
D1164–D1171 Nucleic Acids Research, 2022, Vol. 50, Database issue Published online 11 October 2021
https://doi.org/10.1093/nar/gkab897

CeDR Atlas: a knowledgebase of cellular drug
response
Yin-Ying Wang1,2,†, Hongen Kang1,2,3,4,†, Tianyi Xu2,3,5, Lili Hao 2,3,5, Yiming Bao2,3,5,* and
Peilin Jia 1,2,3,*

1CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of
Sciences, Beijing 100101, China, 2China National Center for Bioinformation, Beijing 100101, China, 3National
Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,
4University of Chinese Academy of Sciences, Beijing 100049, China and 5CAS Key Laboratory of Genome Sciences
and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China

Received August 15, 2021; Revised September 08, 2021; Editorial Decision September 17, 2021; Accepted September 24, 2021

ABSTRACT

Drug response to many diseases varies dramatically
due to the complex genomics and functional features
and contexts. Cellular diversity of human tissues,
especially tumors, is one of the major contributing
factors to the different drug response in different
samples. With the accumulation of single-cell RNA
sequencing (scRNA-seq) data, it is now possible to
study the drug response to different treatments at
the single cell resolution. Here, we present CeDR
Atlas (available at https://ngdc.cncb.ac.cn/cedr), a
knowledgebase reporting computational inference of
cellular drug response for hundreds of cell types
from various tissues. We took advantage of the high-
throughput profiling of drug-induced gene expres-
sion available through the Connectivity Map resource
(CMap) as well as hundreds of scRNA-seq data cov-
ering cells from a wide variety of organs/tissues, dis-
eases, and conditions. Currently, CeDR maintains the
results for more than 582 single cell data objects for
human, mouse and cell lines, including about 140
phenotypes and 1250 tissue-cell combination types.
All the results can be explored and searched by key-
words for drugs, cell types, tissues, diseases, and
signature genes. Overall, CeDR fine maps drug re-
sponse at cellular resolution and sheds lights on the
design of combinatorial treatments, drug resistance
and even drug side effects.

INTRODUCTION

Drug response to many diseases varies dramatically due
to the complex genomics and functional features and con-

texts (1–3). As the majority of cellular systems are heteroge-
neous (4), the bulk RNA sequencing (RNA-seq) technolo-
gies may only measure the average expression level that in-
cludes a diverse collection of cells concealing cell type spe-
cific signatures with different levels of response to treat-
ment (5). Much of the diversity in individual drug response
can be attributed to cellular heterogeneity including cell
types, proportions, cell-cell communications, and temporal-
spatial distributions and compositions of cells in tissues that
are critical to diseases (6,7). The inability to efficiently mea-
sure transcriptional sensitivities across diverse cell contexts
has limited our understanding of how drug response dif-
fers across genomic and molecular cell states, which could
be critical for predicting the therapeutic outcome of patient
tumors (8). The recent advance in single-cell RNA sequenc-
ing (scRNA-seq) technologies has made it possible to mea-
sure the transcriptomes at the single cell resolution (9,10).
Over the past few years, nearly a thousand studies have been
conducted using scRNA-seq technologies to study the cell
types and related features in bulk tissues. However, a gap
has been existing to both experimentally and computation-
ally infer cellular drug response, which would provide refer-
ences for drug repurposing, drug combination design, and
new therapeutic development (11–16).

So far, many efforts have been made to develop compu-
tational approaches to predict drug response. The pioneer
work led by the Connectivity Map (CMap) project has ex-
amined 1309 drugs with different doses in five cell lines to
quantitatively measure drug induced gene expression pro-
files (17). With such a rich resource, many studies imple-
mented the concept of ‘anti-correlation between drug and
disease signatures’ for various drug related researches such
as drug repurposing and combination (18–20). The underly-
ing assumption is that, for a query transcriptome, candidate
drugs can be prioritized if such drugs have drug-induced
perturbations (as measured by gene expression) in the
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opposite direction as the query transcriptome. With the
rapid accumulation of transcriptomics data, this method
has been adapted and applied in various cases. For example,
in a study searching for candidate drugs that can be repur-
posed for schizophrenia, So et al. searched for drugs that
induced ‘anti-correlation’ gene signatures compared to the
GWAS-imputed gene expression and interestingly, the set of
candidate drugs they identified was significantly enriched
with antipsychotics (21). Such an approach has also been
implemented to identify candidate drugs in cancer. How-
ever, due to the substantial intra- and inter-tumor hetero-
geneity, advanced procedures are in pressing need to incor-
porate changes in cell types, cell states, cell–cell communica-
tions and proportions and accurately infer drug responses
in the precision medicine practice.

To this end, we present CeDR Atlas, a knowledgebase re-
porting computational inference of cellular drug response
for hundreds of cell types from the major organs and
tissues in human and mouse. We took advantage of the
high-throughput profiling of drug-induced gene expression
available through the CMap project as well as hundreds
of scRNA-seq data representing cells from a wide variety
of organs/tissues, diseases, and conditions. For each cell
type, we conducted anti-correlation screening and identi-
fied drugs that induced gene expression with the opposite
direction compared to the cell transcriptome. CeDR is aug-
mented with user-friendly interfaces and functions, allow-
ing users to easily explore the cell types with associated
drugs as well as the corresponding gene signatures. CeDR
provides direct references for cellular drug response profiles
including not only disease cell types but also normal cell
types. The comprehensive cell-type specific drug sets can be
used for design of combinatory treatments and identifica-
tion of drug resistance and even drug side effects.

MATERIALS AND METHODS

Data collection

We conducted a comprehensive literature-mining and col-
lected single-cell transcriptome data from hundreds of indi-
vidual studies (Figure 1A). All the datasets we used in this
study were derived from public resources and the detail in-
formation for each dataset can be found in Supplementary
Data. In the current version, CeDR has included the fol-
lowing data.

Human cell landscape. The raw expression matrix was
downloaded from http://bis.zju.edu.cn/HCL/ (22) consist-
ing of more than 720 000 single cells with cell type annota-
tions from about 50 human tissues. This dataset presents
a comprehensive annotation for major human normal
organs/tissues.

Gene expression nebulas (GEN). We collected the human
scRNA-seq datasets from the GEN database (https://ngdc.
cncb.ac.cn/gen/) (23) generated using the 10× Genomics
platform. As a result, a total of 42 projects consisting of
294 high-quality datasets were derived and curated. All of
these datasets were processed by using a one-stop analysis
pipeline implemented by the CellRanger (24) (v3.1.0) soft-
ware for quality control, sample de-multiplexing, barcode

processing, and generation of feature-barcode matrices. Cell
type annotation at the single cell level was performed by us-
ing the R package SingleR (25) based on five transcriptomic
datasets as built-in references.

Manually curated human scRNA-seq data. We collected
publicly available human scRNA-seq data as well as their
metadata and cell type annotations by searching PubMed
(26) and public databases, such as Gene Expression Om-
nibus (GEO) (27), Single Cell Portal of Broad Institute
(https://singlecell.broadinstitute.org/single cell) and Array-
Express Archive of Functional Genomics Data (https://
www.ebi.ac.uk/arrayexpress/) (28). As a result, 51 projects
with 2 421 320 cells were collected containing data for 55
tissues and 1313 tissue-cell types.

Mouse cell atlas. The datasets in Mouse Cell Atlas
(29) were downloaded from GEO with accession ID
GSE108097. It contains more than 1 200 000 single cells
from about 28 tissues and 170 tissue-cell type clusters.

Tabula muris data. The Tabula Muris (30) mouse atlas ex-
pression data and cell annotation files were downloaded
from (https://tabula-muris.ds.czbiohub.org/). This dataset
contains nearly 100 000 cells from 20 organs and tissues gen-
erated by either the FACS-based or droplet-based scRNA-
seq technologies.

Manually curated mouse scRNA-seq data. We also manu-
ally curated 16 mouse projects with 655 950 cells from GEO,
which finally resulted in 25 tissues and 745 tissue-cell types.

Cancer cell line single-cell dataset. The cancer cell line
scRNA-seq datasets were downloaded from Single Cell Por-
tal of Broad Institute with the accession ID SCP542 (31). It
contains 19 cancer cell lines, including 195 cancer-cell types
and 53 298 cells.

Quality control and preprocessing

In the current version of our database, we mainly collected
the expression data that have well-annotated cell types.
Datasets with unavailable annotations were discarded from
further analyses. All datasets were preprocessed using the
Python package Scanpy (32) and recorded as an AnnData
object in Python. Genes detected in less than five cells were
filtered out. Cells with a mitochondrial gene proportion
(mtDNA%, the fraction of mitochondrial transcript counts
of the total transcript counts) greater than 5% were fur-
ther filtered out due to the low-quality. Raw count expres-
sion matrices were subsequently normalized using the nor-
malize per total function and log transformed. For each
project, we split it into sub-objects based on the phenotype
or disease status. For each single-cell expression sub-object,
we kept only the cell types that contained at least 20 cells
and further removed the cell types that had less than 500 ex-
pressed genes (Figure 1B). In summary, we processed about
120 projects, resulting in 582 data objects, 140 phenotypes
and 1250 tissue-specific cell types for human, mouse and
cell lines. More detailed information for all studies can be
found in Supplementary Table SI.
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Figure 1. Schematic overview of CeDR. (A) Data curation and collection from different sources. (B) Data quality control and preprocessing. (C) Illustration
of the algorithm to infer cellular drug response.

Drug induced gene expression data

To systematically analyze the cellular drug sensitivities
across different tissues and perturbations, we assembled
drug induced gene signatures from the CMap database (ver-
sion: build 02) (17) for 1309 drugs with different doses origi-
nally generated using the Affymetrix Gene Chips. We down-
loaded the rank matrix based on the differentially expressed
gene analyses of drug treatments (drug-treated versus no
drug-treated). The Affymetrix (33) probe set identifiers were
mapped with gene symbols for the following analyses.

Cell type-drug response analysis (CeDR)

To predict cellular drug response, we implemented the anti-
correlation screening procedure. Specifically, for each query
transcriptome (which can be from bulk tissues or single
cells), candidate drugs can be prioritized if they have drug-
induced perturbations (as measured by gene expression) in
the opposite direction as the query transcriptome. To this
end, for each cell type, we first rank the expressed genes (de-
fined as those with non-zero average expression values) ac-
cording to their average expression across all cells for the
same type. The k most highly expressed genes and the k
most lowly expressed genes were then selected as the sig-
nature gene set for the cell type (Figure 1C, ‘within cell
type’). Next, we conducted differentially expressed gene
(DEG) analysis for each cell type as compared to other cell
types, which is a standard procedure in scRNA-seq analysis.
DEGs identified in this way are deemed as cell-type specific
genes. We similarly selected the k most highly specifically
expressed genes and the k most lowly specifically expressed
genes as the signature gene set for the ‘across cell type’ infor-
mation (Figure 1C). The ‘within cell type’ gene set and the
‘across cell type’ gene set were combined to define the cellu-
lar signature genes. The parameter k can be defined manu-

ally. In this work, we used k = 300 and the cellular signature
genes contain a total of 1200 genes.

For each compound, we also defined a signature gene set
based on their rank as provided by the CMap data, i.e. the
top k and bottom k genes. In this case, we selected k = 600
to match the size of cellular signature genes. Following the
concept of ‘anti-correlation’, we next constructed contin-
gency tables using the down-regulated signature genes of
each drug and the cellular signature genes that were highly
(or highly specifically) expressed, followed by the chi-square
test for drug and cell type association test (denoted as P-
value 1). Similarly, we constructed contingency tables us-
ing the up-regulated signature genes of each drug and the
cellular signature genes that were lowly expressed or lowly
specifically expressed, followed by the chi-square test (de-
noted as P-value 2). The two contingency tables should be
constructed separately to ensure that the chi-square test was
conducted purposely to identify the anti-correlation rela-
tionship. Moreover, we required that the expression of the
overlapping genes from the two signature sets of the drug
and the cell type should also be significantly anti-correlated,
which is examined by Spearman correlation coefficient.

For each data object, to provide a relatively comprehen-
sive resource, we provide in CeDR the drug and cell type as-
sociations with nominal significance (P-value 1 < 0.05 and
P-value 2 < 0.05). In addition, we present the enrichment
and anti-correlation P-values for each associated pair, as
well as the signature genes. The functional enrichment anal-
ysis for the corresponding signature genes were performed
by GSEA (34).

Description of the website and tools

CeDR aims to provide references for cell type and drug
associations across different tissues and species. Table 1
summarized the data sets and results deposited in CeDR.
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Table 1. Data summary of CeDR

Source Projects Subjects Phenotype
Tissue-cell

type Association

Human 93 460 93 684 188 157
Mouse 15 102 27 370 42 660
CCLE 1 20 20 196 10 299
Total 109 582 140 1250 241 116

Currently, CeDR organized all data into 109 projects, in-
cluding 93 from human, 15 from mouse, and one from cell
lines. These projects contained a total of 582 datasets (460
for human, 102 for mouse, and 20 for cell lines), providing
information for 140 phenotypes (human: 93, mouse: 27, cell
line: 20) and 1250 cell types (human: 684, mouse: 370, cell
line: 196). As aforementioned, we selected associations with
nominal significance based on both the chi-square test and
the Spearman correlation analysis. This resulted in a total
of 241 116 associations in CeDR.

Web interface

As shown in Figure 2, the CeDR interface allows users to
intuitively browse and search for any data in the database.
The home page provides an overview of phenotypes across
different tissues and a quick search function for users to
query the database for species, tissues, cell types, or phe-
notypes conveniently (Figure 2A and B). Datasets have
been classified by tissues where users can select relevant
dataset in a pop-up window to retrieve the corresponding
phenotypes.

Users can also navigate the whole database through
‘Browse’ functions. The ‘Browse’ page displays a general ta-
ble of all sub-objects and provides data advanced search
functions (Figure 2C). The visible part of the table row
contains the major meta information of the data, includ-
ing Source, Project ID, Tissue, Phenotype, Cell type, Drug
and other information specific to this sub-object. Users
can select a sub dataset of interest and clicking the corre-
sponding ‘Dataset ID’ button will enable the browse of de-
tailed results for tissue specific cell type-drug associations.
In particular, cell types-drug associations with significant
P-values will be returned. The result page contains an intu-
itive table with more detailed information about the sub-
object. Moreover, the visualization of cell types, fraction
and predicted association network will be displayed (Fig-
ure 2D). Moving the mouse to a point in the UMap dia-
gram, and the coordinate of the cell-type information will
be displayed. Clicking the ‘Detail’ button for each asso-
ciation, the gene signature with GSEA prerank result in
drug and single cell expression data will be further displayed
(Figure 2E).

We also provide multiple search function pages for users
to identify cell type, drug, disease or tissue of interest. For a
user-input query string, we will search both the short names
and the full names of interest. In addition, users can down-
load all data via the ‘Download’ page. We also built a de-
tailed tutorial for the usage in the documentation page to
briefly describe the data collection, preprocessing, and anal-
ysis (https://ngdc.cncb.ac.cn/cedr/documentation).

Application of CeDR: pancreas as an example

CeDR provides direct references for cellular drug response
profiles including not only disease cell types but also nor-
mal cell types which can be further used for design of com-
binatory treatments, drug resistance and even drug side ef-
fects. As shown in Figure 3A, treatment with a single drug
on normal cells may lead to side effects; on the other hand,
treatment on disease cells may not be always as efficient
as expected due to the sample heterogeneity. Investigating
drug response at single-cell level can provide insight into
combination treatment which can maximize the efficiency
by killing disease cells and minimize the side effect to the
normal cells.

Here, we select human pancreas as an example to indicate
the application of CeDR in drug treatment. Pancreas is part
of the human endocrine system and mainly produces hor-
mones and digestive enzymes. To study the major cell type in
pancreas, we integrated nine scRNA-seq data sets from dif-
ferent studies using our recently developed method INSCT
which based on batch-aware triplet neural networks (35,36).
These data sets included four normal pancreas tissues, three
type I diabetes, one type II diabetes and one pancreatic
cancer dataset and were expected with strong batch effects.
By applying INSCT, we successfully corrected the poten-
tial batch effects and reported the primary cell types in pan-
creas such as acinar, duct, alpha, beta, delta, gamma, and
epsilon cells (37,38) (Figure 3B). With CeDR, we screened
the compounds in CMap across all the cell types based on
the signature genes defined above. Among our results, some
of the top ranked drugs have already been reported sensitive
to pancreas. To better visualize the results, we construct a
cell type-drug association network (Figure 3C).

In normal cells, we particularly examined the reversed ac-
tivity. Our results showed that the drug dapsone had ad-
verse effects with normal beta cells (P-value = 4.81 × 10–14),
macrophage (P-value = 1.13 × 10–10), alpha cells (P-
value = 1.15 × 10–12), acinar cells (P-value = 1.26 × 10–9)
and fibroblast cells (P-value = 6.55 × 10–11). Dapsone is
an antibiotics and anti-inflammatory medication typically
used for skin disorders. Previous reports have indicated that
dapsone can induce pancreatitis, especially acute pancre-
atitis (AP) (39), and beta cell dysfunction is involved in
the early stages in pancreatitis (40). In addition, it is well
known that macrophage cells can secrete proinflammatory
cytokines and further expedite the formation of pancreatic
fibrosis in chronic pancreatitis (CP) (41). Moreover, prema-
ture activation of digestive enzymes in acinar cells may lead
to the onset of AP. Thus, the cell types we identified well sup-
ported previous studies. Importantly, the signature genes as-
sociated with dapsone and cell types are also significantly
enriched in GTEx (42) pancreas and adipose tissues as well
as cytoplasmic translation pathways (Figure 3D). Although
the functions of pancreas associated adipose tissue (PAT)
are still unknown, recent studies have indicated that PAT
released adipokines may protect the pancreas against the
dysfunction of metabolism (43). These results provided in-
sights into understanding the potential mechanism of the
dapsone induced side effect in pancreatitis.

On the contrary, by comparing the results in normal and
tumor cells, CeDR results can be used to infer the poten-

https://ngdc.cncb.ac.cn/cedr/documentation
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Figure 2. Screenshots of web pages for CeDR. (A) The web images in the home page allow users to switch sources and tissues with detailed data summary
information and phenotypes. (B) Quick search functions in the home page. (C) The browse page allows users to browse and search all the project, tissues,
phenotypes and other detailed information. (D) Summary of the selected dataset and cell type-drug association network. (E) Detailed results for each cell
type with associated drugs and corresponding signature genes.

tial drugs that can be repurposed individually for the treat-
ment of pancreas cancer. For example, numerous reports
have indicated that B cells can promote pancreatic tumori-
genesis and have been investigated as a potential target in
cancer treatment (44). In our results, the compound meflo-
quine, previously used to treat malaria, was suggested to
be effective for B cells (P-value = 3.65 × 10–12). This is
consistent with previous reports that malaria drugs may
improve the effectiveness in cancer therapies. Moreover,
tumor-associated macrophages (TAM) as versatile immune
cells can lead to a variety of malignant changes in pancreatic
cancer (45). Our results suggested that betulin and narin-
genin are potential drugs associated with TAM for pancre-
atic cancer treatment. Indeed, betulin has already been sug-
gested as a potent anticancer agent based on a comprehen-
sive review and naringenin was reported to decrease inva-
siveness and metastasis (46,47). Among the signature genes
in pancreatic cancer scRNA-seq, there were well-known
genes highly expressed in pancreatic cancer, such as OLR1,
LSP1, FGL2 (Figure 3E) (48). Interestingly, our results can
also be used to infer drug combinations in the treatment of
cancer. For instance, the combined treatment with narin-
genin and mefloquine may potentially inhibit the growth
and metastasis of pancreatic cancer cells without damag-
ing the normal cells. Notably, naringenin has already been
identified as a combination therapy with hesperetin for pan-
creatic cancer (49). Collectively, these results demonstrated
that CeDR can be used as a valuable resource for better in-
vestigation of tissue heterogeneity and drug response at the
single cell level.

DATABASE DESIGN AND UPDATES

CeDR is hosted by a local server with a Centos Linux
7.4 environment. It is constructed using the Java Spring
Boot (https://spring.io/projects/spring-boot) as a back-end
RESTful web service framework. The cell type and drug as-
sociation results are hosted by the MySQL Database service
(https://www.mysql.com). Front-end user interfaces are de-
signed using the React (https://reactjs.org) and Umi (https:
//umijs.org) frameworks, which are scalable enterprise-class
front-end application frameworks allowing flexible main-
tenance and extension in future. Ant Design (https://ant.
design) is used as the UI library which contains a set of
high-quality components and demos. Furthermore, we used
the charting library available through HighCharts (https:
//www.highcharts.com/) to implement interactive charting
and data visualization. The CeDR resource will be updated
twice per year depending on the number of newly published
scRNA-seq, especially those with cell type annotations.

CONCLUDING REMARKS AND FUTURE DEVELOP-
MENT

A large number of scRNA-seq datasets have been generated
to decode the cell type compositions and expression hetero-
geneity across different tissues. With these available data,
CeDR provides direct references for cellular drug response
profiles and has implications in various future applications.
First, many cells deposited in our database were identified
from disease tissues, such as tumor tissues from cancer pa-

https://spring.io/projects/spring-boot
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Figure 3. Drug response at the single cell Level: Pancreas as an example. (A) Tissue subpopulations maintain diverse response to different drugs. (B) UMap
visualization for major cell types across different datasets. (C) Cell type-drug associated network. The circular node represents cell types and the hexagon
denotes associated drugs. Different interactions refer to treatments or side effects and the shape of the edge denotes the corresponding phenotypes. Here,
only the top 10 drugs with corresponding cell types were shown in (C). (D) Functional enrichment analysis for signature genes referring to acinar-dapsone
association. (E) Matrix plot of signature genes in pancreas cancer scRNA-seq dataset referring to buetulin-macrophage association.

tients, post-mortem human brain samples from Alzheimer’s
disease, and pancreatic tissues from patients with type 2 di-
abetes. We identified candidate drugs that were consistent
with previous reports. Second, the comprehensive cell-type
specific drug sets can be used for design of combinatory
treatments. In cancer samples, cellular heterogeneity plays
important roles in shaping the actual drug response and
eventually leads to drug resistance. Identification of drugs,
or drug combinations, that can kill cancer cells but not nor-
mal cells would be of high interest in precision medicine.
Third, CeDR includes not only disease cell types but also
normal cell types. The cellular drug response to the normal
cell types would provide new insights for drug side effects.

Due to the limitation of well-known tumor-related
scRNA-seq as well as the cell annotation information, the
drug response analysis for tumors did not include all tissues.
However, with the rapidly evolving technologies in next-
generation sequencing, we expect more data at the single cell
level to be generated in the near future, especially tumor re-
lated datasets. We will continuously collect and curate the
emerging single-cell transcriptome data and conduct cel-
lular drug response analyses for different tissues and phe-
notypes. In addition to scRNA-seq, other single cell tech-
niques, such as scDNA-seq, scRNA-seq and scATAC-seq,

are also valuable resources to investigate drug response. We
will incorporate more drug treatment application tools for
various types of data and develop CeDR as a comprehen-
sive database for cellular drug response. Future database
updates will thus include and integrate the genomic and
transcriptome profiles of individual cells. We believe that
CeDR will be a useful resource for the single-cell and drug
design research community.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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