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Abstract: Cystic fibrosis is a hereditary disease mainly caused by the deletion of the Phe 508 (F508del)
of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld
in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. Cystic
fibrosis remains a potentially fatal disease, but it has become treatable as a chronic condition due
to some CFTR-rescuing drugs that, when used in combination, increase in their therapeutic effect
due to a synergic action. Also, dietary supplementation of natural compounds in combination with
approved drugs could represent a promising strategy to further alleviate cystic fibrosis symptoms.
On these bases, we screened by in silico drug repositioning 846 small synthetic or natural compounds
from the AIFA database to evaluate their capacity to interact with the highly druggable lumacaftor
binding site of F508del-CFTR. Among the identified hits, nicotinamide (NAM) was predicted to
accommodate into the lumacaftor binding region of F508del-CFTR without competing against the
drug but rather stabilizing its binding. The effective capacity of NAM to bind F508del-CFTR in a
lumacaftor-uncompetitive manner was then validated experimentally by surface plasmon resonance
analysis. Finally, the capacity of NAM to synergize with lumacaftor increasing its CFTR-rescuing
activity was demonstrated in cell-based assays. This study suggests the possible identification of
natural small molecules devoid of side effects and endowed with the capacity to synergize with drugs
currently employed for the treatment of cystic fibrosis, which hopefully will increase the therapeutic
efficacy with lower doses.

Keywords: cystic fibrosis; F508del-CFTR; lumacaftor; nicotinamide; drug repositioning; molecular
docking and dynamics; surface plasmon resonance

1. Introduction

Cystic fibrosis is the most common lethal monogenic disorder in Caucasians. It is
caused by more than 2000 mutations in the cystic fibrosis transmembrane conductance
regulator (CFTR) [1]. CFTR is an ion chloride channel located in the plasma membrane
of epithelial cells. Its loss of function has an impact on various organs, including those of
the respiratory system. Cystic fibrosis patients, due to the disruption of the extracellular
water-salt balance, produce thick mucus that is not efficiently cleared. This accumulation
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causes an impairment of the innate defense against bacteria [2] and, in turn, bronchial
and pulmonary infections and chronic inflammation. Pulmonary infections lead to a
progressive loss of respiratory function that may require life-saving intervention, such as a
lung transplant [3,4].

CFTR is composed of five domains: two nucleotide-binding domains (NBD1 and
NBD2), two transmembrane domains, and one regulatory domain [5]. The mutations of
CFTR are classified into six groups, according to their effect on the protein function [1,6].
The most common one is a group II mutation, which affects protein maturation. It is
the deletion of phenylalanine 508 (F508del) and occurs in 70% of cystic fibrosis patients.
According to the literature, over 2100 CFTR mutations have been described (Cystic Fibrosis
Mutation Database, https://www.genet.sickkids.on.ca/, accessed on 27 July 2022). Most
of them, however, are extremely rare compared to F508del. All together they respond for
the remaining 30%, with only five mutations reaching an allele frequency above 1% and
20 above 0.3%. F508 is in the NBD1 domain, and its deletion leads to an inappropriate
folding and structural instability of the protein. Thus, F508del-CFTR remains trapped in
the endoplasmic reticulum and degraded by the ubiquitin/proteasome system.

Despite the success of several potentiators/correctors drug combinations that are
currently on the market (see below), current cystic fibrosis therapies still need to include
symptomatic treatments (e.g., aggressive antibiotic strategies, osmotic agents, and pan-
creatic enzyme products) which have significantly enhanced the mean survival age of
patients [7,8]. Nevertheless, the burden of cystic fibrosis care remains very high, requiring
both the development of both novel symptomatic treatments and potentiators/correctors
drug combinations.

Modulators are drugs that control CFTR function by three distinct mechanisms: cor-
rectors, potentiators, and amplifiers, which restore the trafficking, repair the gating activity,
and stabilize the mRNA of the mutated CFTR, respectively [9,10]. Over the years, thou-
sands of these synthetic drugs have been evaluated, leading to the approval of three
correctors (lumacaftor/VX809, tezacaftor/VX661, and elezacaftor/VX445) and one poten-
tiator (ivacaftor/VX770), currently administered to cystic fibrosis patients in four different
preparations: Kalydeco (VX770), Orkambi (VX809/VX770), Symdeko (VX661/VX770), and
Trikafta (VX445/VX661/VX770) [11]. At a molecular level, the rationale for the use of
these drugs in combination is based on the fact that they exert their actions by binding the
mutated CFTR in different positions, synergizing and increasing the functional rescue of
the protein. Two studies have identified the potential binding sites of the lumacaftor: one
has used cryo-electron microscopy to identify the binding site in the membrane-spanning
domain (MSD1) and reports the drug as able to induce the stabilization of MSD1, making
it less sensitive to the ER degradation and restoring the tertiary structure of misfolded
CFTR [12]. The second study, based on molecular docking and molecular dynamics, lo-
cates the lumacaftor in the first nucleotide-binding domain (NBD1), and reports the drug
as able to induce the stabilization of the NBD1:ICL4 (IntraCellular Loop 4) interaction
and the stabilization of the already-folded CFTR in its native conformation [12,13]. Sim-
ilarly, a new low molecular weight (MW) compound (c407) has been recently described
to rescue F508del-CFTR activity by binding the protein in a different site from that of
lumacaftor, hence exerting a synergic effect when used in combination [14]. Accordingly,
phenylsulfonamide-pyrrolopyridine acts synergistically with VX770 to increase the trun-
cated W1282X-CFTR function [15]. Besides the benefits already brought to cystic fibrosis
patients by CFTR modulators approved so far, novel drugs are eagerly awaited to design
novel combinations that could further increase the efficacy of cystic fibrosis treatment.

Since 2012, industry and academia have largely used drug repositioning to accelerate
drug development for rare genetic diseases [16,17]. To date, hundreds of drugs have
been repurposed, with a parallel progressive decrease of the number of new molecules
globally approved [18]. In the same period, the support offered by bioinformatics, and the
availability of powerful computational resources (such as high computing platforms for
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big data management and analysis), has speeded up in silico drug repositioning [19] over
biological, experimental, mixed and knowledge-based approaches [20–22].

Drug repositioning has already been used for cystic fibrosis [23,24]. In line with this,
we have previously carried out a careful investigation around the lumacaftor binding
region of F508del-CFTR [25]. The region identified within this study was in full agreement
with the literature [13] (and literature cited therein). On the sub-regions surrounding the
lumacaftor binding site [25] endowed with a high druggable probability score, we have
performed a pilot computational drug repositioning analysis to identify new compounds
with CFTR-rescuing potential. Interestingly, the natural compound rutin was identified
as a hit and its metabolite quercetin also proved to bind the mutated protein, partially
overlapping to the lumacaftor interaction region of F508del-CFTR [25].

Since many other nutraceuticals have demonstrated to alleviate cystic fibrosis symp-
toms by different mechanisms of action [26–29], we have attempted a computational drug
repositioning analysis to identify small compounds able to accommodate in the large
lumacaftor interaction region of F508del-CFTR in such a way to synergize with the drug.
The drug repositioning analysis was followed by biochemical and biological experimental
validation assays.

2. Results
2.1. Computational Drug Repositioning Pipeline to Identify Small Molecules Able to Interact with
the Lumacaftor-Binding Region of F508del-CFTR

A putative binding site for lumacaftor located between NBD1 and ICL4 has already
been identified [30]. The prediction, supported by experimental data [31,32], suggested
the importance of a binding pocket we named DP1. Focused on this pocket, a first drug
repositioning campaign was performed based on the Italian Drug Agency database (AIFA,
Agenzia Italiana del FArmaco) [25]. The binding mode of the 11 repositioned drugs so far
identified (all with a high molecular weight), highlighted that DP1 is a very large pocket
that is not fully occupied by lumacaftor alone, or by one of the selected compounds. This ob-
servation prompted us to explore the several DP1 sub-pockets surrounding the lumacaftor
binding region, searching for the most druggable ones [32], in the meantime scouting small
molecules able to fill the druggable DP1 pocket and synergize with lumacaftor. To this
aim, an ad hoc drug repositioning pipeline was updated (Figure 1) based on the previously
developed one [25].

The drug repositioning results were evaluated based on 18 representative DP1 confor-
mational pockets, obtained from molecular dynamics analysis of the F508del-CFTR model
already published by us [30]. Among the 846 considered drugs, three typologies of binding
sites can be defined, depending on residues involved in the binding inside DP1 [25]: the
most populated group, corresponding to those drugs able to bridge NBD1 and NBD2,
binding also to residues of the ICL4 domain. Among these, VX809; drugs that mostly
occupy DP1 taking close interactions with residues in NBD1 and ICL4; drugs displaying
interactions only with the apical region of NBD1.

The superimposition of one ligand for each group to VX809 highlighted three different
space sub-regions around the aromatic acid portion of the template which are not occupied
by VX809 itself but could be possibly occupied by other drugs. Following this premise, the
docking results were filtered based on their binding into the druggable DP1 sub-regions,
and ranked based on binding energy value and MW. After this step 1462 poses were
obtained, corresponding to 517 molecules.
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Figure 1. Schematic representation of the drug repositioning pipeline adopted in this work. Our
previously published pipeline [25] was implemented to adapt it for the searching of small molecules
able to combine with lumacaftor inside the DP1.

2.2. Clinical Assessment and Selection of the Repositioned Small Compounds

The first five ranked compounds (Table 1), being not part of the coded therapies for
the treatment of cystic fibrosis patients, have been evaluated by the clinical consultant on
the basis of the AIFA and EMA documents [www.farmaci.agenziafarmaco.gov.it (accessed
on 27 July 2022) and www.ema.europa.eu (accessed on 27 July 2022) and references therein]
to dischfarge those with side effects contraindicated for cystic fibrosis patients. Also, to
highlight whether they could have any favorable effect in the treatment of cystic fibrosis,
research on PubMed was performed [cystic fibrosis AND compound name]. As detailed
below, three hits were excluded from further evaluation due to the presence of possible
serious adverse effects and the consequent contraindication to use in cystic fibrosis in the
absence of their specific therapeutic indications.

Sodium oxybate (also called gamma-hydroxybutyrate sodium) is a drug with a de-
pressant action on the central nervous system used in adults and children older than
7 years of age to prevent cataplexy (sudden and short-time muscle weakness episodes)
and narcolepsy (sudden uncontrollable urge to sleep during daily activities) [33]. It is also
used in alcohol withdrawal syndrome and for the maintenance of abstinence in alcohol
dependence [34]. In addition, sodium oxybate has a muscle relaxant effect and causes

www.farmaci.agenziafarmaco.gov.it
www.ema.europa.eu
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partial retrograde amnesia. Common adverse effects are enuresis and sleepwalking, while
less common are lack of appetite, suicidal thoughts, trouble sleeping, unusual weight gain
or loss, and changes in behaviour, creating a contraindication for cystic fibrosis patients
[www.farmaci.agenziafarmaco.gov.it (accessed on 27 July 2022) and www.ema.europa.eu
(accessed on 27 July 2022) and references therein].

Table 1. Hits resulting from the drug repositioning, ranked by increasing molecular weight.

Molecule Name Molecular Weight
(g/mol)

Docking Score
(Kcal/mol) 2D Structure

Cysteamine 77.15 −2.7
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Methimazole blocks T3 and T4 synthesis from the thyroid gland, and is useful in
treating pathological conditions related to the thyroid, especially hyperthyroidism [35].
However, it can have particularly serious side effects, such as agranulocytosis, leukopenia,
thrombocytopenia, and aplastic anemia. It is also hepatotoxic, causing hypoprothrom-
binemia and bleeding and thus requires the constant monitoring of liver function. Case
reports of acute pancreatitis in patients treated with this drug have been noted, making it
contraindicated for cystic fibrosis patients [www.farmaci.agenziafarmaco.gov.it (accessed
on 27 July 2022) and www.ema.europa.eu and references therein (accessed on 27 July 2022)].

Glycine betaine is a methyl group donor that functions in the normal metabolic cycle
of methionine and reduces homocystinuria in patients with inborn errors of methionine
metabolism, as in the case of Homocystinuria, where treatment aims at reducing homocys-
teine accumulation, as in an alternative pathway that aims to eliminate the toxic substrate
(i.e., pharmacologic treatment with betaine which re-methylates homocysteine to methio-
nine) [36]. With regard to safety, betaine appears to be well tolerated. Its adverse effects,
although not serious, are mainly related to the gastrointestinal system that, importantly,
could already be compromised in cystic fibrosis patients. Furthermore, no data has been
found on its possible use in cystic fibrosis [www.farmaci.agenziafarmaco.gov.it (accessed
on 27 July 2022) and www.ema.europa.eu (accessed on 27 July 2022) and references therein].

Two compounds were considered usable in patients with cystic fibrosis, namely
cysteamine and NAM, whose structural and functional features and known therapeutic
properties and possible use in cystic fibrosis are detailed here below.

Cysteamine is derived from coenzyme A degradation. It is an AIFA and FDA-
approved drug originally prescribed for nephropathic cystinosis, with known adverse
effects limited to myopathy, diabetes, and hypothyroidism [37]. Over the years, it has
also been used for neurodegenerative disorders and non-alcoholic fatty liver disease [38].
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Interestingly, cysteamine has already been the subject of intense studies in the field of cystic
fibrosis, with 34 publications retrieved from the research on PubMed. Relevantly, oral cys-
teamine is absorbed and enters the bronchial secretions in patients with cystic fibrosis, and
its activity is not sensitive to high ionic concentrations characteristic of the cystic fibrosis
lung [39]. Accordingly, its therapeutic benefit has been proved even in patients [40,41]
where, although adverse reactions are common, it appears to be safe and well-tolerated [42].
Therapeutic benefits observed in cystic fibrosis patients treated with cysteamine are due
to multiple effects exerted by the drug: it is endowed with autophagy-stimulatory pro-
teostasis regulatory and anti-oxidant properties, and is able to exert a reduction of lung
inflammation and to restore bacterial internalization and clearance in cystic fibrosis im-
paired macrophages [43,44]. Moreover, cysteamine exerts an antibacterial/anti-biofilm
activity against cystic fibrosis relevant pathogens [45]. Interestingly, cysteamine has been
originally proposed to rescue and stabilize F508del-CFTR at the plasma membrane [46],
but following dedicated experiments with appropriate cell-based assays, it demonstrated
that it does not exert any F508del-CFTR-rescuing activity when administered both alone or
in combination with lumacaftor [47,48].

NAM (or niacinamide) is a water-soluble vitamin, the amide of vitamin B3 also known
as Vitamin PP (Pellagra Preventing). It is a constituent of two coenzymes [nicotinamide
adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP)]
which act as hydrogen and electron carriers through oxidation and reversible reductions
and play a vital role in cellular metabolism. Therefore, NAM is an important precursor
of NADH and NADPH. There are no special warnings and precautions for its use, and
no significant pharmacokinetic or pharmacodynamic interactions with other medicines
emerged from the analysis of the scientific literature. Only potential side effects have
been suggested for its excessive exposure [49]. Interestingly, it has been suggested to exert
a protective effect on acute lung damage caused by ischemia, endotoxin, or oxidative
stress [50]. These features make it usable in patients with cystic fibrosis. On the basis of the
lack of F508del-CFTR-rescuing activity already demonstrated for cysteamine [47,48] and of
the novelty of a possible use of the natural compound NAM for the rescue of the CFTR
function, we decided to consider the latter compound in this study.

2.3. Pocket Fitting Evaluation for Lumacaftor and NAM: Which Molecule Binds First?

NAM was selected as a probable hit. As shown in Figure 2, the docking pose obtained
from drug repositioning located the molecule in a sub-region of DP1, in the interface
between NBD1 and ICL4. It is close to the hydrophobic cluster between F508, W496, F1068,
and, partially, with F1074, which is disrupted by the F508 deletion [51]. This made NAM
very interesting for the F508del-CFTR rescue activity because it could be able to perform a
recovery by itself or in combination with lumacaftor.
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To investigate this second possibility, NAM was evaluated by MDs in combination
with lumacaftor considering the protein dynamic behavior at the DP1. With this aim,
we tried to evaluate the fitting determined by the binding of the first ligand, which in-
duces modifications on DP1, so as to allow the binding of the second one. Two different
MDs experiments of three replicas were set up. The first was to evaluate the fitting of
lumacaftor [30] or NAM in the apo F508del-CFTR, and the latter to evaluate the stability
of NAM in complex with the representative conformation of F508del-CFTR-lumacaftor
and, vice versa, the stability of lumacaftor in complex with F508del-CFTR after NAM
binding. The analyses of the three 50 ns MDs replicas of the F508del-CFTR-NAM complex
highlighted that the NAM pose was unstable since the molecule was localized in three
different binding poses (see Supplementary Figure S1). As a consequence, we hypothesized
that it was lumacaftor the one to produce a pocket fitting for the binding of NAM into DP1.
Thus, MDs of the complex including both molecules were performed.

The NAM from drug repositioning was docked in the representative F508del-CFTR-
lumacaftor structure determined in our previous studies [30], and the complex stability was
evaluated by three 50 ns MDs replicas that were carried out. The analyses of the complex
demonstrated an overall good binding pose of NAM and lumacaftor inside the DP1. RMSD
analyses of F508del-CFTR, lumacaftor, and NAM showed an overall stability of the system
(Figure 3).
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Moreover, the two drugs showed an RMSD value < 2 Å in all three replicas from the
starting conformation as showed in Figure 3. This indicates a good ligand stability [52].

Then, to better study the binding pose of the drugs, a hierarchical cluster analysis for
each replica was performed. A total of four representative conformations of the F508del-
CFTR-lumacaftor-NAM complex were obtained: one for replica 1 representative of 76%,
two for replica 2 representative of 47% and 33%, respectively, and one for replica 3 represen-
tative of 70% of clustered conformations. Conformation analysis indicated that lumacaftor
maintains a similar binding pose in all replicas, while slight differences were found for
NAM (Figure 4).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 4. Binding pose of NAM and lumacaftor in the representative conformations of the three 

replicas. Conformation 1 of replica 1 in teal, conformation 1 of replica 2 in coral, conformation 2 of 

replica 2 in brown, and conformation 1 of replica 3 in yellow. 

Only in replica 3 did lumacaftor show a different orientation of its benzoic acid moi-

ety, due to a peculiar positioning of NAM inside the DP1 sub-region. H-bond analysis 

along MDs of lumacaftor showed differences in its interaction in comparison to its com-

plex with the apo F508del-CFTR [30]. In the combined analyses, due to the presence of 

NAM, lumacaftor only interacted with W1063 (83.7%, 79.5%, and 84.1% for replica 1, 2, 

and 3, respectively). The variation of lumacaftor hydrophobic interactions with the representa-

tive conformation complex was evaluated by PLIP [53] and along the replicas' trajectories. 

To calculate these values, we analyzed the distances between the hydrophobic portion of 

the protein residues and the interacting hydrophobic portion of lumacaftor among the trajec-

tories, with 6 Å  as the cut-off value for the distance between the center of mass of the hydro-

phobic atoms. The analysis highlighted that lumacaftor interacted with F494, K1060, and 

W1063, in agreement with our previous studies [30]. Moreover, lumacaftor created stable hy-

drophobic interactions with L172, D173, and I177 of NBD1, and D1341 of NBD2 (Table 2). 

Table 2. Average distances of the three replicas between the hydrophobic portion of lumacaftor and 

NAM with the interacting F508del-CFTR hydrophobic portion residues. 

Lumacaftor 

L171 

(ICL1) 

L173 

(ICL1) 

I177 

(ICL1) 

F494 

(NBD1) 

K1060 

(ICL4) 

K1063 

(ICL4) 

D1341 

(NBD2) 

5.05 Å  3.95 Å  4.92 Å  5.55 Å  4.45 Å  4.11 Å  5.14 Å  

NAM 

W496 

(NBD1) 

L1065 

(ICL4) 
     

5.31 Å  4.53 Å       

Concerning the binding pose of NAM inside the DP1 sub-region (Figure 5), we ana-

lyzed its molecular interactions with the protein. H-bond analysis highlighted a strong 

interaction between NAM and R1070 of ICL4 (66,4%, 77,4%, and 83.6% for replica 1, 2, and 

3, respectively). 
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replica 2 in brown, and conformation 1 of replica 3 in yellow.

Only in replica 3 did lumacaftor show a different orientation of its benzoic acid moiety,
due to a peculiar positioning of NAM inside the DP1 sub-region. H-bond analysis along
MDs of lumacaftor showed differences in its interaction in comparison to its complex
with the apo F508del-CFTR [30]. In the combined analyses, due to the presence of NAM,
lumacaftor only interacted with W1063 (83.7%, 79.5%, and 84.1% for replica 1, 2, and 3,
respectively). The variation of lumacaftor hydrophobic interactions with the representative
conformation complex was evaluated by PLIP [53] and along the replicas’ trajectories.

To calculate these values, we analyzed the distances between the hydrophobic portion
of the protein residues and the interacting hydrophobic portion of lumacaftor among the
trajectories, with 6 Å as the cut-off value for the distance between the center of mass of the
hydrophobic atoms. The analysis highlighted that lumacaftor interacted with F494, K1060,
and W1063, in agreement with our previous studies [30]. Moreover, lumacaftor created
stable hydrophobic interactions with L172, D173, and I177 of NBD1, and D1341 of NBD2
(Table 2).

Table 2. Average distances of the three replicas between the hydrophobic portion of lumacaftor and
NAM with the interacting F508del-CFTR hydrophobic portion residues.

Lumacaftor
L171

(ICL1)
L173

(ICL1)
I177

(ICL1)
F494

(NBD1)
K1060
(ICL4)

K1063
(ICL4)

D1341
(NBD2)

5.05 Å 3.95 Å 4.92 Å 5.55 Å 4.45 Å 4.11 Å 5.14 Å

NAM
W496

(NBD1)
L1065
(ICL4)

5.31 Å 4.53 Å

Concerning the binding pose of NAM inside the DP1 sub-region (Figure 5), we ana-
lyzed its molecular interactions with the protein. H-bond analysis highlighted a strong
interaction between NAM and R1070 of ICL4 (66,4%, 77,4%, and 83.6% for replica 1, 2, and
3, respectively).
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A hydrophobic interactions analysis, performed as described above for lumacaftor,
indicated the interaction of NAM with W496 of NBD1 and L1065 of ICL4 (Table 2). Visual
inspection of NAM binding poses along the three replicas showed that the molecule is
anchored inside the DP1 sub-pocket, with a single H-bond with an R1070 side chain.
Comparing NAM representative conformations obtained from replicas, we observed that
R1070 residue, with its side chain, drags NAM, anchored by an H-bond, in a spatial restraint
around 6.13 Å. Despite this defined spatial movement determined by R1070 side chain,
the NAM hydrophobic network is preserved thanks to the NAM pyridinic ring, which is
steadily interacting with residues L1065 and W496. These results highlighted the ability
of NAM to occupy a very specific DP1 sub-region inside the F508del-CFTR, exploiting an
H-bonding and several hydrophobic interactions (when lumacaftor is bound).

F508del mutation involves the deletion of a phenylalanine in NBD1 which contributes
to generate molecular contacts at the ICL4/NBD1 interface. The elimination of F508 causes
a disruption of a hydrophobic cluster formed by residues F508, W496, F1068 and F1074,
located at the interface between NBD1 and ICL4. The hydrophobic interactions between
the NAM’s pyridine moiety and residues W496 and L1065, both located in the ICL4 loop,
might help in restoring this compromised interaction between ICL4 and NBD1. According
to our calculations, NAM is able to restate that interaction between W496 and F508, which
is lost after mutation, and in addition is able to interact with L1065, a residue recently
defined as able to revert F508del mutation effects on CFTR [54].

2.4. Biochemical Validation: Binding Assay of NAM to F508del-CFTR by Surface Plasmon
Resonance

In our previous works, we have successfully exploited surface plasmon resonance to
validate virtual binding predicted by computational studies [25,30,55]. We then decided
to use this technique to demonstrate the effective capacity of NAM to bind to F508del-
CFTR. A biosensor containing F508del-CFTR immobilized in membrane-like lipid vesicles
that resembles the F508del-CFTR environment in vivo and that has already allowed the
successful validation of computational predictions in the field of cystic fibrosis [30,56,57]
was used. As shown in Figure 6, when injected at increasing concentrations onto the
F508del-CFTR-containing a biosensor, NAM binds the mutated protein in a dose-dependent
and saturating manner with a Kd equal to 2.5 ± 1.3 µM (value + SEM obtained from seven
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independent analyses). As described in the Section 4, the use of a control surface devoid
of the target protein for blank subtraction proves the specificity of the observed binding,
further sustained by the saturation binding, further sustained by the saturation binding
reached at higher concentration of NAM.
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Figure 6. Steady-state analysis of NAM injected onto the F508del-CFTR-containing biosensor. The
results shown are representative of other seven analyses that gave similar results.

Interestingly, in the same experimental conditions, lumacaftor binds F508del-CFTR
with a significantly higher Kd (20–30 times) than NAM [30,57].

2.5. Identification of the Binding Pocket of NAM

Surface plasmon resonance demonstrated the NAM/F508del-CFTR interaction with-
out providing the location of the binding site. Relevantly, molecular docking is instrumental
in the prediction of binding site(s) [58], prompting us to use it for our aims. Due to the
instability of NAM alone inside the DP1 sub-region, we computationally evaluated the
binding of NAM outside the DP1. NAM was docked against the apo F508del-CFTR pocket
library [30]. The best docking pose (−6.1 Kcal/mol) located in the ICL2:NBD2 interface
was selected for further analysis. The complex between the docking pose of NAM and the
apo F508del-CFTR was evaluated by 50 ns MDs. The RMSD analysis showed the stability
of NAM (Figure 3). As shown in Figure 7, the binding of NAM occurs through an H-bond
interaction with A274 (ICL2) and S1359 (NBD2) for 72.6% and 99.5% of lifetime along the
trajectory, respectively. No hydrophobic interactions were found.
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2.6. Effect of NAM-Lumacaftor Co-Treatment on Mutant CFTR Rescue

We tested the effect of NAM alone and in co-treatment with lumacaftor on F508del-
CFTR activity by using the Halide-Sensitive Yellow Fluorescent Protein (HS-YFP) assay.
The assay was performed on immortalized bronchial CFBE41o- cells stably expressing
the HS-YFP and the mutant F508del-CFTR. Cells were treated for 24 h with lumacaftor
(3 µM) in the absence or in the presence of increasing concentrations of NAM (from 6.25 to
100 µM). The compounds were then removed and the cells were assayed after stimulating
CFTR activity with forskolin (20 µM) and VX-770 (1 µM). Incubation with NAM alone
does not increase CFTR activity as compared to treatment with vehicle alone (DMSO),
while lumacaftor alone (3 µM) caused a 3.7-fold improvement in CFTR-mediated transport.
However, when cells were co-treated with lumacaftor and increasing concentrations of
NAM, a bell-shaped dose response was observed, with a modest but significant increase
in the rate of YFP quenching observed with NAM at 50 µM that suggests an augmented
CFTR rescue and expression at the plasma membrane (Figure 8). Further analysis is needed
to investigate the biological significance of the improved rescue in more relevant cystic
fibrosis cell models.
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Figure 8. Effect of NAM-lumacaftor co-treatment on mutant F508del-CFTR rescue. The bar graphs
show F508del-CFTR activity in CFBE41o-cells stably expressing the HS-YFP. CFTR activity was
determined as a function of the YFP quenching rate following iodide influx in cells treated for 24 h
with DMSO in the absence (vehicle) or in the presence of lumacaftor (3.0 µM) as a single agent or
combined with the indicated concentrations of NAM. * p < 0.05.

3. Discussion

Cystic fibrosis treatment still relies on antimicrobial agents, making patients vulnera-
ble to the development of drug resistances. A great effort has already been undertaken to
identify alternative pharmacological targets with important results achieved in the devel-
opment of efficacious combinations of CFTR-rescuing drugs. However, these combinations
can be used only for patients older than age 12. Also, although they can be administered
to nearly 90% of cystic fibrosis patients, a 10% of cystic fibrosis patients remain without
etiological therapies [59]. Finally, they will not be available worldwide due to their cost.

In this scenario, the identification of agents endowed with a dual-target activity
(i.e., antibacterial and antioxidant or antioxidant and CFTR-rescuing activities combined in
one molecule) may lead to increased therapeutic benefits for cystic fibrosis patients [60].

On the other hand, the dietary implementation of nutraceuticals in cystic fibrosis
treatment has been considered [61–63]. Accordingly, CFF USA Registry reported in 2020
that about 40% of CF patients required oral nutrition supplements, as minerals (sodium
chloride, magnesium, zinc), fat-soluble vitamins (A, D, E, K), fatty acids, and probi-
otics. Probiotics can intervene on CF intestinal dysbiosis, reducing its negative effects
(i.e., severe intestinal inflammation). Moreover, they may have a positive effect on glucose
metabolism [64,65]. Fatty acids, vitamins (A, D, E, K and B12) [26–29,66,67], flaxseed [68],
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caffeic acid phenethyl ester [69], furocoumarins [70], curcumin, resveratrol, genistein [63,71–73]
and rutin/quercetin [74,75] are endowed with antioxidant potential that may compensate
the oxidative stress caused by the increased production of ROS during chronic pulmonary
infections. They can reduce airway inflammation and/or increase survival in animal mod-
els and/or in cystic fibrosis patients. Interestingly, beside their anti-oxidant potential, some
of these natural compounds are also endowed with CFTR-rescuing activity: genistein and
resveratrol act as an F508del-CFTR potentiator [76,77] and furocoumarins that improve
the chloride channel transport of the mutant CFTR protein [70]. Rutin and its metabolite
quercetin are endowed with a CFTR-rescuing activity [78] that could depend, at least in
part, on their capacity to bind directly to mutated CFTR [13].

Finally, it is interesting to note how some natural compounds (including genistein,
digitoxigenin, curcumin, resveratrol, and latonduine) show additive/synergic effects when
administered in combination with already approved cystic fibrosis drugs [79–83].

Taken together, these observations call for the systematic search of nutraceuticals
with CFTR-rescuing potential for treatment in cystic fibrosis, an aim that may be achieved
by drug repositioning that has already been used both for cystic fibrosis [23,24] and for
screening natural products in various pathological settings [84]. Based on this, we have set
up a virtual drug repositioning pipeline specifically aimed at screening small molecules
endowed with F508del-CFTR-binding and rescuing capacity, from which we selected NAM
for further study. NAM is the main precursor of NAD+ that, in turn, is an essential
co-enzyme of redox reactions for adenosine triphosphate (ATP) production and ATP-
dependent metabolic processes critical in maintaining cellular energy. NAD+ and its
precursor NAM are therefore essential for metabolically active tissues such as epithelia.
Relevant to cystic fibrosis, NAM exerts a protective effect on acute lung damage caused by
ischemia, endotoxin, or oxidative stress [50], and reduces the levels of pro-inflammatory
cytokines, inducible nitric oxide synthase, and other cellular and biochemical inflammation
markers [85]. Interestingly, the NAM intracellular pyridine nucleotides derivatives have
been demonstrated to regulate CFTR-mediated CAMP-dependent Cl- conductance [86],
strengthening the hypothesis that NAM may positively affect CFTR activity, pointing to
NAM as a putative multitarget compound able to act on different pathological aspects of
the cystic fibrosis disease (i.e., reducing oxidation, inflammation and CFTR conductance).

Here, by a dedicated pipeline, a drug repositioning study supported by molecular
docking and dynamics predicted NAM to bind to F508del-CFTR into the lumacaftor binding
pocked DP1 located in the NBD1 domain and partially interfaced with the ICL4 domain, a
dynamic interface crucial for CFTR gating [54]. Interestingly, NAM created a hydrophobic
interaction with W496 and L1065. W496 is a residue which is part of the hydrophobic
pattern altered by the deletion of F508. In wild-type CFTR, W496 forms a hydrophobic
cluster with F508 itself, F1068, and, partially, with F1074 [51]. Moreover, in full agreement
with the recently published paper by Prins et al. [54], NAM also interacts with L1065,
a revertant residue able to partially rescue F508 deletion. Furthermore, the binding of
NAM to R1070 could have biological importance. In literature it is reported how R1070W
mutation acts by restoring interactions at the ICL4/NBD1 interface and thus reinstates the
protein functionality compromised by F508 deletion [87]. In the same way, NAM bound to
R1070 could partially mimic F508, helping the F508del-CFTR rescue.

In conclusion, the binding of NAM in the NBD1:ICL4 interface and its interaction with
L1065, R1070 and W496 allow us to hypothesize a synergic effect between lumacaftor and
NAM in F508del-CFTR rescue.

Surface plasmon resonance binding analysis confirmed experimentally that NAM ef-
fectively binds to F508del-CFTR with an affinity that is even higher than that of lumacaftor
but cell-based assays demonstrated it does not rescue CFTR function when assayed alone
in those same experimental conditions in which lumacaftor results effective. Instead, a
preliminary evaluation of the effects of NAM/lumacaftor co-treatment on immortalized
bronchial cells demonstrated a modest improvement in mutant CFTR rescue. The dissoci-
ation between CFTR-binding and rescuing activity of NAM could be caused by the fact
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that, when alone, NAM binds to the ICL2:NBD2 interface which, to date, is not known
to be implicated in the F508del-CFTR rescue. At variance, when NAM is administered in
combination with lumacaftor, the binding of the latter could contribute to the subsequent
binding of NAM to the DP1 sub-region at the NBD1:ICL4 interface, synergizing with
lumacaftor for the F508del-CFTR rescue. Furthermore, the fact that NAM is a very small
molecule (MW equal to 122 Da) could account for its capacity to be accommodated in the
DP1 sub-region without competing with lumacaftor, but rather synergizing in correcting
the F508del-CFTR folding defect.

When administered in combination with lumacaftor, NAM increases the rescuing
activity of lumacaftor in a bell-shaped way. Amazingly, a similar dose-response is also
displayed by digitoxigenin when administered in combination with lumacaftor, a behavior
that has been tentatively explained with a toxic effect exerted by the higher doses of
digitoxigenin [83]. However, NAM has been demonstrated to decrease cell viability in
culture only at 5 mM [88], a dose that is 50 times higher than those used in our experiments.
On the other hand, genistein has also been demonstrated to affect CFTR activity in a bell-
shaped way, possibly due to its interaction at two binding sites of the mutated protein:
a high affinity site that decreases the closing rate and a low affinity site that reduces the
opening rate [89]. It is thus tentative to hypothesize that, at lower doses, NAM adopts the
high affinity binding mode here described that leads to the synergism with lumacaftor in
rescuing CFTR activity while, at higher doses, low affinity aspecific binding(s) could occur
that counteract the rescuing effect. Further investigation is warranted, although they are
beyond the scope of the present work.

The combination of drugs is currently an almost mandatory approach to increasing
the therapeutic benefits of the treatment of cystic fibrosis [11]. Among drug combinations
already approved for clinical use, Orkambi and Symdeko contain correctors and potentia-
tors that act by distinct mechanisms of action in turn mediated by a direct binding of the
drugs to different regions of the mutated protein. [30,90]. Furthermore, the combination
of three modulators (Trikafta) show a synergic effect that is achieved, once again, by the
binding of the drugs to different CFTR regions [91]. Finally, the CFTR-rescuing activity of
lumacaftor is increased when it is used in combination with digitoxigenin [83] and with
C407, another corrector that binds the mutated CFTR in the same region here identified for
NAM [14]. Interestingly, two of the three residues interacting with NAM (W496 of NBD1
and R1070 of ICL4) were found to also interact with C407 [14].

In addition to these combinations, our data suggest an alternative approach consisting
of structural modifications of known CFTR-rescuing molecules (such as lumacaftor) includ-
ing the moiety corresponding to a small molecule (such as NAM) that, even if devoid of
intrinsic CFTR-rescuing activity, could stabilize the whole binding to the mutated protein,
increasing the global CFTR-rescuing effect.

4. Materials and Methods
4.1. Drug Repositioning Pipeline

The druggable pocket of lumacaftor (DP1), obtained from the F508del-CFTR-lumacaftor
complex [30], was already used by us to perform drug repositioning by docking analysis
(see Section 4.3) using the AIFA ligand dataset (see Section 4.2). Here, a new drug reposi-
tioning procedure was applied scouting small molecules able to induce DP1 fitting upon
binding in combination with lumacaftor in the same pocket by further re-examining the
previous drug repositioning results. Results were evaluated as follows: the best pose of
each drug was selected and further filtered based on its molecular weight (<500 Da), bind-
ing in DP1 sub-regions, and pharmacological effects. Ultimately, nicotinamide (NAM) was
found as a hit. Subsequently, the F508del-CFTR-lumacaftor-NAM complex stability was
evaluated by 50 ns of molecular dynamic simulations (MDs) using the Amber18 package
(see Section 4.4). Two series of MDs were carried out: firstly, three MDs replicas were
performed using the complex between the selected docking pose of NAM inside the DP1
sub-region of the apo F508del-CFTR conformation to evaluate the binding pose of NAM
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inside the DP1 sub-region of the apo F508del-CFTR. Relevant to this point, data concerning
the binding of lumacaftor to the apo F508del-CFTR has already been published [30]. Then,
three MDs replicas of the selected NAM docking pose in complex with the representative
conformation of the F508del-CFTR-lumacaftor complex [30] were performed to assess the
ability of the two drugs to combine in the DP1. MDs were eventually followed by surface
plasmon resonance analyses (see Section 4.7) to experimentally validate the computational
findings.

4.2. AIFA Ligand Dataset

The AIFA dataset, already described [25], was used to perform drug repositioning. It
is a manually curated dataset for computational studies comprehensive of 846 approved
drugs. All 3D conformations of each drug, keeping into account one or more chiral center,
were drawn at physiological pH 7.4.

4.3. Molecular Docking Analysis

The eighteen F508del-CFTR conformations (17 for the apo F508del-CFTR and 1 for
F508del-CFTR in complex with lumacaftor) collected from previous MDs studies [30] were
used to perform drug repositioning on the DP1 [25] by Autodock Vina [92]. Hydrogens
and Gasteiger charges [93] were added to F508del-CFTR conformations and pdbqt format
files were generated as input for Autodock Vina. For each molecule in the 3D conformer of
the AIFA dataset, Gasteiger charges were added, and the structures were converted into
pdbqt format for use in docking calculations with Vina.

Semi-flexible docking was used to allow the ligands to sample various conformations
during a semi-flexible docking stage, whereas the protein receptor was kept rigid. Default
parameters were applied except for exhaustiveness, which was set to 24. The receptor-
docking site was within the DP1 pocket, with the grid boxes centered on its geometric
center. The docking results were filtered based on their binding into the druggable DP1
sub-regions, ranked based on binding energy value and MW and then analyzed.

4.4. Molecular Dynamic Simulations

MDs were performed using AMBER-18 [94] with the ff14SB force field for the pro-
tein [95] and lipid14 for the DOPC lipid bilayer [96]. The complexes were solvated with the
TIP3P water model and neutralized by the addition of counter ions. Following the parame-
terization used for the simulations: (1) Thirteen minimizations for a total of 55,000 steps
of steepest descent minimization and 55,000 steps of conjugate gradient, with decreasing
restraints on the whole system and non-bonded cut-off set at 8 Å. The reaching of the
system energy plateau was confirmed; (2) heating at constant volume (NVT), increasing the
temperature from 0 K to 300 K as follows: 0–100 K in 50 ps then further 50 ps at constant
temperature 100 K, using 1 kcal/mol restraint for protein (and lumacaftor when present)
and 4 kcal/mol for NAM in both steps; 100–300 K in 75 ps, then further 25 ps at constant
temperature 300 K, decreasing the restraint on NAM to 2 kcal/mol. The reaching of the
desired temperature was confirmed. From the initial step of the heating, each indepen-
dent simulation was carried out using different initial velocities; (3) 4 ns of equilibration
at constant pressure (NPT) at 300 K. Protein and ligand(s) were either restrained with 1
kcal/mol; (4) 50 ns MDs production; or without any restraint. All of the trajectory analyses
were carried out using AmberTools (cpptraj), evaluating the binding pose of the ligand and
the stability of the protein.

4.5. Data Curation

The druggable pocket used in this study was obtained from the F508del-CFTR-
lumacaftor complex published by us in [30], the AIFA ligand dataset used for the drug
repositioning was created in house. Molecular docking and molecular dynamic simula-
tions were performed with Autodock Vina [https://vina.scripps.edu/] and the Amber18
package (https://ambermd.org) available under license.

https://vina.scripps.edu/
https://ambermd.org
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4.6. Reagents

His-tagged human intact F508del-CFTR protein was purified as described [97,98].
Lipids [synthetic phospholipid blend (Dioleoyl) DOPC:DOPS [(7:3 w/w)] were from
Avanti Polar Lipids, Alabaster, AL. CHAPS and cholesteryl hemisuccinate (CHS) Tris
salt was from Sigma-Aldrich, St Louis, MO, USA. Carboxy-methyl dextran CM5 sensor
chip, anti-His antibody, 1-ethyl-3-(3-diaminopropyl)-carbodiimide hydro-chloride and N-
hydroxysuccinimide (NHS) were from GE-Healthcare, Milwaukee, WI, USA. Lumacaftor
was from Selleck Chemicals, Houston TX, USA. NAM was from TargetMol, Wellesley Hills,
MA, USA.

4.7. Surface Plasmon Resonance

A BIAcore X-100 instrument (GE-Healthcare) was used. The biosensor containing
F508del-CFTR in a membrane-like lipid environment was prepared as described [30].
A sensor chip coated with anti-His antibody alone was used for blank subtraction and
hence the determination of a specific binding to F508del-CFTR to evaluate the affinity
of its binding. NAM was injected over the sensor chip at increasing concentration in
PBS, 0.05% surfactant P20 and 5% DMSO, pH 7.4 by adopting the single-cycle model [99].
Dissociation constant (Kd) values were calculated by steady-state analyses performed
by fitting the proper form of Scatchard’s equation for the plot of the bound resonance
units (RU) at equilibrium versus the compound concentration in solution by means of
the BIAEVALUATION software embedded in the BIAcore X-100 instrument. Lumacaftor
was used as positive control. For competition assays, Lumacaftor (75 µM) and increasing
concentrations of NAM were injected onto the F508del-CFTR-biosensor and the effect of
NAM on the binding of Lumacaftor to the immobilized protein was evaluated.

4.8. YFP-Based Assay for CFTR Activity

The microfluorimetric assay based on the HS-YFP that measures CFTR-mediated
iodide/chloride transport was already described [100–103]. In brief, cells co-expressing
HS-YFP and F508del-CFTR were incubated for 20 min in PBS containing forskolin (20 µM)
and VX-770 (1 µM) to activate CFTR and then transferred to a microplate reader (FluoStar
Galaxy or Fluostar Optima; BMG Labtech, Offenburg, Germany) equipped with YFP filters
(Chroma Technology). HS-YFP fluorescence was registered for 14 s (2 s before and 12 s after
the addition of an iodide-substituted PBS; Cl- replaced by I-; final I- concentration 100 mM).
The iodide influx rate was determined by fitting the final 11 s of the data for each well
(after normalization to the initial background-subtracted fluorescence) with an exponential
function to extrapolate the initial slope (dF/dt).
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