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The growing threat of environmental pollution to global environmental health necessitates a focus on the

search for sustainable wastewater remediation materials coupled with innovative remediation strategies.

Nano and micro zero-valent iron materials have attracted substantial researchers' attention due to their

distinct physiochemical properties. This review article delves into novel micro- and nano-zero valent iron

(ZVI) materials, analysing their synthesis methods, and exploring their multifaceted potential as

a powerful tool for environmental remediation. This analysis contributes to the ongoing search of

effective solutions for environmental remediation. Synthesis techniques are analysed based on their

efficacy, scalability, and environmental impact, providing insights into existing methodologies, current

challenges, and future directions for optimisation. Factors influencing ZVI materials' physicochemical

properties and multifunctional engineering applications, including their role in wastewater and soil

remediation, are highlighted. Environmental concerns, pros and cons, and the potential industrial

applications of these materials are also discussed, accenting the importance of understanding the

synthesis methods, materials' applications and their impacts on humans and the environment. The

review is designed to provide insights into nano-and micro-ZVI materials, and their potential engineering

applications, as well as guide researchers in the choice of ZVI materials' synthesis methods from a variety

of nanoparticle synthesis strategies fostering nexus between these methods and industrial applications.
1 Introduction

In the past two decades, signicant progress has been made in
developing efficient materials and synthesis strategies for
environmental remediations to address soil and wastewater
pollution.1–3 Nano and micro zero-valent iron (ZVI) materials
have emerged as effective materials due to their exceptional
capacity to degrade a wide range of environmental
contaminants.4–8 These novel materials are derived from their
precursor iron materials through a plethora of synthesis
strategies.9–12 Iron is a naturally occurring material that ranks as
the fourth most abundant element aer oxygen, silicon,
aluminium, and constitutes about 5% of Earth's crust by
mass.13–15 Iron is naturally found in the form of ore, a naturally
occurring mineral aggregate combined with gangues. Iron ores
enveloped vital minerals, such as magnetite Fe3O4.,13,16–20

Haematite Fe2O4,21–23 Goethite Fe2O3$H2O,19,24 Pyrrhotite
Fe(1−x)S17,19,25 Limonite 2Fe2O3$3H2O,26,27 Siderite FeCO3,28,29
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Pyrite FeS2,30,31 and Ilmenite FeTiO3 (ref. 32 and 33) with their
iron contents decreasing order from magnetite to Ilmenite.34

Iron minerals have a wide range of engineering applications
and utilized in several industries.35,36 Iron occurs in either 0, +2,
or +3 oxidation states which are more occurrent than +4, +5 and
+6 oxidations. However, signicant tendencies of reduced
oxidation (see eqn (1)) exist even at standard conditions which
is most common in the case of aqueous Fe3+ to Fe2+.

Fe / Fe2+ + 2e− (1)

Iron oxides particularly magnetite and haematites usually
release metallic irons when heated in the presence of a reducing
agent.13,18,37 However, the reconditeness of this approach lies on
the purity of the metal compounds produced as well as their
physical and chemical properties since various applications
require distinct chemical and morphological characteristics of
iron compounds. In addition to chemical reaction, magnetism
signicantly inuences the role of iron compounds in many
engineering applications like catalysis, biomedicine, and
magnetic uids. As a result, several synthesis strategies of
producing iron materials are explored. Apart from conventional
utilization of iron materials in agriculture, metal, mechanic,
and steel industries, recent technological advancement has
RSC Adv., 2024, 14, 30411–30439 | 30411
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Fig. 1 History and research advances on nano and micro ZVI and their composites.
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seen the use of iron precursors in the extraction of crucial metal
compounds which are used as catalysts for environmental
remediation14,15,38 among a plethora of other applications.23

These advancements include the fabrication of micro and nano
zerovalent iron materials (nano and micro-ZVI).39 Micro-ZVI
(micro-zero valent iron) materials were discovered to be signif-
icantly effective in groundwater remediations since 1997.40 And
have ever since attracted researchers' attention owing to their
cost effectiveness, non-toxicity,41,42 and potentials for industrial
effluents and wastewater remediation.43,44 Fig. 1 provides
research advances on nano and micro-ZVI and their
composites.

Despite the potentials of micro-ZVI materials, rapid passiv-
ation and demand for special material properties necessitated
their encapsulation with supportive materials,45–48 forming
stabilized nanocomposites with enhanced reactivity and
reduced passivation.49–53 However, chemical reactivity and
photocatalytic activity were yet hindered by limited active sites
in addition to particle agglomeration.54,55 Unlocking the full
potential of these materials, producing nanoparticles with
multiple active sites coupled with enhanced physicochemical
properties viz. strong reducing power, and diverse functional-
ities to suite demanding engineering applications, hinges on
a comprehensive understanding of their physicochemical
properties, evolving synthesis strategies, and application elds.
Although previous reviews have addressed individual
aspects,56,57 a critical and consolidated analysis of both
synthesis strategies and application landscapes remains
elusive. This review bridges this gap in the literature by
providing a concise insight into nano and micro-ZVI materials,
synthesis methods, and their extensive and developing range of
applications, including their functions in groundwater, indus-
trial wastewater, soil, sludge, and waste treatment. The review
explores the basic concepts of these synthesis methods, their
environmental impacts, inuence synthesis methods on
30412 | RSC Adv., 2024, 14, 30411–30439
properties and surface characteristics of the synthesized mate-
rials, and the existing and prospective engineering applications
of nano and micro-ZVI materials. The article is organised into
four sections. The rst section provides basic background on
ZVI materials and their iron precursors, followed by brief
overview of nano and micro-ZVI materials, factors inuencing
nano and micro-ZVI materials properties and performance,
a general overview of nanoparticle synthesis methods. Section
two provides comprehensive overview of nano and micro-ZVI
materials synthesis strategies and comparison of physico-
chemical properties and performance of materials synthe-
sized. Section three discusses existing and prospectives appli-
cations with environmental considerations. Section four
nalized with conclusions and future perspectives.
2 Nano and micro zerovalent irons
(nano and micro-ZVI)
2.1 Micro zero valent iron (micro-ZVI)

Micro zero-valent iron (mZVI) is a ne, black powder derived
from iron that exhibits a zero oxidation state, it is characterized
by high surface area,58 chemical reactivity,59,60 and employed in
various environmental and engineering applications, particu-
larly in the eld of contaminant remediation.61 ZVI materials
are favourable option for environmental remediation owing to
their unique combination of desirable properties, viz. They are
considerably non-toxic, readily available, inexpensive, and
easily produced while requiring minimal maintenance for their
chemical reductive processes.62 Their reactivity stem from their
standard redox potential (E0 = −0.44 V), rendering them effec-
tive reductants for oxidizing contaminants like Cr(VI).63,64 The
primary reaction mechanism of mZVI materials involve direct
electron transfer from mZVI to the contaminant.65 Extensive
researches established the efficacy of advanced oxidation
processes (AOPs) of ZVI in wastewater treatment.66 In these
© 2024 The Author(s). Published by the Royal Society of Chemistry
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processes, ZVI materials degrade organic contaminants into
smaller, less harmful molecules.43 Additionally, zero valent iron
Fe0-based Fenton-like reactions generate reactive oxygen
species (ROSs) capable of decomposing organic pollutants
present in wastewater.67 Moreso, under acidic conditions, in the
presence of dissolved oxygen (O2), zero-valent iron (Fe0)
produces hydrogen peroxide (H2O2), a key precursor for ROS
generation in Fenton-like systems.68 These reaction mecha-
nisms, from eqn (1), are outlined below.

Fe0 + O2 + 2H+ / Fe2+ + H2O2 (2)

Fe2+ + H2O2 / Fe3+ + cOH + OH− (3)

As shown in eqn (1) to (3), the hydrogen peroxide (H2O2)
which subsequently reacted with iron(II), was formed through
electron transfer from ZVI in the presence of oxygen. ZVI
exhibits the ability to degrade and oxidize various organic
compounds in the presence of dissolved oxygen (DO) as shown
in the reactions above. This process involves ZVI transferring
two electrons to O2, resulting in the formation of hydrogen
peroxide (H2O2). Subsequently, H2O2 undergoes chemical
reduction to produce water via another two-electron transfer
from ZVI. Interestingly, the Fenton reaction, involving the
combination of H2O2 and Fe2+ generates hydroxyl radicals (cOH)
with potent oxidizing capabilities against diverse organic
compounds, which are otherwise generated through either
photo-Fenton of iron(ii or iii) or UV irradiation.69 In addition to
Fenton reaction mechanism, ZVI core–shell model70 emerged
for contaminant removal. Vast evidences support the presence
of a core–shell structure in ZVI and several chemical reactions
occurring on its surface.70–72 While the metallic iron core serves
as the electron donor, facilitating pollutant reduction,70,73,74 the
surrounding iron oxide shell acts as an adsorption platform for
contaminant accumulation.73 This conceptual model has
proven adept at explaining phenomena such as adsorption,
reduction, oxidation, and precipitation that occur near the ZVI
surface. However, the core–shell framework currently falls short
of providing the quantitative insights necessary for designing
and optimizing ZVI-based wastewater treatment processes.75 To
achieve this, dynamic reaction kinetic models capturing the
complex phenomena around ZVI particles are a requisite,
particularly for quantifying the impacts of operating parameters
on heavy metal removal efficiency. Coincidently, the suitability
of modied Fenton like reaction was assessed.76 Zhou et al.
(2018) incorporated magnetic eld and ZVI/
ethylenediaminetetraacetic acid (EDTA) Fenton like system to
quantify ZVI degradation of nonsteroidal anti-inammatory
diseases (NSAIDs). The magnetic eld primarily inuences
surface-bound reactions on heterogeneous ZVI material surface
thereby accelerating its corrosion. Interestingly, this inuence
remains restricted to surface phenomena, with no impact
observed on the homogeneous iron cycle or Fenton-like reac-
tions within the bulk ZVI material.76 However, the oxidation
potential depends on the type and structural properties of ZVI
materials. The modied reactions are as follows.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Fe2+ + EDTA + H2O / [Fe2+(EDTA)(H2O)]c2− (4)

[Fe2+(EDTA)(O2)]c
2− / [Fe3+(EDTA)(O2

−)]c2− (5)

[(EDTA)Fe3+(O2
2−)Fe3+(EDTA)]c4− /

2[Fe3+(EDTA)(H2O)]c− + H2O2 (6)

[Fe2+(EDTA)(H2O)]c2−[Fe3+(EDTA)(O2
2−)]c2− /

[(EDTA)Fe3+(O2
2−)Fe3+(EDTA)Fe3+]c4− + H2 (7)

�
Fe2þðEDTAÞðH2OÞ�c2� þO2/

�
Fe2þðEDTAÞ�O:

2

��c2� þH2O

(8)

Zero-valent iron (ZVI) materials possesses remarkable exi-
bility in their ability to transform a diverse range of environ-
mental contaminants through direct contact.34,77 Among these
contaminants include halogenated hydrocarbons such as
chlorinated methane. The direct contact reactionmechanism of
ZVI in the degradation of chlorinated methane was reported in
ref. 78, the mechanism is briey described here as follows.

Fe0 / Fe2+ + 2e− (9)

RCl + H+ + 2e− / RH + Cl− (10)

RCl + Fe0 + H+ / RH + Fe2+ + Cl (11)

C2Cl4 + 5Fe0 + 6H+ / C2H6 + 5Fe2+ + 4Cl− (12)

From the above reactions, R represent an alkyl group such as
methane, ethane etc. ZVI (zero valent iron) initiates the reaction
by donating electrons to the chlorinated hydrocarbon (RCl),
which subsequently underwent de-chlorination leading to the
formation of RH + Cl−. Introducing ZVI to this step produces an
oxidized iron with a chlorine byproduct indicating ZVI
requirements and its favourable conditions in completely
degrading chlorinated hydrocarbons like tetrachloromethane
(C2Cl4).79 Several factors including operating conditions and
intrinsic metal characteristics inuence the performance of ZVI
materials in the removal of environmental contaminants.65

Operating conditions such as temperature, iron concentrations
and pH are more pronounced (see Fig. 2 and 3). Shimizu et al.,81

revealed the mechanism of phenol removal by zero-valent iron
(ZVI) in the presence of dissolved oxygen by varying the pH from
2 to 8.1, pH and dissolved oxygen was found to signicantly
inuence iron dissolution while OH radical production was an
important parameter. At pH 3, 91% phenol removal was ach-
ieved with a 24% reduction in total organic carbon (TOC), of
which 77% was attributed to the Fenton reaction, while at pH 4
and 5, adsorption/precipitation dominated DOC removal, and
minimal TOC reduction was observed at pH 2 and 8.1.81 Other
research ndings show that 3.0 is the optimal pH for NB
degradation within the tested pH range of 3.0 to 12.0. While the
rate of formation of aniline, a major reductive product of NB,
follows zero-order kinetics at various pH levels.82,83

Similarly, Wang et al., observed the efficiency in the treat-
ment of lead contaminated soils by zero valent iron materials to
RSC Adv., 2024, 14, 30411–30439 | 30413



Fig. 2 Strategies and influence of process conditions and iron characteristics on the performance of micro-ZVI materials.
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decrease with increasing pH from 3 to 9.84 Fig. 3 shows how
varying concentration of nano and micro-ZVI inuenced their
performance. Micro ZVI materials can be used to transform
organic dyes and pesticides: including dichlorodiphenyltri-
chloroethane, (DDT),85 lindane, and other dye molecules,86–89

inorganic anions like dichromate, perchlorate, nitrate, and
arsenic. ZVI material performance in the degradation of
persistent organic pollutants such as polychlorinated biphe-
nyls, dioxins, pentachlorophenol, N-nitrosodimethylamine and
TNT were also reported.34,78 However, ZVI materials are limited
by low sorption affinity in degrading organic contaminants,
which is a typical characteristic of pristine iron oxides.85 Hence,
supportive adsorbent such as graphene or activated carbon90 are
oen incorporated to ZVI materials when applied in an
emerging organic pollutants medium.

ZVI (Zero Valent Iron) materials' applications span across
many elds, profoundly in groundwater and soil remediations
like the removal of organophosphates,91 heavy metals,92 dyes,
anti-biotics,93 and other organic contaminants.85,94–97 Emerging
contaminants such as polyhalogenated carbazoles (PHCZs) are
persistent, bio-accumulative, and toxic environmental contam-
inants lacking efficient and sustainable degradation method,
coupling micro-ZVI with supportive adsorbents has indicated
a promising activity in degrading these types of
contaminants.75,82,98–100 Such as the use of suldated zero-valent
iron combined with peroxymonosulfate (S-ZVI/PMS).101 Similar
research by Wang et al., (2023)102 and103,104 with 96.6% Cr(VI)
removal, thiobencarb removal,105 degradation of
30414 | RSC Adv., 2024, 14, 30411–30439
oxytetracycline106,107 and degradation of clopyralid and MTBE,
tetrachloroethene.95 By and large, it is imperative to note that
both micro and nano ZVI material's characteristics depend on
the intrinsic properties and mineralogical compositions of the
precursors. Consequently, the core–shell model, Fenton reac-
tion mechanism and modied Fenton like mechanisms have
found common use in revealing the efficacy and mechanism of
ZVI interactions with contaminants owing to their understood
technology plus the availability of research ndings on these
mechanisms since the introduction of PRB technologies in the
early 1990s (refer to Fig. 1). Distinct material properties
requirements such as increased chemical reactivity, higher
surface area to volume ratio for an increased number of active
sites coupled with low agglomeration demands led to the
emergence of nano zero-valent iron materials or simply nZVI as
a research area.

2.2 Nano zero valent iron (nano-ZVI)

Nano ZVI (Zero Valent Iron) is a ne, black powder derived from
micro-ZVI through chemical and physical synthesis methods
and characterized by smaller particle sizes within the nano scale
(between 1 nm to 100 nm) range.72,108 nZVI is distinguished by
its excellent surface area with higher chemical reactivity, and
numerous active sites (see Fig. 4). It provides sufficient surface
area and excellent interaction with emerging contami-
nants.109,110 The high surface area and reactivity of nZVI mate-
rials translate to improved effects and superior performance
compared to their microscale counterpart.34,111
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Influence of concentrations and pH on the performance of nano andmicro-ZVI materials in the removal and adsorption of contaminants.
(a–c) show the impacts of pH variation on removal chromium, and the influence of concentration of nano and micro-ZVI composites on
oxytetracycline and chromium degradation80 Copyright: 2024, Elsevier.
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The unique attributes of nano-ZVI materials that distinguish
them from micro-ZVI stems predominantly from their
increased surface-to-volume ratio and/or the enhanced reac-
tivity of their surface sites.6 As ZVI (Zero Valent Iron) particle
size diminishes, the proportionate contribution of surface
atoms increases, signicantly amplifying their propensity to
adsorb, interact, and react with other atoms, molecules, and
complexes (refer to Fig. 4). This amplied reactivity can be
ascribed to the greater access and availability of active sites on
Fig. 4 Comparison of reaction active sites and properties of micro and

© 2024 The Author(s). Published by the Royal Society of Chemistry
the nZVI particle surface, aiding charge stabilization through
electronic interactions with surrounding atoms.112 Recent
researches highlight the remarkable potentials of nano ZVI for
degrading diverse inorganic contaminants,110 including metal
ions,113 like Cd,114 Cr,115–118 complex anions like perchlorate and
nitrate.82,119–122 Compared to conventional sorbents and their
interactions with other iron particles, nZVI materials offer
signicant advantages and exhibit substantially higher capacity
for contaminant removal as also exemplied by their ability to
nano ZVI materials.

RSC Adv., 2024, 14, 30411–30439 | 30415
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remove mixed dyes86,123,124 and heavy metals like Cr(VI)125 and
Ni(II) efficiently from wastewater through reduction and co-
precipitation usually at both lower and higher pH126 Moreover,
nZVI possesses faster reaction rates, with studies showing at
least 25–30 times higher efficiency in Cr(VI) removal compared
to microscale ZVI.127 In addition, n-ZVI when stabilized with
other materials such as carboxymethyl cellulose, CMC, and
nZVI materials signicantly enhances dye degradation from
textile wastewater.128

Nanosized zero-valent iron (nZVI) materials offer enhanced
environmental remediation capabilities due to their increased
specic surface area, leading to a greater abundance of active
reaction sites (refer to Fig. 4) compared to their corresponding
micro-scaled counterpart. However, a key challenge arises
owing to the inherent magnetic properties of nZVI, which oen
cause particle aggregation.75 These formed aggregates possess
paradoxical properties and enhance magnetic mobility for tar-
geted delivery with a reduced surface area, causing nZVI mate-
rial's reactivity. To address this and optimize both reactivity and
mobility, extensive research efforts have focused on tailoring
the synthesis methods of nZVI particles.
2.3 Overview of nanoparticle synthesis methods

Nanoparticle synthesis methods are classied into either top-
down and bottom-up approaches or simply physical and
chemical synthesis methods.108 Fig. 5 gives an overview these
classications.
Fig. 5 Overview of nanoparticles synthesis methods: top-down and bo

30416 | RSC Adv., 2024, 14, 30411–30439
Physical/top-down methods are effective in fabricating
nanomaterials with distinct properties and applications.108

However, in addition to being energy intensive, the properties of
the developed nanoparticles are oen altered, limiting their
applications in material synthesis that require stringent control
over morphological structures.108 Bottom-up/chemical synthesis
methods involve the use of chemical reactions to manipulate
atoms or molecules to form nanoparticles. In contrast, chemical
methods allow a degree of control over the morphological
structure of the synthesized nanomaterials.108 Green synthesis
methods are recently discovered viable,108,129–131 paving the way
for utilizing biobased materials as a sustainable source of
nanoparticles for various applications.108

2.4 Synthesis methods of zerovalent iron micro and nano
materials

There are several synthesis methods of nano and micro zer-
ovalent iron materials ranging from bottom-up approaches to
green synthesis and combined technologies each with its dis-
tinguishing applications, materials properties, and
limitations.132–138

2.4.1 Mechanical ball milling. Ball milling refers to the
breaking down of iron precursor material into micro or nano-
scale particles through a high-speed rotating chamber.108,139,140

The ball-milling approach is regarded as one of the most
sustainable for synthesizing nanocomposites and wear spray
coatings.141–143 Imperative factors in this approach are the
container size, and the energy input.108,144,190 Ball milled
ttom-up approaches.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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nanoparticles are highly efficient in the degradation of waste-
water contaminants,77,145 and their composites recorded high
efficacy in soil remediations.125,146

2.4.2 Mechanochemical method. Mechanochemical
synthesis is a combined synthesis method that involves the use
of mechanical energy such as friction or shear force for the
initiation of chemical reactions.133 It's usually combined with
ball milling to provide sufficient mechanical energy for the bulk
or micro-scale iron particles to disintegrate into nano-scaled
particles133,147 and provides sufficient access to active sites of
nanocomposites materials.132 Mechanochemical method
produces ZVI materials with an increased particle reactivity
potential compared to conventional mechanical ball milling
procedure.134

2.4.3 Chemical vapor deposition method. Chemical vapor
deposition can be physical or chemical process depending on
the nature and compositions of the reacting materials.148 The
procedure involves vaporizing target materials and condensing
them with chemical methods altering the target material's
composition to form nanocomposite materials.149,150 The
produced nanoparticles condense into liquid nitrogen before
subsequent morphological changes.148 In addition to control
over material properties, chemical vapor deposition produces
nano materials with signicantly lower agglomeration
potential.
Fig. 6 Sodium borohydride (NaBH4) assisted chemical reduction meth
iron (ZLN) (a and b), energy peaks and chemical composition of ZLN ob
Elsevier. Synthesis pathway of micro-ZVI coupled glutaraldehyde crossli
route of nano ZVI coated reduced graphene oxide (nZVI/rGO) (e and f), la
Copyright: 2024, Elsevier.

© 2024 The Author(s). Published by the Royal Society of Chemistry
2.4.4 Liquid -assisted pulsed laser ablation. Liquid-
assisted pulsed laser ablation (LA-PLA) synthesis method
refers to the formation of nanoparticles with varying sizes,
crystallinity, and shell composition using femtosecond pulse
laser in water, or a nanosecond pulse laser on bulk iron targets
immersed in different organic solvents. The properties of the
synthesized materials are proportional to the nature of the
solvent used and the pulse overlap.151 Pulse laser is cost effec-
tive, and environmentally benign.151,152

2.4.5 Liquid assisted chemical reduction. The liquid
chemical reduction approach is the most utilized method of
synthesizing micro-nano ZVIs (Zero Valent Iron),153 by chemi-
cally reacting suitable iron precursor with sodium borohydride
(NaBH4) or any other suitable reducing agent,154 the reaction is
conducted under nitrogen condition.155 Black colour particles
emerge immediately aer the addition of sufficient solution of
the reducing agent.,.156 Fig. 6 shows the synthesis route in the
liquid-assisted chemical reduction of selected nano and micro-
ZVI materials.

2.4.6 Gaseous chemical reduction. In the gaseous chemical
reduction method, hydrogen is the primary reducing agent.160

Iron precursors such as goethite,161 magnetite162 or limonite27

are rst produced through precipitation of ferrous salts and
then dehydrated or heated to prepare them for chemical
reduction. The method starts by reducing the iron precursors
ods. Methodology for synthesizing liquid nitrogen-assisted zerovalent
served from iron 2p before and after reactions (b)157 Copyright: 2023,
nked chitosan (c) micro-ZVI morphological structures (d).158 Synthesis
teral, top, and unmodified adsorption of arsine AsH3 by nZVI/rGO (g)159

RSC Adv., 2024, 14, 30411–30439 | 30417
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(obtained through precipitation), at elevated temperatures with
hydrogen gas,37 followed by chemical reduction in a hydrogen or
nitrogen gas-controlled environment.160 The gaseous chemical
reduction synthesis method yields nano and micro-ZVI mate-
rials with controlled surface properties.150

2.4.7 Carbo-thermal reduction. The carbo-thermal
synthesis method is a high-temperature reduction of iron
precursors using thermal energy in the presence of gaseous
reducing agents.163–165 The resulting coupled ZVI-carbon products
are obtained through chemical reactions with carbon mate-
rials.166,167 The synthesized nZVI-supported carbon particles
exhibit enhanced physicochemical properties,168 low agglomera-
tion characteristics,169–171 and high degradation activity in rela-
tion to non-carbon encapsulated ZVI materials.172 Carbothermal
synthesis method is highly suitable for producing carbon
encapsulated ironmaterials with chemical byproducts compared
to conventional chemical reduction methods.173

2.4.8 One spot chemical method. One spot synthesis
method is a combined technology usually accompanied by
liquid chemical reduction where iron precursors such as
FeCl3$6H2O are dissolved and mixed with reacting/supporting
material under nitrogen gas, N2 atmosphere.154,174 It is cost-
effective and produces iron materials with signicant stability
and low aggregation. Fig. 7 shows one spot chemical synthesis
routes for producing nano zero-valent iron composite materials.
Fig. 7 One spot synthesis of nZVI nanocomposites. (a) synthesis procedu
zero-valent iron onto graphene carbon nitride, g-C3N4. In both methods
conditions to rid dissolved oxygen and maintain anaerobic conditions, T
abundant active sites. Charged nZVI facilitated the conversion of adsorb
adsorption rate depicted in (d). The binding energy and adsorption reacti
shown in (b)174 Copyright: 2024, Elsevier., and154 Copyright: 2023, Elsevi

30418 | RSC Adv., 2024, 14, 30411–30439
2.4.9 Electrochemical reduction. The electrochemical
method uses an electrolysis process to produce nano and micro-
ZVI materials.175–177 This method involves introducing iron
precursors like iron pentacarbonyl, argon gas, ethylene, acety-
lene, and ethyl materials into a reaction chamber while gas
current is rapidly expanded in two phases to control nanoparticle
growth and agglomeration.178 The ZVI (Zero Valent Iron) mate-
rials nanoparticles condense into a liquid nitrogen substrate and
transferred to a delivery system for collection aer undergoing
structural changes through purication, and crystallization.150,175

Electrochemical method is cost effective, however it generates
copious amount of chlorine gas byproducts.

2.4.10 Ultrasonic wave method. The ultrasonic wave
method involves the reduction of micro-ZVI particle size and
increasing surface area and uniformity. It is applied in labora-
tories alongside other methods like chemical reduction with
sodium borohydride. The process involves preparing solutions
of precursor and reducing agent with ammonium hydroxide
solutions and deionized water, applying ultrasonic waves
through a titanium probe, and maintaining the solution
temperature. The resulting nZVI is ltered, washed, and dried
to avoid oxidation.108,179,180 Ultrasonic method is cost effective
and provides signicant access to the morphological structure
of nano and micro materials.
re of TEMPO-oxidized cellulose nanocrystal. (c) One spot scaffolding of
nanocomposites' fabrications were conducted under nitrogen gas N2

OCNC adequately absorbed Cr(VI) due to their large surface areas and
ed Cr(VI) to Cr(III) through the oxidation of Fe0 to Fe2+ and Fe3+ with
on kinetics of the zero-valent iron coupled graphene carbon nitrite are
er.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2.4.11 Microemulsion method. The micro-emulsion
method involves the formation of uniformly dispersed inor-
ganic phase, particle size is controlled by adjusting reaction
parameters.181 The reduction reaction forms an emulsion which
is separated through centrifugation or magnetic methods. The
average nanoparticle size depends on droplet size, iron
precursor concentration, and surfactant exibility.40

2.4.12 Green synthesis method. Recently, there has been
increasing research interest in the green synthesis of zero-valent
iron materials.182–185 These methods involve utilizing plant
extracts that are rich in reducing polyphenols and avonoids
components such as green tea (camellia Senensis),186 Verbas-
cum Thapsus,185 Syzygium aromaticum extracts,183 to fabricate
nano and micro-ZVI. These biobased extracts efficiently reduce
Fe2+ and Fe3+ and other contaminants while preventing
agglomeration of zero valent iron nanoparticles. In addition to
being environmentally benign, green synthesis methods are
efficient and cost effective (Table 1).
2.5 Physico-chemical properties and performance of ZVI
materials synthesized through different synthesis methods

The ability of Zero-Valent Iron (ZVI) materials are emerging
materials that effectively remediate a plethora of environmental
Table 1 Synthesis methods, methodologies, and properties of selected

Synthesis method/material
synthesized and precursor Methodology (with reaction conditions)

Green synthesis method
nZVI particles

The procedure involved the co-addition
optimized amounts of sodium borohydr
(NaBH4) and H. caffrum extract to ferric
(FeCl3) under an inert nitrogen atmosph
titration at 20 °C. Following a 30 minute
period, the product was washed with de
water and dilute ethanol (50%) and free

Chemical reduction
method nZVI-SBA15
mesoporous silica
composite

The SBA-15 silica was rst prepared usin
method with P123 as a structure-directin
Subsequently, iron was deposited onto t
surface via controlled hydrolysis of iron
nonahydrate (Fe(NO3)3$9H2O). Finally, t
deposited iron was reduced to zero-valen
using sodium borohydride under acidic

Mechanochemical method 10 g of reduced iron powder and NGB a
ratio of 10 : 1 was mixed in a stainless-ste
agate balls. The jar was sealed, evacuate
purged with pure nitrogen gas three tim
subjected to ball milling at 200 rpm for
using a planetary ball mill. The resulting
was collected in a glovebox and stored in
proof desiccator lled with argon gas to
oxidation

Micro zero valent iron
graed nitrogen doped
biochar-like graphene
(mZVI/GBN composite

Combined method
involving initial liquid-
phase reduction

Firstly, Banana peels carbonated at 250
was utilized to prepare phosphoric acid-
biochar (BC) followed by nano zerovalen
synthesis via liquid phase reduction me
nZVI-BC composite was subsequently fab
in situ formation of nZVI on the BC surf
deionized water, ferric nitrate, and sodiu
borohydride under nitrogen condition

Biochar incorporated nano
zero valent iron (BC-nZVI
composite

© 2024 The Author(s). Published by the Royal Society of Chemistry
contaminants.4,53 The removal performance of ZVI materials is
inextricably intertwined with their physicochemical properties,
which in turn is signicantly inuenced by the synthesis
method employed.104 This section provides a concise review of
the enhanced removal performance of ZVI materials prepared
using different synthesis techniques. Physical or top-down
approaches such as the ball milling process are reported to
generate ZVI particles with irregular shapes and a broad particle
size distribution with an improved specic surface area due to
the particle size reduction.77 A study by Zhang et al. (2023) re-
ported that ball-milled ZVI coupled with biochar (ZVI/BC)
exhibited an improved adsorption capacity for Cr(VI) of
117.7 mg g−1 at 298 K, which was 2.08 times higher than the
pristine ZVI/BC. Similarly, Fang et al. (2022)142 found that ball-
milled ZVI composite showed enhanced removal of hydro-
phobic organic compounds (HOCs), with a maximum removal
efficiency of 99%. In a combined mechanical chemical
approach, the method generates ZVI particles with smaller,
higher surface area, and more uniform size distribution
compared to the ball milling method.133 Calderón Bedoya et al.
(2023) demonstrated that ZVI materials produced by the
mechanochemical method exhibit improved reactivity and
contaminant removal efficiency, along with excellent magnetic
properties (55–57 emu g−1) and very low coercivity (12–19 Oe).
nano and micro ZVIs and their composites

Properties of the synthesized materials Ref

of an
ide
chloride
ere and
s stirring
ionized
ze-dried

Higher reactivity, stability, and well
dispersed nano ZVI particles with strong
Fenton catalytic properties

187

g sol–gel
g agent.
he silica
III nitrate
he
t state
conditions

Averaged size of nZVI-SBA15 mesoporous
silica composite in the nanometre range.
The material exhibited a mixed composition
of iron and silica oxides, with iron content
slightly exceeding 10%. The isoelectric point,
inuenced by the dominant silica
component, was found to be around 2.0

188

t a mass
el jar with
d, and
es before
12 hours
composite
an air-

prevent

The mZVI/NGB composite demonstrated
exceptional efficiency in the removal of
tetracycline TC, reaching near-complete
degradation under circumneutral pH
conditions (5.0–6.8), the composited
displayed signicant tolerance to co-existing
anions such as Cl−, SO4

2− and humic acid

°C for 2 h
activated
t iron
thod. The
ricated via
ace using
m

Compared to microbubbles alone,
tetracycline degradation performance using
nano zero valent particles incorporated
microbubbles or conventional microbubbles
(MBs-nZVI or BC-nZVI) demonstrated
signicant efficiency. Removing 80%
tetracycline contaminants from wastewater
within 2 h

189
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Ref. 147 reported the mechanochemically modied micro-ZVI
material with 88.8% efficiency in the removal of phenols. In
similar studies, ZVI materials were fabricated through top-down
or chemical synthesis methods such as liquid-assisted pulsed
laser ablation where high purity and controlled size ZVI mate-
rials are produced, resulting in a narrow particle size distribu-
tion and high specic surface area. Coincidently, Lahoz et al.
(2020)151 reported the ZVI nanoparticles produced by this
approach with polydispersity indices lower than 10 nm and
0.10, respectively, and exhibited over 99.9% performance when
utilized in medicine and other environmental remediations.
Another promising chemical synthesis method is the liquid-
assisted chemical reduction method. This method produces
ZVI nanoparticles with high chemical reactivity and dis-
persibility. However, there is a strong potential for agglomera-
tion and rapid passivation when utilizing this method over
time.57 Other synthesis methods, such as the one-pot chemical
method, electrochemical reduction, ultrasonic wave method,
and microemulsion method enhance the removal performance
of ZVI materials.137,174,177,181,185 These methods offer various
advantages, including high reactivity, controlled particle size,
improved dispersion, and the use of environmentally friendly
reducing and stabilizing agents. Table 2 summarizes the phys-
icochemical properties and performance of ZVI materials
synthesized via different synthesis methods.

3 Applications of nano and micro
materials and environmental
considerations

Nano and micro-ZVI materials have recently recorded an
increasing utilization in a plethora of industries. Moreso in
groundwater treatment, wastewater and environmental
remediations,56,192–197 degrading obnoxious and contemporary
contaminants such as sulfamethoxazole198 chro-
mium,104,116,146,154,199 wastewater antibiotics,200 trichloro-
ethane,109 petroleum hydrocarbon, soil contamination,201

lindane202 nickel203 arsenic204 zinc, lead and cadmium contam-
inated soil.205–207 Table 3 shows selected applications of nano
and micro-ZVI and their composites in the removal various
contaminants present in ground water, wastewater, soil, and
other domestic and industrial effluents.

3.1 Soil and groundwater remediation

Of the most dominant applications of nano and micro zero
valent iron materials are in soil and groundwater remediation
(see Fig. 8).3,91,155,176,192,223,232,233 Their chemical reactive ability to
degrade chlorinated solvents through reductive de-chlorina-
tion,65,92,134,175,228 degrade nitrates,223 pesticides,91 micro-
pollutants,176 reduction of sulphides and leads,109,115,195 adsorb
heavy metals,22,234 and organic contaminants7,9,68,95,127,186,230,235

suggests a promising alternative to conventional methods.92

However, factors like contaminant type, soil properties, and
aging effects signicantly inuence their perfor-
mance.84,102,103,164,214 ZVI materials are particularly highly effi-
cient in degrading metal contaminants present soil
30420 | RSC Adv., 2024, 14, 30411–30439
contaminated soil.236 Coincidently, Alhadidi et al., evaluated the
efficiency of ZVI materials in the remediation of metal based
contaminated soil, the results revealed 80% removal efficiency
for various metals categorized by the Nieboer–Richardson
method.237 Similar and better performance ZVI materials in soil
remediations is also reported.238

However, despite this promising performance and applica-
tions of ZVI materials, it is imperative to assess their impact on
soil microorganisms when applied for soil remediations.
Interestingly, Saccà et al., (2014) coupled molecular and clas-
sical methods to investigate the impact of nano zero valent
materials on soil microorganism, from their ndings, classical
toxicity tests using nematodes (Caenorhabditis elegans) revealed
no negative effects of nano ZVI on microorganisms. However,
molecular analysis of soil microbial communities showed
signicant changes in gene expression associated with nano ZVI
materials exposure.239 Interestingly, following their conclusion,
these gene expressions changes of soil microorganisms varied
depending on soil characteristics, hence highlighting the need
for case-by-case evaluation. Generally, potential environmental
risks associated with iron oxide formation and unintended
contaminant mobilization necessitate a thorough evaluation
before large-scale application.240,241

3.2 Water treatment

Contemporary challenges posed by emerging contaminants in
water sources presents a new frontier for nano and micro zero
valent iron materials. ZVI materials have showed potentials for
removing pharmaceutical waste,71,176,242 and pesticides91,103

washed and transported to water bodies by rain or through
municipal effluents.242,243 Surface modication strategies can
further enhance their selectivity and efficiency for targeted
contaminant removal.71,244,245 Liu et al., investigated the effec-
tiveness of zero-valent iron (ZVI) for removing phycocyanin
from water. The results revealed more than 80% removal effi-
ciency in acidic environments, further analysis proposed two
reaction mechanisms viz. adsorption onto the ZVI surface and
coagulation by iron ions released from ZVI materials.100 Like ZVI
materials' applications in soil remediations, signicant chal-
lenges remain, particularly in ZVI materials' separation and re-
generation aer water treatment operations, hence, limiting
their widespread applications.

3.3 Industrial catalysts

Nano and micro-ZVI materials as catalysts for hydrogen
production from water splitting or hydrolysis reactions is
a sustainable route towards clean energy generation.246 ZVI
materials offer benets in terms of their cost and material
abundance compared to conventional catalytic materials.247

Chen et al., explored the potential of nano and micro-ZVI
materials for hydrogen production, their results revealed
nano-ZVI to exhibits signicantly higher iron-normalized
hydrogen production rates of 15.2–58.3 mgH2

kgFe
−1 h−1

compared to their Micro-ZVI counterpart. Interestingly, doping
nano-ZVI with 1% noble metals viz. Pd, Ni, Cu, or Ag was
observed to further accelerates hydrogen production from 2–39
© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 2 Comparison of physico-chemical properties and performance of ZVI Materials synthesized through different synthesis methods

Synthesis method Material physico-chemical properties Removal performance Reference

Mechanical ball
milling

ZVI particles with irregular shapes and broad
size distribution

Ball milled ZVI/BC recorded an improved
adsorption capacity for Cr(VI) to 117.7 mg g−1

(298 K), 2.08 times higher than the pristine ZVI/
BC

190

High specic surface area due to particle size
reduction potential for agglomeration and
loss of reactivity

Mechanochemical
method

ZVI particles with smaller and more uniform
size distribution

The method produces ZVI materials with
improved reactivity and contaminant removal
efficiency

133

Higher specic surface area compared to
ball milling

The method produces ZVI materials with
excellent magnetic properties (55–57 emu g−1)
and very low coercivity (12–19 Oe)

Liquid-assisted
pulsed laser
ablation

ZVI nanoparticles with high purity and
controlled size

Produces ZVI materials with polydispersity
indices lower than 10 nm and 0.10, respectively
>99.9% performance for medicine and
environmental remediation

151

Narrow particle size distribution and high
specic surface area

Liquid-assisted
chemical reduction

ZVI nanoparticles with high reactivity and
dispersion

ZVI coupled zinc incorporated silica bn titania
dioxides synthesized via chemical reduction
method showed >99.8% arsenic removal at
5.0 mg L−1

191

Potential for agglomeration and loss of
reactivity over time

Gaseous chemical
reduction

Controlled particle size and morphology
through gas-phase reactions

The size of zero valent iron materials
synthesized via this method are approximately
60 nm with signicantly controlled
morphologies

150

Generates ZVI particles with high purity but
high environmental impacts

Carbo-thermal
reduction

ZVI particles with high purity, crystallinity
with exceptionally high chemical reactivity
and regenerative capacity

The nZVI@MOF-CN demonstrated signicant
reactivity achieving bromate reduction
efficiency of 80% aer ve successive
regeneration cycles

249

Potential for carbon contamination and
agglomeration

One-pot chemical
method

ZVI nanoparticles with high reactivity and
dispersion

The sequestration of U(VI) and Cr(VI) by NZVI
nanocomposite was greater than that of pure
NZVI or g-C, demonstrating a signicant
enhancement in the performance of NZVI
composites

39

Relatively simple and scalable synthesis
process
Potential for agglomeration and
uncontrolled particle size distribution

Electrochemical
reduction

ZVI nanoparticles with high purity and
controlled size

Moratalla et al., reported zero-valent iron (ZVI)
facilitated conversion of 95% iopamidol into
C17H25N3O8 with nearly total elimination aer
electrolysis of the initial pollutant

177

Enables in situ generation and application of
ZVI

Ultrasonic wave
method

ZVI nanoparticles with high specic surface
area

99.76% of Rh B degradation within 12 min at Ph
4 and 1.0 g per L ZVI concentration

137

Improved dispersion and reactivity
compared to conventional methods

Microemulsion
method

ZVI nanoparticles with controlled size and
narrow distribution

Produce nanoparticles with exceptional
superparamagnetic and ferromagnetic
properties

181

Enhances stability and dispersibility of ZVI
in aqueous media

Green synthesis
method

Utilizes environmentally friendly reducing
and stabilizing agents

Enhanced performance and complete reduction
of Cr(VI) aer 30 min under 1 g per L green
synthesized nZVI

185

Generates ZVI nanoparticles with high purity
and biocompatibility

Review RSC Advances
times, with Pd–Fe0 achieving optimal rate of 1490 mgH2
kgFe

−1

h−1. Nano ZVI materials system is cost effective and operates
under ambient conditions with superior volumetric hydrogen
storage density (279 kgH2

m−3) compared to conventional cata-
lytic materials.247 However, their efficiency and long-term
stability require signicant improvement,247,248 for crucial
economic viability, developing efficient regeneration and sepa-
ration strategies of nano- and micro- ZVI materials aer use in
industrial processes is highly essential.
© 2024 The Author(s). Published by the Royal Society of Chemistry
3.4 Industrial wastewater effluents

Nano and micro materials are emerging materials in degrading
organic and inorganic obnoxious pollutants present in phar-
maceuticals,71 and other industrial wastewater streams for
cleaner engineering processes.249–252 Zhang et al., evaluated the
suitability of ZVI materials in the remediation of Swine waste-
water (SWW), high removal efficiency was observed at acidic pH
(3) and in the presence of dissolved oxygen.253 However, similar
RSC Adv., 2024, 14, 30411–30439 | 30421
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Fig. 8 Nano and micro-ZVI Materials' applications in groundwater remediation in situ technologies, pros and cons, and their target
contaminants.
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studies on the engineering applications of these novel materials
recommended optimizing materials' particle size and surface
properties for efficient pollutants degradation and improved
catalytic selectivity.55,254,255

3.5 Organic pollutant removal

Nano and micro-ZVI materials degrade various organic pollut-
ants present in industrial wastewater streams, such as dyes,
pharmaceuticals, and pesticides (see Table 2). These pollutants
can be harmful to ecosystems if released untreated.108,256 The
degradation reaction mechanism involves nano and micro-ZVI
materials acting as a reducing agent, and hence breaking
down the complex organic molecules into simpler and less
harmful compounds.241

De-sulfurization: Although there is barely any study with
direct application of nano and micro-ZVI materials for
removing sulphur impurities from fuels, potential utilization of
these materials when coupled with other materials could
contribute to cleaner fuel combustion.

3.6 Potential engineering applications

3.6.1 Battery technology. Future research should explore
the potential of utilizing nano and micro-ZVI materials as
anodic material in lithium-ion batteries considering their high
physicochemical and theoretical capacity for lithium storage.
Challenges to overcome could include overcoming volume
changes during charge/discharge cycles and improving elec-
trode stability.

3.6.2 Sensors. The distinguished reactivity and surface
properties of nano and micro-ZVI materials make them poten-
tial materials for developing sensitive and selective sensors for
wide process engineering applications.

3.6.3 Biomedical applications. Emerging research should
investigate the potential of nano and micro-ZVI materials in
biomedical engineering applications like biocatalysis and
30426 | RSC Adv., 2024, 14, 30411–30439
targeted drug delivery considering their biocompatible modi-
cations and efficacy in pharmaceuticals. However, comprehen-
sive toxicity assessment is highly essential for safe biomedical
utilization.

3.6.4 Construction materials. Nano and micro-ZVI mate-
rials can be incorporated into building materials to enhance
their re resistivity or conductivity. However, the long-term
stability, and durability, of such materials need further
investigation.
3.7 Environmental considerations

Despite the promising and versed applications of these
emerging materials signicant efforts need to be placed in
evaluating their environmental implications and detrimental
effect on both human, animal, and aquatic lives. Since chemical
methods for synthesising nano and micro-ZVI materials involve
the use of various reagents, such as iron chloride,70,187 sodium
borohydride, and iron sulphate,257 as well as gases like; argon,258

nitrogen,259 and hydrogen.260 These reagents have reported
environmental impacts due to their production and can result
in waste, wastewater, and emissions containing these
compounds. Some of these compounds, such as sodium boro-
hydride, isooctane, polyvinylpyrrolidone, cetylpyridinium chlo-
ride, and sulphur pose risks to human health and the
environment.261 Water consumption in most methods is low,
but the ultrasonic wave method has a high-water consumption
rate. Wastewater generation is directly related to water
consumption, with methods like chemical reduction with
sodium borohydride, micro-emulsions, and ultrasonic waves
generating more wastewater byproducts. The wastewater
contains chemical components that can be hazardous,
requiring proper treatment before reuse or disposal.262 Energy
consumption is another important factor in process engi-
neering applications, with gas reduction using hydrogen gas
and the ultrasonic wave method having high energy
© 2024 The Author(s). Published by the Royal Society of Chemistry
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consumption (refer to Section 2). High energy consumption
contributes to environmental impacts, including resource use,
gas emissions, and climate change. The composition of the
energy matrix also affects the environmental impacts, with
countries relying more on renewable energy sources experi-
encing lower impacts. Solid waste generation is primarily
associated with ltration processes, where the lter used may
contain chemical compounds from the process reagents. Proper
treatment, such as incineration, is necessary before nal
disposal.
4 Conclusions and future
perspectives

In conclusion, nano and micro-ZVI materials, and synthesis
methods coupled with their multifaceted applications are
concisely reviewed herein. The crucial points are summarized
as follows.
4.1 Synthesis strategies

A diverse range of nano- and micro-ZVI materials synthesis
methods were reviewed, each with distinct advantages and
limitations. Selecting the optimal method depends on factors
like the targeted production scale, economic feasibility, tech-
nological requirements, and desired nano- and micro-ZVI
material characteristics. Future research should prioritize
optimizing existing methods, exploring eco-friendly
approaches, and evaluating their industrial applicability.
Table 2 provides an insight into recent methodologies of
selected synthesis methods with their recorded efficiencies and
the properties of the synthesized materials to serve as a refer-
ence in the selection process.
4.2 Tuning synthesis methods for specic engineering
applications

Selection of the right synthesis method for a given nano and
micro-ZVI materials' properties requirement and particular
engineering application is highly crucial for ensuring the effi-
cacy of the fabricated nano and micro-ZVI materials in process
operations. This review found that by tuning nano and micro-
ZVI materials properties such as size and morphological struc-
tures researchers can enhance material performance, selec-
tivity, and catalytic activity. The smaller the particle size, the
higher the surface area, and the greater the contaminant's
adsorption. Other ndings revealed that modication of mate-
rial surface properties enhances the stability of nano and micro
ZVI materials, hence improving their prospects in a plethora of
engineering applications. pH, concentration, and temperature,
among other factors, are found to proportionately inuence
overall ZVI materials performance (X. Sun et al., 2015).
4.3 Environmental remediation

Nano and micro-ZVI materials are unveiled to act as highly
effective materials for soil, groundwater, and wastewater
remediations, effectively degrading organic pollutants, heavy
© 2024 The Author(s). Published by the Royal Society of Chemistry
metals, and other emerging contaminants (see Table 3) through
reductive degradation and adsorption processes.
4.4 Challenges

Despite the invaluable potential of nano and micro-ZVI mate-
rials, contemporary challenges persist in their utilizations in
many areas. These challenges revolve around three key factors
viz. aggregation, selectivity, and potential environmental
impacts.

Improved Stability and applicability: investigating sustain-
able strategies will help in mitigating material aggregation and
improve their stability for diverse environmental utilization,
particularly via modication of morphological structure or
encapsulation with other supportive materials. Additionally,
synthesizing stable nano and micro-ZVI materials with
improved multifunctional surface properties can widen the
prospective applications of these novel materials beyond envi-
ronmental remediations such as energy storage, drug delivery,
and sensing materials in electronics devices as well as
magnetics materials thereby extending and utilizing the full
potential of these emerging materials.

Combined technologies: integrating nano and micro-ZVI
technologies with other engineering techniques, such as elec-
trocatalysis or bioremediation can help foster the establishment
of synergy in developing a robust environmental remediation
system.

Life cycle assessment: performing comprehensive life cycle
assessments to gauge the environmental impact and sustain-
ability of nano and micro-ZVI materials production, utilization,
and environmental limitations is highly essential for sustain-
able industrial applications.

Regulatory frameworks: like all other engineering materials,
determining clear standards and protocols for the safe and
responsible utilization of these materials to warrant environ-
mental protection against waste generation, waste disposal, and
community health is crucial.

Therefore, by concentrating on these outlined fundamental
features, nano and micro-ZVI materials and their synthesis
technologies would uncover a sustainable and transformative
means of environmental remediation systems coupled with
resource recovery, and the development of advanced materials.
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240 C. Fajardo, M. L. Saccà, M. Martinez-Gomariz, G. Costa,
M. Nande and M. Martin, Transcriptional and proteomic
stress responses of a soil bacterium bacillus cereus to
nanosized zero-valent iron (nZVI) particles, Chemosphere,
2013, 93(6), 1077–1083, DOI: 10.1016/
j.chemosphere.2013.05.082.

241 L. Yuan, K. Wang, Q. Zhao, L. Yang, G. Wang, M. Jiang,
et al., An overview of in situ remediation for groundwater
co-contaminated with heavy metals and petroleum
hydrocarbons, J. Environ. Manag., 2024, 349(June 2023),
119342, DOI: 10.1016/j.jenvman.2023.119342.

242 I. R. Bautitz, A. C. Velosa and R. F. P. Nogueira, Zero valent
iron mediated degradation of the pharmaceutical
diazepam, Chemosphere, 2012, 88(6), 688–692, DOI:
10.1016/j.chemosphere.2012.03.077.

243 J. Wu, J. Zheng, K. Ma, C. Jiang, L. Zhu and X. Xu, Tertiary
treatment of municipal wastewater by a novel ow
constructed wetland integrated with biochar and zero-
valent iron, J. Water Proc. Eng., 2022, 47(April), 102777.

244 M. Du, Y. Zhang, I. Hussain, X. Du, S. Huang and W. Wen,
Effect of pyrite on enhancement of zero-valent iron
corrosion for arsenic removal in water: A mechanistic
study, Chemosphere, 2019, 233, 744–753, DOI: 10.1016/
j.chemosphere.2019.05.197.

245 P. A. R. Puthukkara, T. S. Jose and S. D. lal, Plant mediated
synthesis of zero valent iron nanoparticles and its
application in water treatment, J. Chem. Environ. Eng.,
2021, 9(1), 104569, DOI: 10.1016/j.jece.2020.104569.

246 E. J. Reardon, Capture and storage of hydrogen gas by zero-
valent iron, J. Contam. Hydrol., 2014, 157, 117–124, DOI:
10.1016/j.jconhyd.2013.11.007.

247 K. F. Chen, S. Li and W. X. Zhang, Renewable hydrogen
generation by bimetallic zero valent iron nanoparticles,
Chem. Eng. J., 2011, 170(2–3), 562–567, DOI: 10.1016/
j.cej.2010.12.019.

248 H. Qin, X. Guan, J. Z. Bandstra, R. L. Johnson and
P. G. Tratnyek, Modeling the Kinetics of Hydrogen
Formation by Zerovalent Iron: Effects of Suldation on
Micro- and Nano-Scale Particles, Environ. Sci. Technol.,
2018, 52(23), 13887–13896.

249 L. Li, Y. He, H. Fu, X. Qu and Z. Xu, Efficient and reductive
removal of bromate using a novel and stable nanoscale
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1016/j.chemosphere.2018.08.113
https://doi.org/10.1016/j.chemosphere.2018.08.113
https://doi.org/10.1016/j.chemosphere.2019.02.160
https://doi.org/10.1016/j.chemosphere.2018.05.067
https://doi.org/10.1016/j.chemosphere.2015.10.064
https://doi.org/10.1016/j.chemosphere.2018.02.127
https://doi.org/10.1016/j.chemosphere.2018.02.127
https://doi.org/10.1016/j.chemosphere.2013.09.033
https://doi.org/10.1016/j.chemosphere.2013.09.033
https://doi.org/10.1016/j.cej.2023.143246
https://doi.org/10.1016/j.chemosphere.2023.138481
https://doi.org/10.1007/s11270-021-05154-8
https://doi.org/10.1016/j.chemosphere.2013.05.082
https://doi.org/10.1016/j.chemosphere.2013.05.082
https://doi.org/10.1016/j.jenvman.2023.119342
https://doi.org/10.1016/j.chemosphere.2012.03.077
https://doi.org/10.1016/j.chemosphere.2019.05.197
https://doi.org/10.1016/j.chemosphere.2019.05.197
https://doi.org/10.1016/j.jece.2020.104569
https://doi.org/10.1016/j.jconhyd.2013.11.007
https://doi.org/10.1016/j.cej.2010.12.019
https://doi.org/10.1016/j.cej.2010.12.019


Review RSC Advances
zero-valent iron embedded in N-doped carbon derived from
metal-organic frameworks, Chemosphere, 2022, 306(June),
135503, DOI: 10.1016/j.chemosphere.2022.135503.

250 S. H. Kang and W. Choi, Oxidative degradation of organic
compounds using zero-valent iron in the presence of
natural organic matter serving as an electron shuttle,
Environ. Sci. Technol., 2009, 43(3), 878–883.

251 K. O. Badmus, N. Irakoze, O. R. Adeniyi and L. Petrik,
Synergistic advance Fenton oxidation and hydrodynamic
cavitation treatment of persistent organic dyes in textile
wastewater, J. Chem. Environ. Eng., 2020, 8(2), 103521,
DOI: 10.1016/j.jece.2019.103521.

252 Y. Li, L. Liu, Q. Wang, J. Wu, T. Liu, H. Liu, et al., Enhanced
anaerobic co-metabolism of coal gasication wastewater
via the assistance of zero-valent iron, J. Water Proc. Eng.,
2021, 40(December 2020), 101817, DOI: 10.1016/
j.jwpe.2020.101817.

253 Q. Zhang, X. Ye, D. Chen, W. Xiao, S. Zhao, J. Li, et al.,
Chromium(VI) removal from synthetic solution using
novel zero-valent iron biochar composites derived from
iron-rich sludge via one-pot synthesis, J. Water Proc. Eng.,
2022, 47(January), 102720, DOI: 10.1016/
j.jwpe.2022.102720.

254 Y. Zhang, X. Lu, R. Yu, J. Li and F. Wang, Immobilization of
Sb in a smelting residue by micro-sized zero-valent iron:
Long-term performance under accelerated exposure to
strong acid rain, Chemosphere, 2022, 291(P1), 132699,
DOI: 10.1016/j.chemosphere.2021.132699.

255 Q. Xiu, S. Zhao, X. Yang, S. Sun, Y. Dai, L. Duan, et al.,
Warrior's armor: Study on the aging of suldated micro-
sized zero valent iron in air and its subsequent reactivity
for chloramphenicol degradation in different acid
systems, Chemosphere, 2021, 285(June), 131422, DOI:
10.1016/j.chemosphere.2021.131422.
© 2024 The Author(s). Published by the Royal Society of Chemistry
256 T. A. Formentini, G. Cornelis, J. P. Gustafsson, K. Leicht,
C. Tiberg, B. Planer-Friedrich, et al., Immobilizing arsenic
in contaminated anoxic aquifer sediment using suldated
and uncoated zero-valent iron (ZVI), J. Hazard Mater.,
2024, 462(June 2023), 132743, DOI: 10.1016/
j.jhazmat.2023.132743.

257 J. Shen, H. Chen, N. Xu, Y. Liu, W. Sun, X. Ma, et al.,
Molybdate modied nano zero-valent iron via green
synthesis enhances Cr(VI) reduction during their
cotransport in water-saturated porous media, Chem. Eng.
J., 2024, 479(September 2023), 147599, DOI: 10.1016/
j.cej.2023.147599.

258 R. Wirecka, D. Lachowicz, K. Berent, M. M. Marzec and
A. Bernasik, Ion distribution in iron oxide, zinc and
manganese ferrite nanoparticles studied by XPS
combined with argon gas cluster ion beam sputtering,
Surface. Interfac., 2022, 30, 101865.

259 H. Yang, L. Deng, H. Yang, Y. Xiao and D. Zheng,
Promotion of nitrogen removal in a zero-valent iron-
mediated nitrogen removal system operated in co-
substrate mode, Chemosphere, 2022, 307(P2), 135779,
DOI: 10.1016/j.chemosphere.2022.135779.

260 Y. An, Q. Dong and K. Zhang, Bioinhibitory effect of
hydrogenotrophic bacteria on nitrate reduction by
nanoscale zero-valent iron, Chemosphere, 2014, 103, 86–91.

261 X. Sheng and S. Lyu, Insights into enhanced removal of
uoranthene by suldated nanoscale zero-valent iron: In
aqueous solution and soil slurry, Chemosphere, 2023,
312(P1), 137172, DOI: 10.1016/j.chemosphere.2022.137172.

262 O. Mohammed, K. G. Mumford and B. E. Sleep, Effects of
hydrogen gas production, trapping and bubble-facilitated
transport during nanoscale zero-valent iron (nZVI)
injection in porous media, J. Contam. Hydrol., 2020,
234(June), 103677, DOI: 10.1016/j.jconhyd.2020.103677.
RSC Adv., 2024, 14, 30411–30439 | 30439

https://doi.org/10.1016/j.chemosphere.2022.135503
https://doi.org/10.1016/j.jece.2019.103521
https://doi.org/10.1016/j.jwpe.2020.101817
https://doi.org/10.1016/j.jwpe.2020.101817
https://doi.org/10.1016/j.jwpe.2022.102720
https://doi.org/10.1016/j.jwpe.2022.102720
https://doi.org/10.1016/j.chemosphere.2021.132699
https://doi.org/10.1016/j.chemosphere.2021.131422
https://doi.org/10.1016/j.jhazmat.2023.132743
https://doi.org/10.1016/j.jhazmat.2023.132743
https://doi.org/10.1016/j.cej.2023.147599
https://doi.org/10.1016/j.cej.2023.147599
https://doi.org/10.1016/j.chemosphere.2022.135779
https://doi.org/10.1016/j.chemosphere.2022.137172
https://doi.org/10.1016/j.jconhyd.2020.103677

	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications

	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications

	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications

	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications
	Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications


