E2-p7 among total E2 (E2 + E2-p7) in control [SPCS1(+)] and SPCS1 knock-out

[SPCS1(-)] Huh-7.5 cells [33]. We began our study by using genotype (gt) 1a H77 strain-

derived E2 precursors, including E1-E2, E1-E2-p7, and E1-E2 (AR)-p7 (defective in E2-p7

cleavage due to Alanine to Arginine mutation at the p1 position of the SPC cleavage site) [18].

To assess the role of SPCS1 on SPC-mediated processing of these precursors, plasmids encod-

ing E2 derivatives were expressed in SPCS1(+) and SPCS1(-) cells. The cell lysates were pre-

treated with Endoglycosidase H (Endo H) to better separate E2 and E2-p7 before SDS-

polyacrylamide gel electrophoresis [18]. Then, the relative efficiency of E2-p7 precursor pro-

cessing was assessed by performing western blot analysis using an anti-E2 antibody. The loca-

tions of E2 and E2-p7 on the western blot membrane were deduced from those of E2 and E2

(AR)-p7 processed from E1-E2 and E1-E2(AR)-p7, respectively, (Fig 1A, left panel). Regardless

of SPCS1 expression, we did not detect anti-E2 antibody detectable protein bands correspond-

ing to the expected sizes of E1-E2 precursors (about 58 kDa and 65 kDa for deglycosylated

E1-E2 and E1-E2-p7 respectively) from any of the cell lysates expressing E1-E2 encoding pre-

cursors described above (Fig 1A). These results suggest that E1-E2 processing occurred effi-

ciently and SPCS1 has little impact on SPC-mediated H77 E1-E2 processing (Fig 1A, left

panel). On the other hand, loss of SPCS1 significantly increased the the percentage of E2-p7

level relative to the total level of E2 (E2+E2-p7) (Fig 1A). These results suggest that SPCS1 spe-

cifically facilitates SPC-mediated H77 E2-p7 processing.

Although the study by Suzuki et al. concluded that SPCS1 does not impact the process-

ing of gt2a JFH1 structural proteins [36], this study did not provide the data evaluating the

SPCS1’s role on JFH1 E2-p7 processing. To determine whether SPCS1 plays a role in HCV

E2-p7 processing in different HCV genotypes, we assessed the effect of SPCS1 in JFH1

E2-p7 processing. In western blot analysis, while JFH1 E2 from E1-E2 precursor was read-

ily detectable by anti-E2 antibody, that from E1-E2-p7 precursor, including E2 and E2-p7,

detectable by the same antibody was reduced (Fig 1B, left panel). This phenotype may be

due to the weak recognition of Endo H treated JFH1 E2-p7 precursor by the anti-E2 anti-

body used in this study, rather than instability of JFH1 E2-p7 precursor, since proteasome

inhibitor treatment did not alter the JFH1 E2-p7 level in western blot analysis (S2B Fig).

Nonetheless, consistent with the results from gt1a H77-derived proteins, loss of SPCS1

reduced JFH1 E2-p7 processing without affecting E1-E2 processing, as evidenced by lack of

anti-E2 detectable protein bands at the expected sizes of E1-E2 precursors (Fig 1B). These

results demonstrated that SPCS1 specifically facilitates both gt1a and gt2a HCV E2-p7 pro-

cessing mediated by SPC.

To make sure that the reduced E2-p7 processing in the SPCS1(-) cells is indeed caused by

the lack of SPCS1, we conducted the rescue experiments by co-transfecting E1-E2-p7 encoding

plasmid along with GFP or SPCS1 expressing plasmids into SPCS1(-) cells. Compared to co-
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expression of GFP, that of SPCS1 consistently reduced the relative percentages of H77- or

JFH1-E2 in unprocessed E2-p7 form (Figs 1C and S1). These results validated that SPCS1 facil-

itates HCV E2-p7 processing in an ectopic protein expression system.

Fig 1. The effect of SPCS1 loss on HCV E2-p7 processing in an ectopic protein expression system. Detection of E2

derivatives and SPCS1 by western blot following transfection of plasmids encoding either E1-E2, E1-E2-p7, or E1-E2

(AR)-p7 sequences from (A) HCV gt1a (H77) or (B) gt2a (JFH1) to SPCS1(-) and SPCS1(+) Huh 7.5 cells. H77 E2 and

E2-p7 are detected in doublet bands upon Endo H treatment due to incomplete deglycosylation, as described before

[18, 86–88]. (C) The effect of SPCS1 trans-complementation in SPCS1(-) cells on E2-p7 processing. The SPCS1(-) were

co-transfected with H77 or JFH1 E1-E2-p7 and GFP or SPCS1-encoding plasmids followed by western blot analysis

using anti-E2 or anti-SPCS1 antibodies. E2 western blot was performed following Endo H treatment to better separate

E2 and E2-p7. The mean percentage of E2-p7 precursor and the standard deviation shown at the right are generated

using results from three to five biological replicates of representative western blot data shown at the left. Mock

represents non-transfected control SPCS1(+) cells. Statistical analyses were performed using GraphPad Prism, version

9, software. Asterisks indicate statistically significant differences between two paired values: ��, P< 0.005. The

differences with a P-value of>0.05 were considered not significant (ns).

https://doi.org/10.1371/journal.ppat.1010310.g001
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SPCS1 loss impairs HCV E2-p7 processing during viral replication

We assessed whether SPCS1 also regulates E2-p7 processing during HCV replication using

three infectious clones of HCV (Fig 2A), including JFH1 with Q221L compensatory mutation

in NS3 (JFH1/QL) [42,43], gt1a-gt2a chimera HJ3-5 [44,45], which encodes H77 Core to NS2

region in the JFH1 background, and HJ3-5 derivative E2-EMCV-p7, which encodes internal

ribosomal entry site (IRES) from encephalomyocarditis virus (EMCV) between E2 and p7

allowing SPC-independent separation of these two proteins [18].

We first determined the effect of SPCS1 loss in HCV RNA amplification by comparing the

relative HCV RNA levels following electroporation of these RNAs into SPCS1(+) or SPCS1(-)

cells. HCV RNA levels from replication-defective JFH1/GND (due to NS5B polymerase active

site mutation) decreased similarly over time regardless of SPCS1 presence, indicating that

SPCS1 loss did not affect HCV RNA stability (Fig 2B). SPCS1 also did not affect replication of

infectious HCV RNAs up to 48 hr post-electroporation, consistent with previous reports

[35,36]. At 72 to 96 hr time points, we detected near 1 log reduction in JFH1/QL or HJ3-5

RNA levels from SPCS1(-) cells compared to those from SPCS1(+) cells. On the other hand,

similar levels of E2-EMCV-p7 RNA were detected at different time points regardless of SPCS1

loss. Since SPCS1 has no impact on subgenomic JFH1 RNA replication (S3 Fig), SPCS1-de-

pendent differential HCV RNA accumulation phenotypes of HJ3-5 and JFH1/QL at later time

points are likely due to different effects of SPCS1 loss on infectious virus assembly from these

HCV variants (see below).

Anti-E2 western blot of cell lysates collected at day 2 post-electroporation of HJ3-5 or

JFH1/QL RNA showed that SPCS1 loss impaired the processing of E2-p7 during viral replica-

tion, consistent with the results from the ectopic protein expression system described in Fig 1

(Fig 2C). Interestingly, the efficiency of E2-p7 processing during viral replication was relatively

higher than that during ectopic protein expression in SPCS1(+) cells (compare results in Figs 1

and 2C). The presence of p7 downstream sequence in the full-length ORF likely caused this

phenotype, as described in the previous report [46]. As expected, only the E2, not the E2-p7

precursor, was detected from E2-EMCV-p7 regardless of SPCS1 loss (Fig 2C). These results

suggest that SPCS1 facilitates E2-p7 processing during HCV replication.

SPCS1 plays a critical role in HCV assembly by facilitating E2-p7 precursor

processing during HCV replication

As described above, the only known role of SPCS1 in HCV assembly has been to enhance the

interaction of E2 and NS2, since siRNA knock-down of SPCS1 reduced this interaction [36].

Interestingly, our previous study showed that impairing the E2-p7 processing also inhibited E2

and NS2 interaction, and HCV assembly [18]. Since our results showed that loss of SPCS1

inhibited E2-p7 processing (Figs 1 and 2), we asked whether SPCS1’s role in HCV assembly is

contingent on its role in SPC-mediated E2-p7 cleavage. To assess this question, we compared

the extracellular and intracellular virus titers derived from HJ3-5 and JFH1/QL, whose assem-

bly requires SPC-mediated E2-p7 processing, and E2-EMCV-p7, whose assembly does not

require this step [18]. Consistent with the previous report [33], loss of SPCS1 prevented JFH1/

QL virus production since virus infectivity was undetectable either from supernatants or cell

lysates up to 96 hr post-electroporation of JFH1/QL RNA into SPCS1(-) cells (Fig 3A and 3B,

left side). Loss of SPCS1 also impeded the HJ3-5 virus production resulting undetectable level

of intracellular virus production at 24 hr time point, and up to 3 log reductions in extracellular

virus titers in SPCS1(-) cells compared to those from SPCS1(+) cells (Fig 3A and 3B, center).

On the other hand, SPCS1 showed minimal effect on E2-EMCV-p7 virus production, since

intracellular and extracellular E2-EMCV-p7 virus titers derived from SPCS1(+) and SPCS1(-)
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Fig 2. The effect of SPCS1 loss on HCV RNA replication and E2-p7 processing in infectious HCV replicating cells. (A)

Organization of gt2a JFH1-QL, the gt1a/gt2a HCV chimera HJ3-5 (grey shaded Core to NS2 region from gt1a H77 within

the gt2a JFH1 background), and E2-EMCV-p7 encoding the EMCV IRES at the junction site of E2 and p7 in HJ3-5. (B) The

results of the quantitative TaqMan RT-PCR assays to determine the HCV RNA levels in SPCS1(-) and SPCS1(+) Huh 7.5

cells flowing electroporation of HCV RNAs. The HCV RNA copy numbers at different time points. Results from three

biological replicates are shown. (C) On the left is the representative western blot analysis of E2 and E2-p7 detected from cell

lysates collected at day 2 post-electroporation of the indicated HCV RNAs to SPCS1(-) and SPCS1(+) Huh 7.5. The arrows

indicate the locations of E2 and E2-p7. Mean percentages of E2-p7 precursors and the standard deviations from three to five

experiments are shown on the right. Statistical analyses were performed by using GraphPad Prism, version 9, software.

Asterisks indicate statistically significant differences between two paired values: ���, P< 0.0005; ��, P< 0.005; �, P< 0.05.

The differences with a P-value of>0.05 were considered not significant (ns).

https://doi.org/10.1371/journal.ppat.1010310.g002
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cells were comparable (Fig 3A and 3B, right side). Minimal effect of SPCS1 loss in infectious

E2-EMCV-p7 virus assembly suggests that the major role of SPCS1 in HCV assembly is by

facilitating SPC-dependent E2-p7 processing.

To verify that SPCS1 indeed mediates the SPC-dependent E2-p7 processing involved in

virus assembly, we performed the rescue experiments by transfecting GFP or SPCS1 express-

ing plasmids at 6 hr post-electroporation of JFH1/QL, HJ3-5, and E2-EMCV-p7 RNA to

SPCS1(-) cells. Despite the partial recovery of SPCS1 levels under this experimental condition,

H77 or JFH1 E2-p7 processing was enhanced in SPCS1(-) cells replicating HJ3-5 and JFH1/

QL, respectively, by SPCS1 transfection, compared to those by GFP transfection (Figs 4A and

Fig 3. The effects of SPCS1 loss on infectious HCV production. Extracellular (A) and intracellular (B) virus titers

were determined at the indicated time points following electroporation of HCV RNAs, including JFH1/QL, HJ3-5, and

E2-EMCV-p7, into the SPCS1(-) and SPCS1(+) Huh 7.5. Mean titers ± standard deviations from three different

experiments are shown. The ‘n.d’. denotes not detected. Asterisks indicate statistically significant differences between

two paired values: �, P< 0.05. The differences with a P-value of>0.05 were considered not significant (ns).

https://doi.org/10.1371/journal.ppat.1010310.g003
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S2A). SPCS1 transfection also rescued JFH1/QL virus production and significantly enhanced

HJ3-5 virus production in SPCS1(-) cells compared to GFP transfection (Fig 4B), suggesting

that SPCS1 loss led to impaired the assembly of these viruses in SPCS1(-) cells, consistent with

the previous report [36]. Importantly, E2-EMCV-p7 virus titers in SPCS1(-) cells were similar

following GFP or SPCS1 transfection, validating that that SPC-independent separation of

Fig 4. The effect of SPCS1 trans-complementation in SPCS1(-) cells on the E2-p7 processing and virus production. (A) On

the left is the representative western blot analysis of E2, E2-p7 and SPCS1 detected from cell lysates collected at day 2 post-

electroporation of HJ3-5, JFH1/QL or E2-EMCV-p7 RNAs to SPCS1(-) Huh 7.5 cells, which were additionally transfected with

the plasmids encoding the SPCS1 or GFP at 6 hr post-electroporation of HCV RNAs. Mock represents non-transfected SPCS1

(+) cells. Mean percentages of E2-p7 precursors and the standard deviations from three experiments are shown on the right.

(B) Extracellular virus titers were determined at day 2 post-electroporation of indicated HCV RNAs, which were additionally

transfected with the plasmids encoding the SPCS1 or GFP at 6 hr post-electroporation of HCV RNAs. Mean titers ± standard

deviations from three different experiments are shown. Asterisks indicate statistically significant differences between two

paired values: ����, P< 0.00005; ���, P< 0.0005. The differences with a P-value of>0.05 were considered not significant (ns).

The ‘n.d’. denotes not detected.

https://doi.org/10.1371/journal.ppat.1010310.g004
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E2-p7 makes SPCS1 dispensable for E2-EMCV-p7 virus assembly. In aggregate, these results

verify that SPCS1 promotes HCV assembly by facilitating E2-p7 processing.

SPCS1 becomes dispensable for E2-p7 cleavage by relieving the predicted

secondary structure of the E2-p7 junction site

Carrere-Kremer et al. reported that inserting an HA epitope tag between 3rd and 4th residues

of gt1a HCV H strain derived p7 (P3’ and P4’ position of E2-p7 cleavage site) enhances E2-p7

processing using an ectopic protein expression system [17]. Subsequently, we also showed that

adding HA epitope tag to N-terminus of H77 p7 enhances E2-p7 processing during HJ3-5

viral replication [18], as evidenced by lack of detectable E2-HAp7 precursor (Fig 5B). In this

study, we extend this finding by showing that gt2a JFH1 E2-p7 processing is also facilitated by

adding HA-epitope to JFH1 p7 N-terminus, as evidenced by detection of only a background

level of E2-HAp7 precursor (Fig 5B).

Carrere-Kremer et al. suggested that HA-tag insertion releases structural constraint of

E2-p7 junction site leading to improved cleavage at this site [17]. Fig 6 shows the structures

of p7 fused with signal sequence (SS) located at the E2 C-terminus without and with HA-

epitope tag at p7 N-terminus, SS-p7 and SS-HAp7, respectively, predicted by Robetta server

(http://robetta.bakerlab.org) [47]. The predicted SS-p7 structure (represented by 4 out of 5

models) is remarkable for two aspects that are consistent with suboptimal E2-p7 process-

ing. First, the E2-p7 cleavage site is in the middle of the alpha-helix extending from the SS

(colored in blue) into the first half of the p7 transmembrane domain 1 (p7/TM1/helix-1,

colored in red) (Fig 6A). This type of secondary structure at the SPC cleavage site was

shown to inhibit SPC-mediated cleavage [15]. Second, due to the bending of p7/TM1/

helix-1 from the following p7/TM1/helix-2 (colored in dark grey), resembling that in p7

structure described by Cook et al. [48], the E2-p7 cleavage site would lie within or close to

the surface of the membrane (see Fig 7 for the location of the bent helix-1 relative to the

membrane). Since the active site of signal peptidase is located at the ER lumen, about 0.4–

1.1 nm above the ER membrane surface [15,49,50], the proximity of E2-p7 cleavage site to

the membrane surface, by decreasing its chance of encountering the SPC active site, likely

have contributed to the delayed cleavage of E2-p7 junction by SPC. On the other hand, the

predicted signal sequence (SS)-HAp7 structure (represented by 3 out of 5 models) showed

the ideal exposure of its cleavage site to the SPC active site, due to the helix breaking nature

of HA-tag and extension of p7/TM1/helix-1, similar to that in p7 structure described by

Montserret et al. [51] and Foster et al. [52] (Fig 6B), presenting the N-terminal of HA-tag

above the membrane surface into the ER lumen (Fig 7A).

We asked whether the structural constraint surrounding the E2-p7 junction necessitates the

SPCS1-specific role for SPC-mediated cleavage of this site. To address this question, we

assessed whether the E2-HAp7 precursor, lacking the structural constraint of the E2-p7 junc-

tion region, still requires SPCS1 for its processing during replication of HJ3-5/HAp7 and JFH1/

QL/HAp7 viruses. In SPCS1(+) cells, both H77- and JFH1-E2-HAp7 precursors were efficiently

processed (Fig 5B). Importantly, these precursors were also efficiently processed in SPCS1(-)

cells, indicating that SPCS1 is dispensable for E2-HAp7 processing (Fig 5B). These results sug-

gest that SPCS1 is required for SPC-mediated processing of the E2-p7 junction site due to the

structurally unfavorable nature of this site as a signal peptidase substrate.

Next, we determined the impact of efficient, SPCS1-independent E2-HAp7 processing on

HJ3-5/HAp7 and JFH1/QL/HAp7 viral RNA replication and assembly. In the case of HJ3-

5/HAp7, its RNA replication and virus assembly were not affected by SPCS1 loss (Fig 5C and

5D), mimicking the phenotypes displayed by E2-EMCV-p7 (Figs 2B, 3A and 3B). These results
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suggest that efficient separation of gt1a H77 E2 and p7, regardless of the involvement of SPC-

mediated processing, makes SPCS1 dispensable for virus production.

In the case of JFH1/QL/HAp7, however, while SPCS1 loss also had no impact on viral RNA

replication (Fig 5C), its viral assembly was significantly lower in SPCS1(-) cells compared to

that in SPCS1(+) cells (Fig 5D). In other words, efficient, SPCS1-independent E2-p7

Fig 5. The effect of the HA epitope tag at the N terminus of p7 on SPCS1-dependent E2-p7 processing, HCV RNA

replication, and infectious HCV production. (A) Organization of the HJ3-5 and JFH1/QL modified to encode the

HA epitope tag at the N terminus of p7. (B) The western blot detection of E2 and E2-HAp7 at day 2 post-

electroporation of HJ3-5/ HAp7 and JFH1/QL/HAp7 RNAs into SPCS1(+) or SPCS1(-) cells on the left along with the

mean percentages of E2-HAp7 precursors and the standard deviations from three experiments shown on the right. (C)

HJ3-5/ HAp7 and JFH1/QL/HAp7 RNA copy numbers at 4 and 48 hr post-electroporation of these RNAs into SPCS1(+)

or SPCS1(-) cells. (D) Extracellular virus titers determined at 24 and 48 hrs post-electroporation of HJ3-5/ HAp7 and

JFH1/QL/HAp7 RNAs into SPCS1(+) or SPCS1(-) cells. The mean titers are from three biological replicates. Asterisks

indicate statistically significant differences between two paired values: ���, P< 0.0005. The differences with a P-value

of>0.05 were considered not significant (ns).

https://doi.org/10.1371/journal.ppat.1010310.g005
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processing could only partially restore the SPCS1 loss-mediated virus production defect in

JFH1/QL (Figs 3B and 5B). These results suggest that SPCS1 may have an additional,

JFH1-specific role in virus assembly (see below).

The p7 mutation that inhibited E2-p7 processing induced a narrower p7/

helix-1 bending angle against the z-axis of the membrane

We performed molecular dynamics (MD) simulation of p7 in a model membrane to character-

ize the behavior of p7 without or with HA-tag in its natural environment. As for wild type (wt)

p7, we used a p7 structure [Protein Data Bank (PDB) ID: 2MTS] described by Cook et al. [48],

which represents the helix-1-bended form of p7, resembling the p7 structure predictions by

the Robetta server shown in Fig 6A. To understand the p7 conformation dynamics that restrict

the E2-p7 processing, we also determined the effect of p7(KRAA) mutations, which impaired

the E2-p7 processing [18], by introducing these mutations to the 2MTS structure before MD

simulations. We focused on identifying the difference in p7/TM1/helix-1 movement between

wt p7 and p7(KRAA) mutant, since this region serves as a major determinant for delayed

E2-p7 processing, as discussed above. The p7(KRAA) mutant, among different E2-p7 process-

ing impairing mutants, were chosen in this analysis, since p7 residues 33 and 35 mutated in

this mutant, are located at the cytoplasmic loop area between the two TM domains of p7, away

from the p7/TM1/helix-1. To generate the HAp7 structure, we replaced the FLAG-tag sequence

with the HA-tag sequence in the FLAGp7 structure (PDB ID: 3ZD0, Foster et al. [52]), which

represents the helix-1-upright form of p7 resembling structure predictions from the Robetta

server shown in Fig 6B. Interestingly, under this condition, part of the HA-tag folds into an α-

helix (Fig 7A), rather than an unfolded coil state, as predicted by the Robetta server (Fig 6B).

We performed MD simulations of these p7 derivatives embedded in a model membrane

composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) (see Materials and

Fig 6. Predicted structures of p7 and HAp7 fused with the leading signal sequence (SS) located at the E2 C-

terminus. The five different potential structures of the signal sequence-fused p7 (A) without and (B) with HA-epitope

tag at p7 N-terminus, SS-p7 and SS-HAp7, respectively, predicted by the Robetta server [http://robetta.bakerlab.org

[47]]. The SS, HA-tag, p7/TM1/helix-1, p7/TM1/helix-2, and the remaining area of the p7 are colored in blue, green,

dark grey, and right grey, respectively, by using web-based structure viewer iCn3D (https://www.ncbi.nlm.nih.gov/

Structure/icn3d/full.html). The black arrow points to the SPC cleavage site.

https://doi.org/10.1371/journal.ppat.1010310.g006
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Methods for detail). To quantitatively compare the position of p7/TM1/helix-1 of wt p7 and

p7(KRAA) mutant, we assessed the position of this region relative to the membrane normal

(z-axis) by determining the distribution of the angle between the vector from the C-alpha

atom of the first residue to the last residue of the p7/TM1/helix-1 and the membrane normal

vector (Fig 7B, left panel), along the 50 ns simulation time. The 90˚ angle would mean that p7/

TM1/helix-1 is fully folded into the membrane (perpendicular to the membrane normal) and

the 180˚ angle would indicate that it is fully extended into the ER lumen. The wt p7/TM1/

helix-1 (colored in red) showed relatively limited movement within the membrane

Fig 7. Molecular dynamics simulations of p7 and HAp7 in the membrane environment. (A) Snapshots represent the

position of the p7/TM1/helix-1 structure along the simulation time (50 ns) for p7 and p7(KRAA) structures based on

gt1b J4 p7 (PDB ID: 2MTS) and HAp7 structures based on J4 FLAGp7 (PDB ID: 3ZD0). The p7/TM1/helix-1 and HA-

tag helix are highlighted in red and green, respectively, and the positions of these helices at every 5 ns of the simulation

time are depicted in translucent. The remaining region of the p7 protein is represented in grey. The membrane core is

represented as a surface in white with the lipid heads represented as balls with phosphorous atoms in gold and oxygen

in red. (B) Representation of the vector used to follow the angle distribution: the vector of the p7/TM1/helix-1 and the

vector of the membrane is shown on the left. The p7 protein is represented in grey, with the p7/TM1/helix-1

highlighted in red. The membrane core is represented as a surface in white with the lipid heads represented as balls

with carbon atoms in grey, nitrogen in blue, oxygen in red, and hydrogen in white. The angle distribution between the

p7/TM1/helix-1 or HA-tag helix structures and the membrane normal along the simulation time is shown on the right.

The different protein structures tested are represented with different colors; wt p7/TM1/Helix-1 in black, p7(KRAA)

/TM1/Helix-1 mutant in red, and HA-tag in HAp7 in green. The solid and dashed lines represent two different

simulations, and data were smoothed using adjacent averaging with 200 points per window.

https://doi.org/10.1371/journal.ppat.1010310.g007
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environment, maintaining the position nearly perpendicular to the membrane normal

(approx. 110˚ to 130˚) (Fig 7A, left panel, and Fig 7B, right panel). Interestingly, as shown in

snapshots along the 50 ns simulation time, p7(KRAA)/TM1/helix-1 (colored in red) showed

an even more limited movement within the membrane environment (Fig 7A, middle panel),

when compared to wt p7/ TM1/helix-1 (Fig 7A, left panel). Furthermore, p7(KRAA)/TM1/

helix-1 maintained the angle even closer to 90˚ (100˚ to 120˚), indicating that TM1/helix-1 in

p7(KRAA) mutant is more embedded in the membrane than that in wt (Fig 7B, right panel).

These results suggest that a relatively stable association of the p7/TM1/helix-1 with the mem-

brane is one of the mechanisms for delayed E2-p7 processing by inhibiting the effective pre-

sentation of the E2-p7 junction to the SPC catalytic site located in the ER lumen well above the

membrane. In the case of the p7(KRAA) mutant, increased membrane-embedded nature of

the p7/TM1/helix-1 likely further inhibited the E2-p7 junction exposure to the ER lumen, lead-

ing to negligible processing of this site by the SPC.

Meanwhile, the HA-tag (colored in green) shows a more variable angle distribution relative to

the membrane along the simulation time, ranging from approx. 100˚ to 160˚. This indicates that

the HA-tag fused to p7-N-terminus fluctuates more during equivalent simulation time, ranging

from conformations where it is almost perpendicular to the membrane to conformations where it

is almost fully extended to the ER lumen (Fig 7A, right panel, and Fig 7B, right panel). The free-

dom of movement of the HA-tag in the ER lumen likely facilitated the SPC-mediated cleavage

between E2 and HA-tag during HJ3-5/HAp7 and JFH1/QL/HAp7 virus replication (Fig 5B).

Both p7 structures used in the above MD simulations were derived by using HCV J4 strain

(gt1b) p7 protein with or without FLAG epitope tag (PDB ID: 2MTS and 3ZD0, respectively).

To better understand the effect of different p7 sequences on the rigidity of the p7/TM1/helix-1,

as well as the movement of the HA epitope tag at the p7 N-terminus within the membrane

environment, we replaced the J4 p7 sequence in the above structures with those of H77 or

JFH1 and repeated the MD simulations. Despite the substantial sequence difference between

J4- and H77- or JFH1-p7 (13 and 26 different amino acids, respectively), the p7/TM1/helix-1

of H77 and JFH1 displayed the limited movement and maintained a position nearly perpen-

dicular to the membrane normal (S5 Fig), similar to that of J4-p7 (Fig 7). Interestingly, H77

p7/TM1/helix-1 (solid and dashed lines colored in black) was more embedded inside the

membrane (approx. 100˚ on average), compared to JFH1 p7/TM1/Helix-1 (solid and dashed

lines colored in blue, approx. 120˚ on average) (S5C Fig, right panel). These data imply that the

processing of H77 E2-p7 may be more inefficient than that of JFH1, consistent with the rela-

tively higher average level of H77 E2 in E2-p7 precursor form than that of JFH1 in the absence

of SPCS1 (Fig 1A and 1B).

Similar to the case of J4 HAp7 MD simulations above, HA-epitope tag fused to H77 or JFH1

p7 N-terminus fluctuated more during the simulated time, ranging from conformations

almost perpendicular to the membrane to those almost fully extended into the ER lumen

(angles ranging from approx. 90˚ to 170˚) (S5 Fig). The behaviors of HA epitope tag in H77
HAp7 (lines colored in green) and JFH1 HAp7 (lines colored in brown) were very random for

each simulation repetition (solid lines versus dashed lines), making it difficult to distinguish

whether either of their HA tags tends to adopt more time exposed to the ER lumen. These data

are consistent with the equally efficient, SPCS1-independent, SPC-mediated cleavage of H77-

and JFH1-E2-HAp7 shown in Fig 5B.

SPCS1 preferentially interacts with the E2-p7 precursor

Although SPCS1 was shown to interact with HCV E2 [36], it is unknown whether it could

interact with the E2-p7 precursor. If the role of SPCS1 is to relieve the structural constraint
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present at the E2-p7 junction site, it is reasonable to expect the SPCS1 to interact with the

E2-p7 precursor. To determine the interaction between SPCS1 and E2-p7 precursor, we co-

transfected FLAG-tagged SPCS1 (FLAGSPCS1) and E2 derivatives, into HEK293T cells, and

performed co-immunoprecipitation (co-IP) experiments using anti-FLAG antibody (Fig 8).

This strategy is adopted since the anti-SPCS1 antibody lacked the capacity to immunoprecipi-

tate endogenous SPCS1. We performed the experiments using E2-p7 derivatives that showed

partial and complete inhibition of E2-p7 processing including E1-E2-p7, and E1-E2(AR)-p7

and E1-E2-p7(KRAA), respectively. The E1-E2 was used as a negative control lacking the

E2-p7 precursor. As shown in Fig 8, SPCS1 preferentially interacts with E2-p7 precursor rather

than processed E2 since the average pull-down efficiency of E2 derivatives by the SPCS1

inversely correlates with E2-p7 processing efficiency. These results are consistent with a recent

finding by Yim et al., who also demonstrated the SPCS1-mediated pull-down of uncleaved,

signal-anchored protein [34].

SPCS1 has a genotype-specific role in JFH1 assembly by regulating JFH1

NS2 stability

As shown in Fig 3, SPCS1 loss prevented JFH1/QL virus production while partially permit-

ting HJ3-5 virus production. SPCS1-independent E2-p7 separation, either by introducing

Fig 8. Interaction of SPCS1 with HCV E2 or E2-p7 precursor. The interaction between FLAGSPCS1 and E2

derivatives was determined by anti-FLAG antibody-mediated co-immunoprecipitation (co-IP) assay following co-

transfection of FLAGSPCS1 without or with H77 E1-E2, E1-E2-p7, E1-E2(AR)-p7, and E1-E2-p7(KRAA) to 293T cells.

The E2 co-IP efficiency was calculated by dividing the relative ratio of co-immunoprecipitated E2 derivatives

normalized by the input E2 derivatives by the relative ratio of immunoprecipitated FLAGSPCS1 normalized by the input
FLAGSPCS1. The arrowhead indicates the location of the antibody heavy chain. Mean percentages of E2 co-IP efficiency

and the standard deviations from four experiments are shown at the bottom right. Asterisks indicate statistically

significant differences between two paired values: �, P< 0.05.

https://doi.org/10.1371/journal.ppat.1010310.g008
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EMCV IRES between E2 and p7 (Fig 3) or adding HA tag to the p7 N-terminus (Fig 5),

either completely or partially restored virus production from HJ3-5 or JFH1/QL, respec-

tively. These results suggest that SPCS1 has the genotype-specific function(s) on JFH1

assembly, in addition to its common, genotype-independent role in E2-p7 processing. We

determined that SPCS1 has no impact on either H77- or JFH1-p7-NS2 processing as evi-

denced by lack of accumulation of uncleaved p7-NS2 at the predicted size of this precursor

(Fig 9A), consistent with previous finding [36]. Interestingly, SPCS1 loss specifically

reduced the steady-state level of JFH1 NS2, but not that of H77 NS2, while having no

impact on either JFH1 NS3 or H77 NS3 levels during replication of JFH1/QL and HJ3-5,

respectively (Fig 9), despite that SPCS1 could interact with both H77- and JFH1-NS2 (S4

Fig). Since NS2-mediated HCV assembly complex formation is critical for infectious virus

production [53–56], SPCS1-mediated regulation of JFH1 NS2 stability could account for

the JFH1/QL virus assembly-specific role of SPCS1.

Fig 9. Effect of SPCS1 loss on NS2 and NS3 levels during replication of HJ3-5 and JFH1/QL. (A) The western blot

detection of NS2 and NS3 at day 2 post-electroporation of HJ3-5 and JFH1/QL RNAs into SPCS1(+) or SPCS1(-) cells.

The relative levels of NS2 (B) and NS3 (C), normalized by those of Tubulin in experiments above. Asterisks indicate

statistically significant differences between two paired values: �, P< 0.05. The differences with a P-value of>0.05 were

considered not significant (ns).

https://doi.org/10.1371/journal.ppat.1010310.g009
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Discussion

SPCS1 is one of the regulatory subunits of the eukaryotic signal peptidase complex (SPC)

[24,27,28]. Flaviviridae family members, including HCV, require SPCS1 for efficient propaga-

tion [33,35,36]. SPCS1-dependency in flavivirus production is attributed to its role in regulat-

ing SPC-mediated C-prM processing [33], in addition to its interaction with NS2B [37].

However, until now, the only known function of SPCS1 in HCV assembly has been its interac-

tion with NS2 and E2 enhancing their interaction [36]. In this study, we determined that 1)

HCV assembly depends on SPCS1 to specifically promote SPC-mediated E2-p7 processing

and 2) SPCS1 dependence of HCV assembly could be completely or significantly bypassed

(depending on HCV genotypes) either by separating E2 and p7 in an SPC-independent man-

ner or by adding an epitope tag, enhancing SPC-mediated processing of this junction site.

These results indicate that one of the major functions of SPCS1 in HCV assembly is to regulate

the efficiency of E2-p7 processing by SPC. Accordingly, this study establishes the common

role of SPCS1 in Flaviviridae family virus propagation as to exquisitely regulate the SPC-medi-

ated processing of specific, suboptimal target sites, E2-p7 junction in HCV, just as previously

described C-prM junction in flavivirus [33], whose processing efficiency plays a key role in

infectious virus assembly (see recent review by Alzahrani et al. [19] for detail on how process-

ing efficiency at these sites regulate virus assembly).

Despite being translated continuously from a single open reading frame and processed by

the same SPC, unlike preceding co-translational processing of Core-E1 and E1-E2 junctions,

E2-p7 processing is delayed, post-translational event [5,6,17–20]. Likely, the transmembrane

(TM) domain(s) of the post-translational SPC substrates such as HCV E2-p7 will be released

from the translocon to the ER membrane first, allowing continuous translation of the remain-

ing coding region. Then, SPCS1 will preferentially recognize and interact with these uncleaved

substrate precursors, as shown in Fig 8 and described previously by Yim et al. [34]. Next,

SPCS1 interaction with these substrates may facilitate the signal sequence cleavage site presen-

tation to the catalytic site of SPC located in the ER lumen enhancing the processing of these

substrates by the SPC. The post-translational processing by the signal peptidase could occur in
trans as demonstrated by Jackson and Blobel [57], supporting this potential sequence of

events.

This delayed processing of E2-p7 must be regulated in a perfectly balanced manner for opti-

mal HCV propagation since any alteration of E2-p7 processing, either promoting or inhibiting

it, led to impaired HCV assembly [18,22,23]. Consistent with the narrow range of ideal E2-p7

processing efficiency, the SPCS1’s role in SPC-mediated E2-p7 processing was not drastic.

Complete SPCS1 loss reduced, not prevented, SPC-mediated E2-p7 processing (Figs 1 and 2).

On the other hand, even in the presence of SPCS1, E2-p7 processing was not complete (Figs 1

and 2). Importantly, SPCS1 became dispensable for E2-p7 processing by the insertion of HA

epitope tag to p7-N-terminus, which facilitated SPC-mediated processing at this site by reliev-

ing structural constraints at the E2-p7 junction (Figs 5, 6 and 7). These results indicate that

HCV depends on the host factor SPCS1 to orchestrate the delicate balance in SPC-mediated

processing of E2-p7 junction, of which suboptimal SPC substrate status is imposed by struc-

tural determinants intrinsic to the p7 N-terminal sequence [17,23] (Fig 7).

Our results suggest that SPCS1 has HCV genotype-independent role in virus assembly by

facilitating E2-p7 processing. However, gt2a JFH1/QL assembly additionally depended on

SPCS1 due to the genotype-specific role of SPCS1 on JFH1 NS2 stability (Fig 9). Interestingly,

our previous study showed that the stability of H77 NS2, but not that of JFH1 NS2, is regulated

by a proteasome degradation system [45]. These results suggest that HCV utilizes different

PLOS PATHOGENS Role of SPCS1 in HCV E2-p7 processing

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010310 February 7, 2022 17 / 29

https://doi.org/10.1371/journal.ppat.1010310


mechanisms to regulate the stability of multifunctional protein NS2, involved in both viral

RNA replication and assembly [53–56,58], in a genotype-dependent manner.

The study by Oestringer et al. suggested that p7 from different genotypes could form two

alternative conformations resembling those shown in Figs 6 and 7, with p7/TM1/helix-1 in

either bent or extended states relative to the membrane z-axis [48,51,52,59,60]. Our MD simu-

lation shows that p7/TM1/helix-1 in a bent form associates with the proximal leaflet of the

membrane nearly perpendicular to the membrane normal, maintaining a relatively stable posi-

tion along the simulation time (Fig 7B). According to the structure prediction by the Robetta

server, the prevailing state of the p7/TM1/helix-1 in an SS-p7 precursor form is a bent form as

part of a continuous α-helix formed by SS and the p7/TM1/helix-1 (Fig 6A). If this predicted

structure is true, the E2-p7 cleavage site will be embedded in the membrane, making it an

unfavorable substrate for the SPC (Fig 7). In addition, α-helical structure in the c-region of the

signal sequence will further impede the SPC-mediated E2-p7 processing. We propose that

SPCS1 may increase the p7/TM1/helix-1 angle relative to the membrane normal to facilitate

the E2-p7 junction substrate presentation to the SPC catalytic site, leading to enhanced E2-p7

processing (Fig 10). Since helix to coil transition might be possible upon hydration of the

linker helix [61], even if E2-p7 cleavage junction forms the α-helical structure as predicted,

exposure of this junction to the ER-lumen by the SPCS1 could lead to the hydration and helix

to coil transition of this region making this junction a better substrate for SPC cleavage. This

model is supported by our finding that SPCS1 becomes dispensable for SPC-mediated cleavage

Fig 10. Model for the potential role of SPCS1 in regulating HCV E2-p7 processing. We propose that SPCS1 positively regulates the signal

peptidase complex (SPC) processing of the HCV E2-p7 junction by facilitating the presentation of the cleavage site, an unfavorable substrate for the

SPC due to structural constraints and membrane localization, to the SPC catalytic site. Cartoon representations for the signal sequence (SS)-p7, SPC,

and the placement SS-p7 on the SPC are for model demonstration only and may not represent actual structures or interactions.

https://doi.org/10.1371/journal.ppat.1010310.g010
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of E2-HAp7 junction, which is predicted to be exposed to the ER lumen due to an HA-tag pro-

viding helix breaking coiled region to the cleavage site (Figs 5B, 6B and 7).

Our MD simulation data showed that p7(KRAA) mutations that impaired the E2-p7 pro-

cessing reduced the p7/helix-1 angle relative to membrane normal making this region more

membrane-embedded. Interestingly, Scull et al. showed that replacing p7-TM1/helix-1 resi-

dues with the bulky, hydrophobic Tryptophan impaired the E2-p7 processing and virus pro-

duction [23]. These Tryptophan substitutions likely increased the hydrophobicity of p7/TM1/

helix-1, strengthening the membrane association of these mutants. Notably, both KRAA muta-

tions and Tryptophan substitution mutations in p7 impaired the E2-p7 processing in the

SPCS1(+) cells. We speculate that the p7/TM1/helix-1’s membrane-association-angle change

caused by the KRAA mutations, and the likely increase in membrane association affinity of the

p7/TM1/helix-1 caused by the Tryptophan substitution, may have induced the sufficient bar-

rier against the ER luminal exposure of E2-p7 junction, which is too high to overcome even by

the action of the SPCS1.

Similar to HCV E2-p7 processing, the SPC-mediated cleavage of flavivirus C-prM junction

is a delayed, post-translational event requiring prior cleavage of C protein by NS2B/NS3 prote-

ase after the two basic residues preceding the transmembrane domain (anchor C), which serves

as a signal sequence [38–41, 62, 63]. SPCS1 loss inhibited the anchor C-prM cleavage, and

SPCS1 dependence of this cleavage could be bypassed by replacing the anchor C sequence with

a signal sequence of the major histocompatibility complex (MHC) antigen [33]. These results

suggest that SPCS1 is required for SPC-mediated C-prM cleavage to compensate for the defect

in the anchor C sequence. The signal peptide is composed of a positively charged n-region fol-

lowed by a hydrophobic h-region and a polar c-region containing the SPC cleavage scissile

bond [64]. Unlike the signal sequence for HCV E2-p7, which is effective on its own [17], the

flavivirus anchor C signal sequence is defective due to the lack of polar residue at the c-region

[38]. Due to this hydrophobic nature of the c-region, the anchor C sequence, including the c-

region, is predicted to form a transmembrane domain with the cleavage site buried in the

membrane when preceding C protein is covalently attached [38]. The membrane association

of the c-region will likely prevent the ready access of this cleavage site to the SPC active site

located well above the membrane. It is remarkable that the common feature of HCV E2-p7

junction and flavivirus C-prM junction, which requires SPCS1 to promote SPC-mediated

cleavage, is the membrane-associated nature of these cleavage sites which will inhibit their

ready access to SPC active site. These results suggest that mechanism of action of SPCS1 is to

facilitate the hydrophobic substrate processing by the SPC.

In conclusion, our study revealed that SPCS1 is required to facilitate HCV E2-p7 processing

to promote HCV assembly. Our study also suggests that SPCS1 is required to increase the

membrane-associated substrate recognition by the SPC active site. The SPCS1-dependent,

suboptimal processing of HCV E2-p7 and flavivirus C-prM by the SPC is critical for the com-

mon purpose of nucleocapsid envelopment [19]. Our study suggests that these two viruses

belonging to two different genera in the same Flaviviridae family accomplish these highly regu-

lated processes by exploiting the specialized function of SPCS1 in SPC-mediated processing

using a common membrane-associated substrate feature of different precursors, generated by

different mechanisms.

Materials and methods

Cells

Huh-7 cell line clonal derivatives, including Huh-7.5 [65] and FT3-7 cell lines [66] were used,

as well as control SPCS1(+) and SPCS1 knock-out SPCS1(-) CRISPR-Cas9 edited Huh-7.5
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cells (Provided generously by Dr. Michael Diamond in Washington University, [33]). These

were maintained in Dulbecco’s modified Eagle medium (DMEM) (Invitrogen, Carlsbad, CA)

containing 10% fetal bovine serum (Invitrogen, Carlsbad, CA) at 37˚C in a 5% CO2

environment.

Plasmids

HJ3-5, JFH1-QL, and HJ3-5/HAp7 were described previously [18,67,68]. JFH1/HAp7 was gen-

erated by inserting the HA-epitope sequence between the E2 and p7 coding region of JFH1/

QL. The pFN11A (BIND) Flexi Vector (Promega) was modified by deleting the GAL4 fusion

protein-coding region and used to generate plasmids expressing E1-E2, E1-E2-p7, E1-E2(AR)-

p7, and NS2 from two different genotypes, H77 and JFH1. In brief, E1-E2, E1-E2-p7, E1-E2

(AR)-p7, NS2 sequences were PCR amplified from H77 and JFH1 with the primer sets intro-

ducing SgfI and PmeI restriction enzyme sites at their N- and C-terminus, respectively, and

then cloned into the modified vector digested with SgfI and PmeI enzymes (Promega, WI,

USA). The E2 (AR) mutations were introduced by using the QuikChange II XL site-directed

mutagenesis kit (Agilent Technology, Santa Clara, CA). The sequences of regions manipulated

within each plasmid were verified by DNA sequencing. The SPCS1 sequence was cloned from

cellular RNA isolated from Huh-7 cells and inserted into the modified pFN11A vector

described above, without or with Flag- or HA-tags.

DNA transfection

12-well plates were seeded with SPCS1(-) or SPCS1(+) Huh 7.5 cells in DMEM containing

10% fetal bovine serum (FBS, Gibco) and transfected with 1 μg of plasmid once cells reached

90–100% confluency, using Mirus TransIT-LT1 (Mirus) or Lipofectamine 3000 (Invitrogen)

according to manufacturer’s instructions. In brief, a mixture of plasmid DNA, Mirus TransI-

T-IL1 or Lipofectamine 3000 reagent, and Opti-MEM reduced serum medium (Gibco) was

incubated according to manufacturer’s instructions with the following modifications: transfec-

tion mixture was incubated for 20 mins at room temperature, then added to cells in a drop-

wise manner.

In vitro HCV RNA transcription and electroporation

HCV genomic RNA was in vitro transcribed (MEGAscript T7 transcription kit; Thermo

Fisher) from 1 μg of XbaI-digested HCV cDNA, including HJ3-5, JFH1-QL, E2-EMCV-p7,

HJ3-5/HAp7, JFH1/QL/HAp7, or JFH1 replicon plasmids. The in vitro transcribed RNA was

treated with DNase (Thermo Fisher) for 15 minutes at 37˚C and then purified using an RNeasy

RNA extraction kit (Qiagen, Valencia, CA). Purified RNA integrity and concentration were

determined by agarose gel electrophoresis and NanoDrop Spectrophotometer (Thermo-

Fisher). For electroporation, 10 μg of HCV RNA was mixed with 5 x 106 SPCS1(-) or SPCS1

(+) cells in cold 1X phosphate-buffered saline (PBS) in a 4 mm cuvette and then electroporated

at 950 μF and 270 V with a Gene Pulser Xcell system (Bio-Rad, Hercules, CA). Electroporated

cells were seeded into 12-well plates for HCV RNA analysis and 6-well plates for virus titration

and HCV protein analysis.

Reverse transcription and quantitative PCR (RT qPCR)

Intracellular HCV RNA was isolated by using an RNeasy RNA isolation kit (Qiagen, Valencia,

CA). To quantitate the level of HCV RNA, a real-time RT-PCR assay was performed by using

a QuantiNova Probe RT-PCR Kit (Qiagen, Valencia, CA) and a CFX96 real-time system (Bio-
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Rad, Hercules, CA) with custom-designed primer-probe sets (a forward primer: HCV84FP, 5’-

GCCATGGCGTTAGTATGAGTGT-3’; a reverse primer: HCV 303RP, 5’-CGCCCTATCAG

GCAGTACCACAA-3’; and a probe: HCV146BHQ, FAM-TCTGCGGAACCGGTGAGTA

CACC-DBH1).

Virus titration

A 50 μl aliquot of serial 10-fold dilutions (1:10 to 1:1000) of cell culture supernatants (clarified

by low-speed centrifugation) were inoculated onto naïve Huh-7.5 cells seeded 24 hr previously

into 96-well plate at 5x104 cells/well. Infected cells were maintained at 37˚C in a 5% CO2 envi-

ronment and supplemented with 100 μl of medium 24 hr later. The plate was then incubated

for an additional 48 hr, then cells were fixed in methanol-acetone (1:1) at room temperature

for 9 mins and then immunostained with monoclonal antibody to the Core protein (C7-50,

1:1000 dilution; Thermo Scientific, Rockford, IL), followed by washing (3X) and staining with

fluorescein isothiocyanate-conjugated goat anti-mouse immunoglobulin G (IgG) antibody

diluted 1:1000. Clusters of infected cells staining for Core antigen were considered to consti-

tute a single infectious focus-forming unit (FFU). Virus titers (FFU/ml) were calculated from

the sample dilutions, yielding 5 to 100 FFU per well.

Western blot analysis

Cells were lysed at different time points post-electroporation with ice-cold lysis buffer [50 mM

Tris-HCl (pH 7.5), 150 mM NaCl and 1% Triton X-100] and a complete protease inhibitor

cocktail (GenDepot, Katy, TX). Aliquots of cell lysates containing 20 μg of proteins were sepa-

rated by performing SDS-PAGE and transferred onto polyvinylidene difluoride (PVDF) mem-

branes. Membranes were probed with monoclonal antibodies to E2 protein (Graciously

provided by Dr. Michael Diamond at Washington University), Core protein (C7-50, 1:2000

dilution; Thermo Scientific, Rockford, IL), NS3 (9-G2, 1:2000 dilution; ViroGen, Watertown,

MA), monoclonal anti-HA antibody (C29F4, 1:2000 dilution; Cell Signaling Technology, Dan-

vers, MA), anti-Tubulin antibody (1:7,000 dilution; EMD Millipore, Billerica, MA) and anti-

SPCS1 antibody (11847-1-AP, 1:2000 dilution, Proteintech). Proteins were visualized by subse-

quently probing the membranes with IRdye 800CW goat anti-mouse, and IRdye 680 goat anti-

rabbit, and (Li-Cor Biosciences, Lincoln, NE), followed by imaging with an Odyssey infrared

imaging system (Li-Cor Biosciences, Lincoln, NE).

Endoglycosidase H treatment

Endoglycosidase H (Endo H; NEB, Hitchin, United Kingdom) treatment was performed

according to the manufacturer’s recommendations. Briefly, 20 μg of protein was added to 3 μl

of 10X Glycoprotein Denaturing Buffer then denatured at 100˚C for 10mins. 3.5 μl of 10X Gly-

coBuffer 3 and 1.5 μl Endo H were added to samples and then these reaction mixtures were

incubated for 2 hr at 37˚C.

Coimmunoprecipitation (Co-IP) assays

HEK293T cells were transfected with various plasmids and harvested for further assays 48 hr

after transfection. Transfected cells were washed twice with phosphate-buffered saline (PBS)

and scraped into lysis buffer (Cell Signaling Technology, Danvers, MA) with freshly added

containing 1 X protease inhibitor (GenDepot, Katy, TX). After incubation for 30 min on ice,

the lysate was centrifuged to remove the insoluble cell debris. Equal amounts of lysates were

used for the Co-IP assay by incubating overnight with 0.5 μg of an anti-Flag antibody
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(COSMO BIO USA, INC. CA) at 4˚C. After incubation, Dynabeads protein G (Invitrogen)

10 μl was added followed by incubation for 2 hr at room temperature. Wash Dynabeads with

cold-PBS twice. The immune complexes were denatured by 37˚C, 20 mins. Samples were then

resolved by 14% SDS-PAGE and analyzed by Western blotting.

Molecular dynamics (MD) simulations

The conformation of the p7 protein embedded in a membrane model was followed using MD

simulations. Initially, three different p7 structures were tested: i) wt protein (ALENLVVLN

AASVAGAHGILSFLVFFSAAWYIKGRLAPGAAYAFYGVWPL LLLLLALPPRAYA) (PDB

ID: 2MTS, [48]); ii) mutant protein (obtained by replacing K33A and R35A on wt protein,

PDB ID: 2MTS, [48]); iii) protein with HA-tag—YPYDVPDYAGGG (obtained by replacing

the FLAG-tag with this HA-tag sequence, PDB ID: 3ZD0, [69]). To be consistent with the

experimental data displayed in this study, four additional p7 structures were also tested: i)

H77p7 model (ALENLVILNAASLAGTHGLVSFLVFFCFAWYLKGRWVPGAVYALYG

MWPLLLLLLALPQRAYA), obtained by replacing different amino acid residues in the 2MTS

structure; ii) JFH1p7 model (sequence: ALEKLVVLHAASAANCHGLLYFAIFFVAAWH

IRGRVVPLTTYCLTGLWPFCLLLMALPRQAYA), also obtained by replacing different

amino acid residues in 2MTS structure; iii) HA-H77p7 model (sequence: YPYDVPDYAGGG

ALENLVILNAASLAGTHGLVSFLVFFCFAWYLKGRWV PGAVYAFYGMWPLLLLLLAL

PQRAYA), obtained by replacing different amino acid residues in the 3ZD0 structure and iv)

HA-JFH1p7 model (sequence: YPYDVPDYAGGGALEKLVVLHA ASAANCHGLLYFAIFFV

AAWHIRGRVVPLTTYCLTGLWPFCLLLMALPRQAYA), also obtained by replacing differ-

ent amino acid residues in the 3ZD0 structure. The starting structure of the p7 protein inserted

in the membrane was constructed using the CHARMM-GUI web server [70]. The OPM data-

base, [71] was used to obtain information on the protein orientation in the lipid bilayer. A

bilayer composed of 40 POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) molecules

in each leaflet was used as the model membrane. A rectangular simulation box was used, with

40 POPC lipids leaflet and a hydration thickness of 30 Å. K+ or Cl- ions were added to neutral-

ize the protein and a final concentration of 0.1 mol�dm-3 KCl was added to the system. Four

different p7 structures were tested: i) wt protein (PDB ID code: 2MTS, [72]); ii) mutant protein

(obtained by mutation of K33A and R35A on wt protein, PDB ID code: 2MTS, [72]); iii) pro-

tein with HA-tag—YPYDVPDYAGGG (obtained by mutation of the protein with the FLAG-

tag, PDB ID code: 3ZD0, [52]). The p7 protein was described using the Amber ff99sb-ILDN

forcefield, [73] and the lipid molecules with the LIPID17 forcefield from the AMBER project.

The TIP3P model was used to describe the water molecules [74]. The simulations were con-

ducted using GROMACS 2019 and the results were analyzed with GROMACS tools [75]. The

system was first minimized and then equilibrated with a canonical ensemble for 1 ns, with an

integration step of 1 fs, followed by 4 ns of successive isothermal-isobaric ensembles to gradu-

ally remove the position restraints from the protein and shift to an integration step of 2 fs.

Equilibration was finished with 10ns of production without position restraints. The last struc-

ture of the equilibration was used as the initial structure for the subsequent studies of protein

conformation. Fifty ns of the simulation were used to analyze the conformation of the helix-1,

at the N-terminal of the p7 protein. Simulations were repeated at least once. The temperature

was set to 310.15 K using the Berendsen thermostat for equilibration and the Nose-Hoover

thermostat [76,77] with a coupling constant of 1.0 ps for production simulations. The pressure

was set to 1.013 bar using the Berendsen barostat [78] for equilibration and the Parrinello-Rah-

man barostat [79] with a coupling constant of 5 ps for production simulations. Long-range

electrostatic interactions were treated by the particle-mesh Ewald (PME) method [80,81] with
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a real space cut-off of 0.9 nm and Fourier spacing of 0.16 nm. The van der Waals interactions

were treated with a cut-off of 0.9 nm. Long-range dispersion corrections to the pressure and

energy were added [82]. Bonds were constrained using the LINCS algorithm [83] and the SET-

TLE algorithm [84] was used for the water molecules. Coordinates were saved every 5 ps. The

center of mass (COM) motion (translational) of the protein-bilayer system relative to the sol-

vent was removed every 10 steps of the simulation. Two COM groups were used: 1) membrane

(lipids and protein), and 2) the solvent (water and ions). Simulations were visually analyzed

with the VMD software (version 1.9.4.) [85].

Statistical analysis

Unpaired Student’s t-test with Welch’s correction was performed by using GraphPad Prism

version 9 software (GraphPad, La Jolla, CA) to determine the significance in differences

between paired values from at least three independent experiments. A P value less than 0.05

was considered statistically significant.

Supporting information

S1 Fig. The effect of SPCS1 trans-complementation in SPCS1(-) cells on H77- (A) or

JFH1- (B) E2-p7 processing. Two additional western blot results associated with Fig 1C data.

(TIF)

S2 Fig. The effect of SPCS1 trans-complementation in SPCS1(-) cells on H77- or JFH1-

E2-p7 processing during HJ3-5 and JFH1 replication (A and B) and the effect of protea-

some inhibitor (MG132) on E2 stability (B). These additional western blot results are associ-

ated with Fig 4A data.

(TIF)

S3 Fig. The effect of SPCS1 loss on JFH1 subgenomic RNA replication. (A) Organization of

JFH1 subgenomic replicon. (B) Western blot detection of SPCS1 and JFH1 NS3 protein during

JFH1 replicon RNA replication. (C) JFH1 replicon RNA replication determined by measuring

HCV RNA levels at different time points post electroporation o JFH1 replicon RNA to SPCS1

(+) or SPCS1(-) cells.

(TIF)

S4 Fig. Interaction of SPCS1 with H77- or JFH1-NS2. The interaction between HASPCS1

and Flag-tagged H77-or JFH1-NS2 was determined by Flag co-immunoprecipitation (co-IP)

assay following co-transfection of these plasmids to 293T cells.

(TIF)

S5 Fig. Molecular dynamics simulations of H77 and JFH1 p7 and HAp7 in the membrane

environment. (A and B) Snapshots represent the position of the p7/TM1/helix-1 structure

along the simulation time (50 ns) for H77 and JFH1 p7 structures using PDB ID: 2MTS tem-

plate and H77 and JFH1 HAp7 structures based PDB ID: 3ZD0 template. The p7/TM1/helix-1

and HA-tag helix are highlighted in red and green, respectively, and the positions of these heli-

ces at every 5 ns of the simulation time are depicted in translucent. The remaining region of

the p7 protein is represented in grey. The membrane core is represented as a surface in white

with the lipid heads represented as balls with phosphorous atoms in gold and oxygen in red.

(C) Representation of the vector used to follow the angle distribution: the vector of the p7/

TM1/helix-1 and the vector of the membrane is shown on the left. The angle distribution

between the p7/TM1/helix-1 or HA-tag helix structures and the membrane normal along the

simulation time is shown on the right. The different protein structures tested are represented
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with different colors; TM1/helix-1 of H77 p7 in black, JFH1 p7 in blue, and HA tag in H77
HAp7 in green, and JFH1 HAp7 in orange. The solid and dashed lines represent three different

simulations, and data were smoothed using adjacent averaging with 200 points per window.

(TIF)
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