
Battalapalli et al. BMC Medical Imaging           (2022) 22:89  
https://doi.org/10.1186/s12880-022-00812-7

RESEARCH

An optimal brain tumor segmentation 
algorithm for clinical MRI dataset with low 
resolution and non-contiguous slices
Dheerendranath Battalapalli1, B. V. V. S. N. Prabhakar Rao1, P. Yogeeswari2, C. Kesavadas3 and 
Venkateswaran Rajagopalan1* 

Abstract 

Background: Segmenting brain tumor and its constituent regions from magnetic resonance images (MRI) is impor-
tant for planning diagnosis and treatment. In clinical routine often an experienced radiologist delineates the tumor 
regions using multimodal MRI. But this manual segmentation is prone to poor reproducibility and is time consum-
ing. Also, routine clinical scans are usually of low resolution. To overcome these limitations an automated and precise 
segmentation algorithm based on computer vision is needed.

Methods: We investigated the performance of three widely used segmentation methods namely region growing, 
fuzzy C means and deep neural networks (deepmedic). We evaluated these algorithms on the BRATS 2018 dataset by 
choosing randomly 48 patients data (high grade, n = 24 and low grade, n = 24) and on our routine clinical MRI brain 
tumor dataset (high grade, n = 15 and low grade, n = 28). We measured their performance using dice similarity coef-
ficient, Hausdorff distance and volume measures.

Results: Region growing method performed very poorly when compared to fuzzy C means (fcm) and deepmedic 
network. Dice similarity coefficient scores for FCM and deepmedic algorithms were close to each other for BRATS and 
clinical dataset. The accuracy was below 70% for both these methods in general.

Conclusion: Even though the deepmedic network showed very high accuracy in BRATS challenge for brain tumor 
segmentation, it has to be custom trained for the low resolution routine clinical scans. It also requires large training 
data to be used as a stand-alone algorithm for clinical applications. Nevertheless deepmedic may be a better algo-
rithm for brain tumor segmentation when compared to region growing or FCM.
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Introduction
According to the World health organization (WHO) 
report nearly 0.3 million new brain tumor cases were 
diagnosed in 2018 across different age groups from 

preadolescence to adult [1], 2]. In general, brain tumors 
can be malignant (with cancerous symptoms) or benign 
(no cancerous symptoms) and. are distinguished by cer-
tain characteristics such as tumor growth rate, growth 
pattern, etc. [3], 4].

Glioma is the most common form of primary brain 
tumor with statistics [5], 6] showing an increase in 
glioma cases from 1973 to 2014. The brain tumors are 
comprehensively classified and graded using the diag-
nostic lexicon published by the WHO [6]. Gliomas are 
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typically categorized into: low-grade glioma (LGG) and 
high-grade glioma (HGG). LGG are primarily considered 
as benign tumors with slow growth rate whereas, HGG, 
are cancerous tumors with rapid progression in the brain 
gradually leading to morbidity and mortality. Among the 
HGG tumors, glioblastomas are the most common type 
which affects nearly 55.6% of the people from all the age 
groups with the lowest prognosis rate and least survival 
rate [7]. According to the recent statistics [8] the chances 
of survival in HGG patients aged between 20–44  years 
and 55–65 years is 22% and 6%.

The current clinical standard procedure to establish 
diagnosis and decide therapeutic choices for brain tumor 
is biopsy [7], 9, 10]. Biopsy is an invasive procedure with 
potential complications like hematoma [11]. Therefore, a 
non-invasive neuroimaging-based radiological biomarker 
to delineate LGG and HGG tumors can immensely 
reduce cost, time and potential complications of surgery. 
The first step towards identifying neuroimaging-based 
biomarker requires segmentation of the brain tumor and 
its components from the surrounding healthy tissue. In 
addition to tumor segmentation delineating the differ-
ent components of the tumor namely necrotic region, 
active region and edema surrounding the tumor is of 
vital importance. It provides crucial information about 
the nature of disease progression, treatment planning 
and the patient’s response to a therapeutic paradigm [12]. 
Manual brain tumor segmentation is done by an experi-
enced radiologist using radiographic images routinely. 
This is prone to operator bias, has poor reproducibil-
ity [13] and is very time consuming; therefore, an auto-
mated reproducible segmentation method/algorithm is 
required. However, due to the heterogeneous nature of 
the tumor shape, size and frequency of its occurrence in 
different brain anatomical regions, automatic tumor seg-
mentation still remains an open-ended challenge despite 
the continuous rigorous research in this field for more 
than two decades [14], 8]. Among the different neuroim-
aging modalities such as computed tomography, positron 
emission tomography and magnetic resonance imaging 
(MRI), MRI is the commonly used neuroimaging modal-
ity for diagnosis and treatment of brain tumors. This is 
due to the fact that MRI has high contrast to noise ratio, 
does not involve any ionizing radiation and can provide 
multi-modal 3D image sequences with versatile tissue 
contrast for better visualization. Among different MR 
sequences used in radiological diagnosis of brain tumor 
the most common ones include T1-weighted (T1-w), 
contrast (Gadolinium) enhanced T1-weighted (T1-Gd), 
T2-weighted (T2-w) and fluid attenuation by inversion 
recovery (FLAIR) sequences [15–17]. Nevertheless, the 
above mentioned qualitative MR sequences fails to dis-
tinguish (a) tumor recurrence from old tumors [7], (b) 

tumors from non-tumoral lesions such as ischemia, and 
(c) between different tumor grades [12]. Hence, an auto-
matic brain tumor segmentation method is required to 
separate the tumor and its components (edema, necrotic 
region and active region) from its surrounding healthy 
tissue.

Active research in brain tumor segmentation field has 
led to a plethora of methods for brain tumor segmenta-
tion ranging from simple image thresholding to the lat-
est deep neural networks [18]. Different brain tumor 
segmentation algorithms proposed using MRI, have 
their own limitations for e.g., variation in the tumor seg-
mentation accuracy, scanner type, etc. which makes it 
difficult to find a stand-alone algorithm for the tumor 
segmentation. Our previous algorithm [27] based on 
region growing approach using brain symmetry to seg-
ment the brain tumor works well on high resolution 3D 
brain tumor images from BRATS dataset, but gave poor 
accuracy when brain tumor is located asymmetrically 
in the brain hemispheres and for clinical dataset which 
are usually 2D acquisitions with non-contiguous image 
slices. The tumor segmentation methods were classified 
hierarchically based on its complexity [19] and the region 
growing method ranks low. Fuzzy-C-means (FCM) clus-
tering algorithm which occupies middle position in the 
hierarchy has shown promising results in segmenting 
asymmetrical brain tumors [20] for which region grow-
ing algorithm failed. However, the conventional FCM is 
prone to give incongruous segmentation when MRI has 
ringing artefacts, noise and intensity inhomogeneity 
thereby, misclassifying the tumors. Therefore, the over-
all performance of FCM is not on par with the current 
advanced neural networks based algorithms [21]. Neu-
ral network algorithms especially deep neural networks 
(DNN) have produced robust, highly accurate segmen-
tation results in different medical imaging applications 
[22]. Therefore, there is a great interest in using DNN for, 
tumor classification, and for patient’s survival rate pre-
diction [23].

DNN based tumor segmentation research has used 
BRATS MR image database for training and testing the 
performance of their network [18]. Although these meth-
ods were successful in segmenting tumors, their accuracy 
varies [24]. Moreover, since these algorithms were devel-
oped based on BRATS database their performance on 
routine clinical MRI data (which may have low resolution 
and non-contiguous slices) is not known. Since the rou-
tine clinical MR image acquisition protocol varies from 
site to site they differ from BRATS database for e.g. image 
resolution, inter slice gaps, etc.). Hence, in this study we 
aimed compare and contrast different brain tumor seg-
mentation algorithms (from low to high end in the hier-
archy) i.e. the region growing, FCM and DNN using our 
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clinical dataset as well as BRATS dataset. By doing this 
we aimed to identify a robust automated brain tumor 
segmentation algorithm that suits best for the clinical 
data like ours.

Methods
Data acquisition
For this study 15 HGG and 28 LGG patients data were 
acquired at Sree Chitra Tirunal Institute of Medical Sci-
ence and Technology hospital (SCTIMST) (Thiruvanan-
thapuram, India). Institutional Ethics committee (IEC 
Regn No. ECR/189/Inst/KL/2013/RR-16) at Sree Chitra 
Tirunal Institute of Medical Science and Technology, 
Thiruvananthapuram, India approved this study waiving 
patient informed consent as this is a retrospective study. 
The approval number is IEC/1177. All procedures were 
performed in accordance with relevant guidelines.

From the BRATS 2018 dataset [18], 25, 26] we choose 
randomly 48 patients data (HGG, n = 24 and LGG, 
n = 24). This include T1w-gadolinium contrast enhanced 
image and FLAIR image sequences of each patient. 3D 
T1w-gadolinium contrast enhanced image and FLAIR 
images have an in plane resolution of 1 × 1  mm2, slice 
thickness = 1  mm, and the image matrix dimension of 
512 × 464 × 160.

Imaging protocol our clinical data
In SCTIMST patients were scanned using 1.5T Sie-
mens MRI scanner (Magnetom Avanto, Erlangen, Ger-
many). The MR sequences include: (1) 2D T2-w images 
acquired with repetition time (TR) = 5860  ms, time of 
echo (TE) = 110  ms; (2) FLAIR images were acquired 
with repetition time (TR) = 9000  ms, inversion time 
(TI) = 2500  ms, time of echo (TE) = 89  ms; (3) 2D T1w 
images were acquired with repetition time (TR) = 468 ms, 
time of echo (TE) = 11 ms and (4) 3D gradient echo was 
used to acquire T1w-gadolinum contrast enhanced 
images whose imaging parameters include repetition 
time (TR) = 9 ms, time of echo (TE) = 3.34 ms. The spa-
tial dimensions of 2D-T2-w, FLAIR, T1-w and T1w-gad-
olinum contrast enhanced images include: (a) for T2-w 
and FLAIR images in plane resolution = 512 × 448, slice 
thickness = 5 mm, inter slice gap = 6.5 mm, for T1-w, in 
plane resolution = 320 × 270, slice thickness = 5  mm, 
inter slice gap = 6.5  mm and for T1-contrast enhanced 
images in plane resolution = 512 × 464, slice thick-
ness = 0.9 mm, no slice gap.

Data processing
Image pre-processing steps include (a) brain extraction 
using FSL BET tool (version 6.0.4). (b) Brain extracted 
images were then corrected for intensity inhomogeneity 
using FAST tool in FSL (version: v6.0, https:// fsl. fmrib. 

ox. ac. uk/). For the BRATS 2018 brain tumor dataset we 
downloaded both the raw MR images and the segmented 
ground truth tumor images. The tumor regions from 
our clinical MRI images were segmented using ITK snap 
tool [39]. It was done under the supervision of an expe-
rienced radiologist (one of the co-authors CK). The pre-
processed images were then given as input to the three 
different brain tumor segmentation algorithms namely a) 
region growing, (b) fuzzy C-means and (c) deep convo-
lutional neural network. The performance of these three 
algorithms were evaluated using BRATS 2018 data and 
on our clinical data.

Region growing method
The region growing (RG) algorithm developed in our pre-
vious study [27] was used for brain tumor segmentation. 
The algorithm was based on the following assumptions: 
(1) tumor is present either in the left hemisphere or in 
right hemisphere but not in both (2) left and right brain 
hemispheres exhibits symmetry. The algorithm consists 
of the following image processing steps (a) skull tripping 
and bias correction, (b) geometrical transformation, (c) 
separation of left and right brain hemispheres and (d) 
contrast stretching and region growing operation to seg-
ment the brain tumor. Steps (b)–(d) were implemented 
using MATLAB (2018b version).The pipeline comprises 
of: (a) bias corrected 3D MRI images were read into 
MATLAB using ‘niftiread’ command (b) geometrical 
transformation: input images were aligned vertically in 
such a way that the two hemispheres can be separated 
equally into two halves (c) the geometrically transformed 
MRI slices were separated into left and right hemisphere 
image volumes by subtracting each voxel in the right and 
left hemisphere images with the mirrored left and right 
hemisphere images to locate the tumor region. (d) After 
locating the tumor in either of the hemispheres, con-
trast stretching operation was performed to enhance the 
voxel intensity levels in the tumor region and to eliminate 
the surrounding unwanted voxels from the image slices. 
(e) subsequently the custom developed region growing 
algorithm was applied on the images containing tumor 
to group all the connected voxels with similar intensity 
levels to extract the whole tumor region (edema + core 
tumor region). The performance of this region growing 
algorithm was evaluated using the BRATS 2018 dataset 
and our clinical dataset. The efficacy of this segmenta-
tion algorithm was assessed by comparing the segmented 
output from this algorithm with the ground truth. Dice 
similarity coefficient values (DSC), volume of the tumor 
and its components and Hausdorff measurement were 
used as performance metrics. DSC is widely used in 
the literature [28] to analyse the accuracy of algorithms 
used in brain tumor segmentation. Hausdorff distance 
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measurement was used to compare boundary voxels of 
the segmented regions between the ground truth and the 
results obtained from brain tumor segmentation algo-
rithms [29], 30]. We also used the volume of the tumor 
and its components measure as performance metric as it 
is very often used clinically in the diagnosis and progno-
sis of brain tumors.

Fuzzy C‑means clustering (FCM) method
The second algorithm that we used to assess its perfor-
mance on our clinical dataset was fuzzy C-means cluster-
ing method (FCM) algorithm. FCM is an unsupervised 
statistical classification method which groups the voxels 
in a given image into different clusters. This algorithm 
is based on the idea that voxels within a cluster exhibit 
more similarity when compared the voxels between 
the clusters. FCM is a soft clustering approach unlike 
K-means where every image voxel is assigned a certain 
degree of membership value to the clusters centre points. 
The membership value provides information to what the 
extent the image voxels belong to an individual cluster 
centre. FCM is an iterative algorithm which continuously 
updates the cluster centre and membership value based 
on the cost function given in Eq. (1):

where wm
ij

 wm
ij  variable represents the membership of xj xj 

data point for the ith cluster, ci is the centroid point value 
of a cluster centre and the parameter m decides the fuzzi-
ness of the partition. Image voxels are segregated into dif-
ferent clusters based on the similarities in their intensity 
values. The cluster centroids and the membership value 
of data points were updated iteratively using the Eqs.  (2 
and 3) respectively.

Although the conventional FCM algorithm outper-
forms many traditional techniques (for example local 
thresholding, region growing, KNN and others), we 
observed that the results were suboptimal when the 
input images were corrupted by noise and suffers from 
intensity inhomogeneity effects [19], 31]. In this study 
we have adopted the FCM code developed by Guanglei 
Xiong (https:// in. mathw orks. com/ matla bcent ral/ filee 
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contr iblnk). It was modified to process the nifti images 
and segment the brain tumor regions from BRATS 2018 
dataset and our clinical dataset. Briefly the algorithm 
comprises of the following steps in MATLAB 2018: (a) 
the bias corrected and brain extracted images were read 
into MATLAB using ‘niftiread’ command. (b) The images 
were then rotated to vertical axis. (c) to circumvent the 
inclusion of unwanted voxels in the segmented tumor an 
inbuilt MATLAB function ‘bwareaopen’ was used to seg-
ment the brain tumor regions. (d) Finally, the segmented 
tumor regions were compared with the ground truth data 
to get the DSC values, volume measures and the Haus-
dorff distance measurement values.

Deep convolutional neural network
The third algorithm whose performance was evaluated 
using our clinical dataset was the state-of-art multiscale 
3D CNN deep neural network with a fully connected 
conditional random (CRF) field developed by Kamnitsas 
et al. [32]. Several 2D CNN models were proposed earlier 
for different biomedical image segmentation applications 
[33–36]. However, processing a 3D MRI volume slice by 
slice using these algorithms is not optimal. Kamnitsas 
et al.’s algorithm was designed to process 3D volumetric 
data using parallel 3D convolutional pathways along with 
a post-processing CRF step to refine the final segmented 
output image. In brief, the algorithm comprises of two-
fold pathway architecture with 11 layers in each path. 
Although the parallel pathways share similar number of 
deep layers, their functionalities differ with each path-
way performing a specific task. The second pathway was 
designed to capture global spatial information from the 
down sampled images whereas, the first one processes 
local information from the 3D patches of multimodal 
MRI. In both the parallel pathways the network uses 
small  33 kernels to enable faster convolution with the 
3D input patches and to minimize the number of train-
able parameters. Once the soft segmented feature maps 
were extracted from the convolutional layers, they were 
fed into fully connected CRF to remove the false positive 
predictions and classify the tumor into edema, active, 
necrotic and whole tumor regions respectively.

We have taken the Python code from Kamnitsas K 
GitHub open source repository and studied its perfor-
mance on our clinical dataset. Apparently, the deepmedic 
code which is available online cannot be applied directly 
on our clinical dataset because it was developed to pro-
cess the 3D MRI images from BRATS dataset. In addi-
tion, the deepmedic network trained with the BRATS 
dataset can only be tested on the images with similar 
parameters as that of the training dataset (i.e. scanner 
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type, image dimensions, the image acquisition protocol 
used and others). Therefore, it was modified (the param-
eter settings) to suit our clinical dataset (which has 2D 
low resolution FLAIR images and 3D high resolution 
T1-Gd images) for brain tumor segmentation. The steps 
include: (a) skull stripped images as input. (b) In order to 
train and test the deepmedic network, all input images 
should have same matrix dimension. An affine trans-
formation (12 parameter model) was applied to the 3D 
T1w-Gd image to down sample and to match its dimen-
sions (the size of 3D T1w-gadolinium contrast enhanced 
image (image dimension: 512 × 464 × 160) to the refer-
ence image i.e. the 2D FLAIR image sequence (image 
dimension: 512 × 448 × 20). FLIRT linear registration 
tool from FSL was used for the affine transformation. (d) 
The training dataset was fed into the deepmedic pipeline 
and specified the configuration file. (e) The size of image 
dimension was altered from the default 37 × 37 × 37 to 
18 × 18 × 18 in the model configuration file so that the 
specified dimensions fairly match with the input image 
size. (f ) Then the size of the inference image patch was 
also customized to 19 × 19 × 19. In addition to these 
changes, we have varied the number of epochs and sub-
epochs from the default 35 to 70 and 20 to 40 respec-
tively. We found that the mean accuracy rate, specificity 
and sensitivity values reached an optimum at 35th epoch 
and did not show much variation in values when epoch 
number was increased beyond 35. (g) Similarly for our 
clinical dataset all the above network parameter steps 
were customized.

We trained and tested the deepmedic network with 
BRATS 2018 dataset and clinical dataset separately. From 
the BRATS 2018 dataset, 48 randomly chosen subjects 
(both HGG n = 24 and LGG n = 24 patients) T1-Gd and 
FLAIR image sequences were used to train the network. 
We choose 48 subjects from BRATS dataset to closely 
resemble the sample size of our clinical dataset and we 
considered equal sample sizes from LGG (n = 24) and 
HGG (n = 24). In the testing phase, a different set of 10 
LGG and 10 HGG patients’ was used to assess trained 
network’s performance. For the clinical dataset we used 
10 HGG and 20 LGG patients’ data to train the network. 
The trained network’s performance was tested using 
8 LGG and 5 HGG cases from our clinical data. DSC 
values, volume measure and Hausdorff distance meas-
urement was used to analyse the performance of the 
deepmedic network by comparing it with FCM and RG 
algorithms on the same dataset.

Results
Performance of the tumor segmentation algorithms 
evaluated using DSC measure
Deepmedic algorithm for tumor segmentation
The average performance of deepmedic network on 
training data (HGG, n = 24 and LGG, n = 24 patients) 
from BRATS 2018 database is given in Table 1 below.

Performance of tumor segmentation algorithms on BRATS 
2018 LGG and HGG test dataset
We tested the above trained deepmedic network by 
using randomly sampled 10 LGG and 10 HGG cases 
from the BRATS 2018 database. The performance of 
all the three different brain tumor segmentation algo-
rithms considered in this study was evaluated with 
this same test data by considering the different tumor 
components individually. The DSC scores are given in 
Table  2 below. It can be seen from this table that the 
DSC score of deepmedic algorithm has dropped signifi-
cantly to a low value when compared to the DSC scores 
on the training data as given in Table 1.

Performance of the FCM and region growing algo-
rithms were similar to that of the deepmedic algorithm.

Deepmedic network trained using our clinical MRI data
Initially we provided few test sample MRI data from 
our clinical dataset to the deepmedic network trained 
using BRATS 2018 dataset for tumor segmentation. 
But, due to the differences in image matrix dimen-
sions, anisotropic voxels as opposed to isotropic and 
high resolution images considered in the trained deep-
medic network, it could not process the images (was 
not running giving error). Therefore, we up-sampled 
the clinical images to match the image dimensions with 
BRATS dataset using FSL software and tested the resa-
mpled images with the network. The results were very 
poor and the dice score was less than 0.35. Therefore, 
we trained the deepmedic network using samples of 
our clinical dataset. The performance of the deepmedic 
network evaluated using DSC score on the training 
dataset is given in Table 3 below.

Table 1 Show training metric average DSC score for all the 48 
BRATS subjects for different tumor components

Method/algorithm Entire tumor + edema DSC
Edema

Necrotic

Deepmedic 0.975 0.921 0.911
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Performance of the tumor segmentation algorithms on our 
clinical test LGG and HGG dataset
Deepmedic network which was trained using our clini-
cal dataset is tested using a different set of randomly 
chosen LGG and HGG testing data from our clinical 
database. To evaluate the performance of the deep-
medic network we used 8 LGG and 5 HGG patients. 
For comparison purposes we have also segmented the 
tumor in these 13 patients (8 LGG and 5 HGG) using 
RG and FCM algorithms. These results are given in 

Table 4 below. Figures 1 and 2 shows the typical LGG 
and HGG tumor segmentation results from all the 
three algorithms along with the ground truth seg-
mented images.

The performance of the deepmedic algorithm was 
comparatively better than the FCM and the RG algo-
rithms for all the tumor components. In LGG tumor 
patients deepmedic showed superior performance 
especially for the entire tumor + edema component 
when compared to HGG tumor patients.

Performance of the tumor segmentation algorithms 
evaluated using Hausdorff measurement
In addition to the DSC score Hausdorff distance meas-
ure was also measured to evaluate the performance of the 
segmentation algorithms in accurately detecting/identi-
fying the boundary of the tumor and its components.

Table 2 Average DSC score on a different LGG and HGG testing dataset from BRATS 2018 database

METHOD DSC (LGG)
Tumor + edema

Edema Necrotic DSC (HGG)
Tumor + edema

Edema Necrotic

Deepmedic 0.59 0.46 0.36 0.63 0.49 0.39

FCM 0.58 0.47 0.39 0.67 0.55 0.41

Region growing 0.54 – – 0.63 – –

Table 3 Show training metric average DSC score from 
deepmedic algorithm for our clinical dataset

Method Entire tumor + edema DSC
Edema

Necrotic

Deepmedic 0.978 0.941 0.933

Table 4 Average DSC scores on our clinical testing dataset

METHOD DSC (LGG)
Tumor + edema

Edema Necrotic DSC (HGG)
Tumor + edema

Edema Necrotic

Deepmedic 0.80 0.67 0.45 0.66 0.54 0.40

FCM 0.55 0.46 0.38 0.634 0.56 0.39

Region growing 0.46 – – 0.58 – –

Fig. 1 Results from the three algorithms applied on a typical LGG patient from our clinical dataset. a FLAIR image sequence, b ground truth image, 
c segmented tumor region from deepmedic algorithm, d segmented tumor region from FCM, e segmented tumor region from region growing 
algorithm
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Fig. 2 The three algorithms were applied on a typical patient from our clinical dataset. a FLAIR image sequence, b segmented ground truth of 
edema region using ITK snap tool, c segmented ground truth of necrotic region using ITK snap tool, d segmented edema region using deepmedic 
algorithm, e segmented necrotic region using deepmedic algorithm, f segmented edema region using FCM, g segmented necrotic region using 
FCM, h In the image we tried to use the half brain symmetrical property to segment the brain tumor region. Since, the brain tumor is spread into 
both the hemispheres our assumption in the development of region growing algorithm is violated. So, region growing algorithm fails to segment 
the tumor in such type of images

Table 5 Average Hausdorff distance values for LGG and HGG BRATS test 2018 dataset

METHOD LGG Hausdorff (voxels)
Tumor + edema

Edema Necrotic HGG Hausdorff (voxels)
Tumor + edema

Edema Necrotic

Deepmedic 13.43 20.23 22.40 11.59 14.68 12.86

FCM 27.27 25.34 32.80 18.23 20.26 25.08

Region growing 23.46 – – 21.00 – –
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Performance of the tumor segmentation algorithms 
on BRATS 2018 LGG and HGG test dataset
Hausdorff distance values are computed by measuring 
the distance between the boundary of the segmented 
tumor and its components with the ground truth data. 
Hausdorff distance will be low when there is a perfect 
match between the segmented region boundary with its 
corresponding ground truth region boundary and vice 
versa. Table 5 below gives Hausdorff distance values for 
the LGG and HGG BRATS test data.

When compared to FCM and RG approach deepmedic 
gave better results (Hausdorff values are lower) i.e. the 
tumor and its component boundaries closely matched 
with the ground truth data.

Performance of the tumor segmentation algorithms on our 
clinical test LGG and HGG dataset
Hausdorff measurement results for different tumor seg-
mentation algorithms for our clinical LGG and HGG 
data set is given in Table 6.

Similar to BRATS dataset results, deepmedic gave bet-
ter results on the clinical dataset (Hausdorff dimension 
values are lower) when compared to FCM and region 
growing approach. These results show that deepmedic 
performance is consistent across BRATS and clinical data 
set.

Performance of the tumor segmentation algorithms 
evaluated using volume measure
Tumor volume is an important measure used in clinical 
and radiological practice to understand the growth rate 
of benign and malignant tumor regions. Therefore, we 
also evaluated the performance of the three tumor seg-
mentation algorithms by measuring the volume of the 
segmented tumor and its components and comparing 
them with the ground truth data.

BRATS 2018 LGG and HGG dataset
Volume measure is basically the total number of voxels 
in a given segmented region. Volume of the segmented 
tumor and its components given by deepmedic, FCM and 

RG algorithms for LGG and HGG subjects from BRATS 
2018 dataset is given in Table 7 below along with the vol-
umes measured from ground truth data.

In general the volume of the tumor and its components 
measured from the segmentation results obtained using 
deepmedic algorithm was reduced (underestimated) 
when compared to the ground truth tumor volume and 
its components. On the other hand the volume of the 
tumor and its components from FCM algorithm was 
higher (overestimated) when compared to the ground 
truth. The volume of the tumor and its components given 
by the RG algorithm was very lower (much underesti-
mated when compared to deepmedic).

Our clinical dataset
The volume of the tumor and its components measured 
using our clinical data to understand the performance 
of the three tumor segmentation algorithms is given in 
Table 8.

Discussion
The main findings of this study are the following (1) 
results show that even the sophisticated deep neural net-
works like ‘deepmedic’ cannot be used without re- train-
ing on the ‘custom dataset’. (2) It is expected that even 
the sophisticated deep neural networks like ‘deepmedic’ 
when trained on small sample size training dataset per-
forms poorly on the ‘test dataset’. This suggests that even 
if one wants to customize an available robust neural net-
work architecture like deepmedic for their custom ‘clini-
cal dataset’ the results/performance are far from what is 
expected in the clinical domain. Deep neural networks 
require large training data in order achieve superior per-
formance (for e.g. to achieve DSC score of above 0.8). 
(3) Among the three segmentation algorithms RG per-
formed poorly, FCM showed better performance when 
compared to RG but is suboptimal when compared to the 
deep neural networks.

The primary reasons for choosing the deepmedic archi-
tecture for this study was the availability (open source) 
of its validated python code. The network has a robust 
design with two pathway architecture to handle local 
and global information for the brain tumor segmenta-
tion problem. The fully connected CRF minimizes false 

Table 6 Average Hausdorff dimension values for our clinical LGG test dataset

METHOD LGG Hausdorff (voxels)
Tumor + edema

Edema Necrotic HGG Hausdorff (voxels)
Tumor + edema

Edema Necrotic

Deepmedic 7.47 13.05 11.40 10.65 12.91 14.75

FCM 15.81 14.73 18.20 16.50 20.23 21.30

Region growing 31.33 – – 32.27 – –
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positive predictions and moreover the deepmedic net-
work was ranked 1st in BRATS 2016 challenge with the 
DSC scores of 0.901, 0.754, and 0.728 for whole tumor, 
tumor core and enhanced tumor regions respectively. 
We trained the deepmedic network using 48 subjects 
(LGG + HGG) from BRATS 2018 database and employed 
the network to segment our clinical data by up-sampling 
the clinical images (i.e. to match the image dimensions 
with BRATS dataset). The network performed poorly 
on our clinical images with a DSC score below 0.7 (usu-
ally a network’s performance is said to be good when its 
DSC score is above 0.7 [37]). Our results show that the 
network performed poorly when a different test dataset 
from the BRATS database was given for segmentation. 
Inter subject variations in DSC scores were observed in 
our data i.e. in few patients we have observed a very low 
DSC scores which in turn may affect the average DSC 
scores presented in the results section. Being a prelimi-
nary study with small sample size we did not perform any 
outlier rejection procedure while calculating the average 
values. The consistent poor performance of the network 
in both the BRATS and on our clinical test dataset indi-
cate that differences in imaging parameters between the 
BRATS dataset and our clinical dataset did not affect the 
network performance.

Comparing Tables  1 and 2, deepmedic goes from 
extremely high training metrics to low testing metrics. 
We believe that this is probably due to over-fitting of the 
model and due to the small sampled size training dataset. 
Even though the exact reason why deepmedic showed 
slightly better performance on our clinical dataset when 
compared to the high resolution BRATS test dataset is 
not clear to us at this time point. One probable reason 
is in our clinical dataset the location of the tumor in 
brain hemispheres is similar in both the test and training 
dataset which may not be the case with the BRATS data-
set (since we picked the images randomly from BRATS 
dataset).

The network also did not show any significant dif-
ference in its performance between the LGG and HGG 
tumor patients. On the other hand the network revealed 
superior performance in segmenting the same training 

dataset. The above results clearly demonstrate that DNN 
requires large training data with diversity in it. A large 
diverse training dataset will enable the network to learn 
in a robust way. This will result in superior segmenta-
tion results for the unseen/ test data. We believe that 
the results seen here with our clinical data will improve 
significantly if more number of training dataset can be 
included while training the network. We took only 48 
cases from BRATS dataset (when we trained the network 
on the BRATS dataset) in order to resemble the sample 
size of our clinical dataset (which is 43). This was done 
to understand the difference between training a network 
using high resolution isotropic images as opposed to ani-
sotropic low resolution clinical images by excluding the 
effect of sample size. However, our conclusion to use 
‘larger datasets needed for deep learning’ comes from 
the results seen on the validation dataset from both these 
networks i.e. the network trained using BRATS dataset 
and the network trained using our clinical dataset. In 
both these results validation performance decreased well 
below from what was claimed by the authors [Kamni-
stats et al. [32] when they trained the network using large 
dataset (220 patient images).

A recent study [38] which employed the latest state of 
the art ‘densenet’ type of architecture also showed DSC 
values less than 0.8 when their clinical data was given as 
input for tumor segmentation on the pre-trained net-
work using BRATS dataset. We also tried using the U-net 
architecture for tumor segmentation from the open-
source github repository (https:// github. com/ IAmSu 
yogJa dhav/ Brainy). When our clinical data was given as 
input to the pre-trained U-Net architecture, it failed to 
segment the tumor regions. The U-net instead segmented 
the non-tumorous brain region pixels as clusters. Hence, 
we could not measure the efficacy of the U-Net architec-
ture. These results clearly demonstrate/emphasize the 
need to design a robust deep neural architecture which 
can be readily applied to a clinical dataset with ease.

Lower Hausdorff measurement values obtained for the 
tumor and its components in both BRATS dataset and 
on our clinical dataset clearly indicate that deepmedic 
is able to accurately detect/segment the boundary of the 

Table 7 Volume of the segmented tumor and its components by deepmedic, FCM and region growing algorithms for LGG and HGG 
BRATS 2018 dataset

GT ground truth, RG region growing

METHOD LGG HGG

Edema  
+ tumor (GT)

Edema  
+ tumor

Edema 
(GT)

Edema Necrotic 
(GT)

Necrotic Edema  
+ tumor (GT)

Edema  
+ tumor

Edema 
(GT)

Edema Necrotic 
(GT)

Necrotic

Deep-medic 0.17 M 0.12 M 0.10 M 0.08 M 0.06 M 0.05 M 0.19 M 0.15 M 0.10 M 0.07 M 0.01 M 0.008 M

FCM 0.17 M 0.24 M 0.10 M 0.18 M 0.06 M 0.08 M 0.19 M 0.16 M 0.10 M 0.12 M 0.01 M 0.03 M

RG 0.17 M 0.11 M – – – – 0.19 M 0.12 M – – – –

https://github.com/IAmSuyogJadhav/Brainy
https://github.com/IAmSuyogJadhav/Brainy
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tumor and its components when compared to FCM and 
the RG algorithms. The results from volume measure also 
supports the view that deepmedic may be a better seg-
mentation algorithm when compared to FCM and RG 
algorithms. Both FCM and RG overestimates the volume 
of the tumor and its components whereas, deepmedic 
underestimates it. Even though underestimation of tumor 
and its components volume is unacceptable in clinical 
practice we believe that when trained using large diverse 
dataset, deepmedic may overcome this drawback. Dur-
ing the training phase of the network we also varied the 
network training parameters like the number of epochs 
to study their effect on the tumor segmentation accuracy. 
As the epoch number was reduced from the default set-
tings, a reduction in the DSC values was observed.

Even though the DSC scores of FCM and deepmedic 
algorithms were close to each other for BRATS and 
clinical dataset in this study we believe that deepmedic 
algorithm has the potential to perform better because 
in deepmedic network multimodal MR sequences were 
used to train the network which is may be more robust 
for tumor segmentation. The multimodal MR sequences 
such as FLAIR, T1-Gd and T1-w will definitely provide 
more information to achieve nearly precise segmentation 
results. In the case of FCM each slice is processed indi-
vidually unlike the deepmedic algorithm where the entire 
3D data is processed. One limitation of deepmedic over 
the FCM is the time and computing resources required 
to train the network. Since, a deep learning model trains, 
optimizes and fine-tune billions of parameters, our expe-
rience shows that it requires a high end workstation of 
at least 16  GB of RAM and a high end GPU processor 
to perform fast calculation. In this study, we trained the 
deepmedic network on a i7 processor, 8  GB RAM and 
4  GB NVIDIA GTX 1650 GPU. It took nearly 96  h to 
train the given input images.

The performance of the RG algorithm was very poor 
when compared to FCM and deepmedic in terms of 
Hausdorff measurement values and volume measures. 
The main constraint with our RG algorithm was that it 
assumes brain half symmetry and the tumor is present in 

one of the hemispheres only. Therefore, it gives superior 
performance only in cases where the tumor is present 
in one of the hemispheres but not in both. For most of 
our patients in the clinical dataset the above assumptions 
was violated as the tumor was present asymmetrically in 
both the brain hemispheres. Further, like FCM our RG 
algorithm accepts only a single modality input image 
sequence. Our previous studies [27] showed that our RG 
algorithm works well when using T2-w data set when 
compared to FLAIR images. Also, the input images to the 
RG algorithm should be in the form of individual MRI 2D 
tumor slices as opposed 3D volumetric dataset consid-
ered in the deepmedic network. In addition to the above, 
the main limitation of our RG algorithm is that it cannot 
output the segmented tumor and its components indi-
vidually like deepmedic algorithm. Comparison between 
FCM and our RG algorithm shows that FCM performs 
better than RG algorithm in detecting the boundary of 
the tumor and its components.

When considering the results of the segmented 
tumor and its components, we could see from DSC, 
Hausdorff and volume measures all the three tumor 
segmentation algorithms gave good accuracy (in terms 
of DSC, volume, Hausdorff dimension of the boundary) 
for the tumor + edema region (that is the entire tumor 
and its constituent region) when compared to either 
the edema or necrotic region considered alone. Even 
though the reason for this discrepancy in the perfor-
mance of the algorithms is unclear to us at the moment, 
a robust tumor segmentation algorithm should not 
only identify/segment the entire tumor and its compo-
nents accurately but also the individual components of 
the tumor i.e. necrotic region, active tumor region and 
edema region.

Conclusion
In this study we aimed to identify a robust segmenta-
tion algorithm for clinical dataset with low resolution 
and non-contiguous slices. We compared segmentation 
algorithms at different levels of the hierarchy. This was 

Table 8 Volume of the segmented tumor and its components by deepmedic, FCM and region growing algorithms for the clinical 
dataset

METHOD LGG HGG

Edema  
+ tumor (GT)

Edema  
+ tumor

Edema (GT) Edema Necrotic 
(GT)

Necrotic Edema  
+ tumor (GT)

Edema  
+ tumor

Edema 
(GT)

Edema Necrotic 
(GT)

Necrotic

Deep-medic 0.13 M 0.14 M 0.08 M 0.08 M 0.06 M 0.08 M 0.33 M 0.28 M 0.26 M 0.21 M 0.03 M 0.02 M

FCM 0.13 M 0.16 M 0.08 M 0.13 M 0.06 M 0.03 M 0.33 M 0.25 M 0.26 M 0.2 M 0.03 M 0.06 M

RG 0.13 M 0.09 M – – – – 0.33 M 0.23 M – – – –
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done for the following reason i.e. if the segmentation 
algorithms in lower levels of hierarchy show good perfor-
mance, then computationally expensive DNN algorithms 
can be avoided for routine clinical use. DNN algorithms 
may be better suited for such kind of clinical data because 
DNN can use 3D information from 3D dataset and can 
provide individually the volumes of the segmented tumor 
and its constituents. DNN algorithms require large 
diverse training dataset and require high computational 
power. RG algorithm with brain half symmetry cannot 
be used to segment brain tumors in patients where the 
tumor is present in both the brain hemispheres asym-
metrically. FCM algorithm is robust when compared to 
RG but fails to consider multimodal input images which 
provide different tissue contrast information of the tumor 
and its constituents.
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