
Pseudomonas aeruginosa Exploits Lipid A and
Muropeptides Modification as a Strategy to Lower Innate
Immunity during Cystic Fibrosis Lung Infection
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Abstract

Pseudomonas aeruginosa can establish life-long airways chronic infection in patients with cystic fibrosis (CF) with pathogenic
variants distinguished from initially acquired strain. Here, we analysed chemical and biological activity of P. aeruginosa
Pathogen-Associated Molecular Patterns (PAMPs) in clonal strains, including mucoid and non-mucoid phenotypes, isolated
during a period of up to 7.5 years from a CF patient. Chemical structure by MS spectrometry defined lipopolysaccharide
(LPS) lipid A and peptidoglycan (PGN) muropeptides with specific structural modifications temporally associated with CF
lung infection. Gene sequence analysis revealed novel mutation in pagL, which supported lipid A changes. Both LPS and
PGN had different potencies when activating host innate immunity via binding TLR4 and Nod1. Significantly higher NF-kB
activation, IL-8 expression and production were detected in HEK293hTLR4/MD2-CD14 and HEK293hNod1 after stimulation
with LPS and PGN respectively, purified from early P. aeruginosa strain as compared to late strains. Similar results were
obtained in macrophages-like cells THP-1, epithelial cells of CF origin IB3-1 and their isogenic cells C38, corrected by
insertion of cystic fibrosis transmembrane conductance regulator (CFTR). In murine model, altered LPS structure of P.
aeruginosa late strains induces lower leukocyte recruitment in bronchoalveolar lavage and MIP-2, KC and IL-1b cytokine
levels in lung homogenates when compared with early strain. Histopathological analysis of lung tissue sections confirmed
differences between LPS from early and late P. aeruginosa. Finally, in this study for the first time we unveil how P. aeruginosa
has evolved the capacity to evade immune system detection, thus promoting survival and establishing favourable
conditions for chronic persistence. Our findings provide relevant information with respect to chronic infections in CF.
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Introduction

The strategy of innate immune recognition is based on the

detection of constitutive and conserved products of microbial

metabolism called pathogen-associated molecular patterns (PAMPs)

or alternatively microbe-associated molecular patterns (MAMPs),

since they are also common to all microbe and not only to the

pathogen version [1]. These molecular signatures are recognized by

the host through a family of pattern recognition receptors (PRRs),

which includes Toll-like (TLRs) and nucleotide binding and

oligomerization domain-like receptors NLR (Nod-Like receptor)

[2]. For example, lipid A contained in bacterial lipopolysaccharide

(LPS) acts as a PAMP and is sensed by the cognate PRR TLR4-

MD2, while different motifs contained in peptidoglycan (PGN) of

Gram-positive or Gram-negative bacteria are recognized by the

intracellular PRRs Nod1 and Nod2 [3,4]. Interaction of PAMPs

with PRRs results in activation of antimicrobial responses [1], such

as production of antimicrobial peptides and secretion of pro-

inflammatory cytokines, necessary for pathogen’s eradication.

However, many pathogens have evolved adaptive strategies for

subverting the host innate immune system by evading detection by

PRRs and/or impairing the downstream cellular signalling pathway

[5]. In this study, we present evidence that Pseudomonas aeruginosa

exploits PAMPs modification as a strategy to lower innate immune

system detection and signalling during chronic stages of lung

infection in fibrosis cystic (CF) patients.

CF lung disease is characterized by transient airway P. aeruginosa

infections and excessive neutrophil-dominated inflammation early

in life followed by permanent chronic infection that causes

persistent respiratory symptoms and decline in lung functions [6].

The long term colonization of CF airways selects pathoadaptive

variants with several features which differentiate late P. aeruginosa
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isolates from the initially acquired strain [7,8]. P. aeruginosa strains

that initiate infections are characterized by a large arsenal of

virulence factors, such as many toxic factors, like pyocyanin, a type

III secretion system (T3SS), several proteases, lipases and

phospholipases, rahmnolipids and other factors [9]. In contrast,

these invasive functions are selected against in CF chronic

infection leading to less virulent but more persistent phenotypes

including alginate producing mucoid strains [7]. However, besides

all these relevant features, which contribute to either forms of

infection, the LPS modification appears to be one of the main

factors in the adaptation of this pathogen during chronic

infections. It is already known that P. aeruginosa acute infection

also implies a consistent change in LPS lipid A structure [10] even

though no conclusive information are present on the putative LPS

lipid A changes in the acute to chronic evolution of the infection.

In general, production of fully hexa-acylated lipid A is associated

with a more strong TLR4 mediated inflammatory response while

lipid A with lower levels of acylation triggers reduced cellular

responses [11]. However, lipid A isolated from clinical strains of P.

aeruginosa often results in a blend of different species [10] with a

resulting biological activity that might be different when compared

to single species bioactivity. Lipid A modifications are regulated by

the environmental sensor-kinase transcriptional regulatory system

PhoP-PhoQ and catalysed by PagP, PagL and LpxO which lead to

acylation, deacylation and hydroxylation of the molecule,

respectively [12,13,14].

As for PGN, an essential cell wall component, no data have been

produced so far on the structure itself and eventual alterations in

infection by P. aeruginosa. PGN changes may even more advantage

bacterial life within the host and contribute to establish successful

chronic infection in CF patients. In fact, in these last years a growing

body of studies are highlighting the role played by muropeptide

receptors Nod1 and Nod2 in the development of both antibacterial

responses and chronic inflammation, such as Crohn’s disease and

asthma [15]. To fill the gap in the context of CF disease mediated by

P. aeruginosa infection we analysed, at chemical and biological level,

the LPS and PGN from three clonal strains of one P. aeruginosa

lineage. P. aeruginosa strains were isolated at the onset of infection

and after years of chronic colonization from a CF patient with a

severe course of the airways infection [8]. Our results showed that

the biological activity of LPS and PGN is consistent with a reduced

immunostimulatory potential in accordance with the need to evade

immune system and favour survival during the course of the chronic

P. aeruginosa infection.

Results

P. aeruginosa Lipid A Chemical and Genetic Modifications
in Clonal Strains of Early Colonization and Late Chronic
Infection of CF Patient

The LPS of P. aeruginosa sequential strains AA2, isolated at the

onset of chronic colonization, and AA43 (mucoid) and AA44,

isolated before patient’s death (Figure S1), was extracted by

conventional methods (see Supporting Information File S1) and

showed the typical ladder like pattern by SDS-PAGE electropho-

resis (data not shown). The O-repeating unit resulted identical in all

three strains and the structure is already reported elsewhere [16].

The structure of LPS lipid A of the three P. aeruginosa strains

(Figure 1) was determined by chemical analyses and MS

spectrometry (see Supporting Information File S1 for the whole

structure determination). As shown in Figure 1, MALDI negative

ion spectra revealed that LPSs extracted from AA2 and AA43

presented the same lipid A species even though with a different

relative abundance. In both cases, MALDI mass spectra showed a

main peak that matched with a penta-acylated lipid A constituted

by a bis-phosphorylated disaccharide backbone carrying a 10:0

(3-OH) in ester linkage on GlcN II and two 12:0 (3-OH) in amide

linkage on both GlcN residues. Furthermore, both 12:0 (3-OH)

were substituted by a secondary fatty acid, a 12:0 on GlcN II and a

12:0 (2-OH) on the GlcN I. Both lipid A blend also contained a

tetra-acylated lipid A deriving from the previous by loss of the only

10:0 (3-OH) in ester linkage on GlcN II. An asymmetric hexa-

acylated lipid A bearing the extra 16:0 that esterifies the 10:0

(3-OH) on GlcN II was present almost exclusively in the lipid A

blend of strain AA43. Minor species carrying two secondary 12:0

(2-OH) fatty acids and others lacking a phosphate group were also

present.

As for AA44 completely different lipid A were found, in which the

main difference with those above was the presence of a further 10:0

(3-OH) on GlcN I. The most prevalent one was a symmetric hexa-

acylated lipid A constituted by a bis-phosphorylated disaccharide

backbone carrying two 10:0 (3-OH) in ester linkage and two 12:0

(3-OH) in amide linkage. Further, both amide chains were

substituted by a secondary fatty acid, a 12:0 and a 12:0 (2-OH)

on the GlcN II and I, respectively. In addition, hepta-acylated lipid

A bearing the additional 16:0 on GlcN II species was present.

Lipid A modifications in AA2, AA43 and AA44 were stable as

they were not lost after serial passages in vitro, which would suggest

the presence of genetic mutations. Sequence analysis and multiple

alignment of phoP, phoQ, pagL, lpxO1 and lpxO2 genes responsible

for modifying lipid A, revealed pagL mutation in AA44 but not in

AA2 and AA43 strains (Table S1 in Supporting Information File

S1 and Figure S2). In particular, insertion of four nucleotides

(CCTG) at position 502 lead to a frameshift mutation.

LPS of P. aeruginosa Clinical Isolates Stimulates Different
Inflammatory Response in Human Cells (HEK 293-hTLR4/
MD2-CD14, C38 and THP-1) Including Those of CF Origin
(IB3-1)

HEK 293-hTLR4/MD2-CD14 were exposed to different LPSs

concentration (10, 50 and 100 ng/mL) of P. aeruginosa AA2, AA43,

AA44 and PAO1 for 4 h and NF-kB activation was evaluated

through the assessment of luciferase activity (Figure 2A). LPS of P.

aeruginosa AA2 induced a significantly higher NF-kB activation

with respect to cells exposed to LPSs of AA43 and AA44 (LPS

AA2 vs AA43 and AA44 p,0.01) in a dose dependent manner.

IL-8 expression was measured through real time quantitative

(q)-PCR after 4 h stimulation, as above (Figure 2B). In accordance

with NF-kB activity, the level of IL-8 expression increased higher

after stimulation with LPS from AA2 with respect to LPSs from

AA43 and AA44 (LPS AA2 vs AA43 and AA44 p,0.01). For

ELISA assay, HEK 293-hTLR4/MD2-CD14 were stimulated for

24 h with P. aeruginosa LPS as above (Figure 2C). The level of IL-8

release induced by LPS from AA2 was significantly higher than

that induced by LPSs of AA43 and AA44 (LPS AA2 vs AA43 and

AA44 p,0.05). Under all conditions, stimulation with LPS from

PAO1 was considerably higher than those induced by LPSs from

the clinical isolates (LPS PAO1 vs AA2, AA43 and AA44 p,0.05)

(Figure 2A, B and C).

Next, we tested CF respiratory cells (IB3-1) and the isogenic

corrected cells (C38) after LPS stimulation. When tested for the pro-

inflammatory markers, in IB3-1 cells LPS from AA2 induced

significantly more IL-8 and TNF-a expression, assessed by real time

q-PCR, when compared with LPSs from AA44 and AA43 (LPS

AA2 vs AA43 and AA44 p,0.05) (Figure 3A and C). IL-8 protein

release, measured by ELISA, was consistent with expression (LPS

AA2 vs AA43 and AA44 p,0.05) (Figure 3B). Similar results were

P. aeruginosa PAMPs Adaptation
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Figure 1. Chemical structure of P. aeruginosa lipid A. MALDI MS spectra of lipid A blend obtained by acid hydrolysis of LPS from P. aeruginosa
clinical strains isolated at the onset of chronic colonization (AA2) (A) and after years of chronic infection (AA43 and AA44) from a CF patient (B and C).
A difference of 238 Da corresponds to a 16:0 fatty acid residue whereas 170 corresponds to a 10:0 (3-OH) residue and 80 Da are indicative of a
phosphate group. The 16 Da difference is relative to the presence of a Hydroxy group at C-2 of the secondary 12:0 fatty acids. The non indicated ion
peaks are relative to the species already indicated and bearing sodium or potassium counter-ions.
doi:10.1371/journal.pone.0008439.g001
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obtained in C38 cells, even though these cells were generally less

responsive when compared to IB3-1. LPS from PAO1 was used as

positive control and stimulated both IB3-1 and C38 cells (Figure 3A,

B and C).

As levels of TNF-a secretion were undetectable in epithelial cell

lines, we evaluated LPS stimulation in differentiated macrophagic

THP-1 cells (Figure 3D). TNF-a protein release was significantly

higher after treatment with LPS from AA2 in comparison to that

induced by LPSs from AA43 and AA44 (LPS AA2 vs AA43 and

AA44 p,0.05). LPSs from PAO1 and E. coli OIII:B4 were used as

positive controls and both stimulated THP-1 cells.

Altered LPS Structure of P. aeruginosa Late Strains
Induces Low Leukocyte Recruitment and Cytokine
Patterns In Vivo

To address the question whether the differences in the lipid A

structures could affect the inflammatory response in vivo, we

analyzed leukocytes recruitment in the bronchoalveolar lavage

fluid (BALF) of C57Bl/6 mice exposed for 16 h to different LPS

structures of strains AA2, AA43 and AA44 by means of nasal

instillation. While there was no significant difference in monocytes

and lymphocytes number (data not shown), neutrophils profile

showed striking differences in total differential cell counts

(Figure 4A). Significant higher recruitment of neutrophils was

observed in mice exposed to LPS from AA2 strain in comparison

to those treated with LPSs from AA43 and AA44 (LPS AA2 vs

AA43 and AA44 p,0.001). Cytokines levels were tested in the

murine lung homogenates. MIP-2 level in lungs treated with LPS

from AA2 strain was significantly higher than those treated with

LPSs from AA43 and AA44 strains (LPS AA2 vs AA43 and AA44

p,0.001) (Figure 4B). Similar trends were obtained with IL-1b
and KC (Figure 4C and D).

Murine lung histopathology showed that the LPS from AA2

strain (Figure 5A and B) caused more severe lesions and leukocytes

recruitment in the airways than LPSs from AA43 and AA44

strains did (Figure 5C, D, E and F) indicating a reduced detection

for LPS isolated in the late P. aeruginosa strains.

Structural Analysis of P. aeruginosa PGN Fragments and
Muramyl Peptides in Clonal Strains of Early Colonization
and Late Chronic Infection

PGNs from strains AA2, AA43 and AA44 were digested by the

muramidase mutanolysin to generate the entire spectrum of

muropeptides. The generated PGNs fragments were reduced with

sodium borohydride, then identified by RP-HPLC and LC-MS

(Figure S3 and S4) [17,18]. The composition is reported in Table 1

(see Supporting Information File S1 for the whole structure

determination).

Despite the presence of common fragments in the muropeptide

blend deriving from the bacterial PGNs, the relative ratio among the

peaks sensibly changed among strains AA2, AA43 and AA44 and,

furthermore, distinctive chemical features were found in the structure

of some minor constituents of the muropeptides mixture (Table 1).

PGN of P. aeruginosa Early Strain Induces Higher
Inflammatory Response than Those of Late Strains in
Human Cells via Activation of Nod1

HEK293 cells were transfected with hNod1 or hNod2 and

stimulated with different concentrations of PGN of AA2, AA43

Figure 2. Stimulation of HEK 293-hTLR4/MD2-CD14 with LPS derived from the three clinical isolates of P. aeruginosa AA2, AA43 and
AA44. A) Fold of activation of NF-kB after 4 h of stimulation with different concentrations of LPS; commercial LPS of P. aeruginosa was used as a
control. B) IL-8 mRNA induction after stimulation with 100 ng/mL of LPS for 4 h. C) IL-8 secretion after stimulation with 100 ng/mL of LPS for 24 h.
Commercial LPS of PAO1 was used as a control. *p,0.05, **p,0.01, ***p,0.001 in the Student’s t-test.
doi:10.1371/journal.pone.0008439.g002
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and AA44 (0.5, 1 and 10 mg/mL) during 18 h. cTriDAP and

MDP were used as positive controls. In HEK293hNod1 cells,

PGN from AA2 strain induced a major NF-kB activation with

respect to PGNs from AA43 and AA44 in a dose dependent

manner (PGN AA2 vs AA43 and AA44 p,0.05) (Figure 6A). In

contrast with these results no NF-kB activation was found in

HEK293 cells expressing hNod2 under the same experimental

conditions applied for Nod1 (Figure 6D). IL-8 expression,

measured by real time q-PCR in HEK293hNod1 cells treated as

above, was significantly higher after stimulation with PGN of AA2

when compared to stimulation with PGNs from AA43 and AA44

(PGN AA2 vs AA43 and AA44 p,0.05) (Figure 6B). IL-8 secretion

was measured at 24 h post-transfection. PGN from AA2 strain

induced a higher IL-8 production compared to PGNs from AA43

and AA44 strains (PGN AA2 vs AA43 and AA44 p,0.05)

(Figure 6C). Transfection of HEK293-hNod1 cell monolayers with

a plasmid encoding siRNA for Nod1 prevented the PGNs of the

three P. aeruginosa strains to activate NF-kB (Figure 6A and B).

Likewise, IL-8 expression and production was abolished in the

presence of Nod1 siRNA (Figure 6C). None of PGN tested

activated IL-8 expression and secretion in HEK-293hNod2

(Figure 6E and F).

Next, Nod1 and Nod2 expression were confirmed in IB3-1 and

C38 cells in the absence or presence of stimuli by real time q-PCR

(data not shown). TNF-a and IL-8 expression by real time q-PCR

was measured at higher levels in IB3-1 cells treated with PGN

from AA2 in comparison to PGNs from AA43 and AA44 (PGN

AA2 vs AA43 and AA44 p,0.05) (Figure 7A and B). In agreement

with these results, levels of IL-8 proteins of cells stimulated with

PGN from AA2 were higher than those elicited by PGNs from

AA43 and AA44 (PGN AA2 vs AA43 and AA44 PGN p,0.05)

(Figure 7C). Similar results were obtained in C38 cells even though

these cells were generally less responsive when compared to IB3-1,

as showed above for LPS.

Discussion

In this work, we analysed the PAMPs chemical modification as

a strategy of P. aeruginosa to hijack genes involved in innate immune

responses and to favour survival in patients with CF. A major

Figure 3. Response of IB3-1, C38 and THP-1 cells after stimulation with LPS derived from the three clinical isolates of P. aeruginosa
AA2, AA43 and AA44. A) Fold of induction of IL-8 and C) TNF-a mRNA in IB3-1 and C38 cells after stimulation with 100 ng/mL of LPS for 4 h.
Commercial LPS of PAO1 was used as control. The values represent the expression levels relative to untreated IB3-1 (means6SD). B) IL-8 secretion
from IB3-1 and C38 cells after stimulation with 100 ng/mL of LPS for 24 h. LPS of PAO1 was used as control. D) TNF-a secretion from THP-1 after
stimulation for 6 h with 100 ng/mL of LPS derived from the clinical isolates AA2, AA43 and AA44. LPSs from P. aeruginosa serotype 1022 and from E.
coli serotype OIII:B4 (Sigma) were used as controls. *p,0.05, **p,0.01, ***p,0.001 in the Student’s t-test.
doi:10.1371/journal.pone.0008439.g003
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question, derived from previous reports [7,8], was whether P.

aeruginosa could establish life-long chronic infections in CF hosts

according with strategies used by a number of other bacterial

pathogens. Persistence is normally established after an acute

period of infection involving activation of both the innate and

acquired immune system. While the acute infection is usually fully

resolved by eliminating the invading bacteria, some bacteria

including Salmonella enterica sv typhi, Helicobacter pylori, Mycobacterium

tuberculosis and others survive and cause persistent life-long

infection by evading immune surveillance [19].

Chemical structure of LPS and PGN were determined for three

P. aeruginosa clones isolated from airways of a CF patient during a

period of 7.5 years. Our previous study showed that these P.

aeruginosa strains, which were isolated at the late stage of CF

chronic infection, have better capacity to persist in the murine

lung and to cause chronic infection when compared to early strain

[8]. Overall, in all three strains LPS lipid A were consistent with

the results reported previously though this molecule displayed

much more heterogeneous composition than other case-studies

[10,11,20]. Among the three strains LPS lipid A diversity was

observed in the number and location of fatty-acid side chains.

Early AA2 and late AA43 mucoid P. aeruginosa strains synthesized a

LPS blend essentially composed by tetra-, penta- and hexa-

acylated species lacking 10:0 (3-OH) primary fatty acid. In

contrast, the late non-mucoid AA44 strain was constituted by

homologue lipid A species which further carried a 10:0 (3-OH)

residue, i.e., hexa-acylated and hepta-acylated moieties. These

findings are in accordance with previous observations [10,11,20]

that P. aeruginosa synthesizes more highly acylated (hexa- and

hepta-acylated) LPS structures during adaptation to the CF

airways. Furthermore, our data might be particularly significant

as here we compare LPS of a pair of serial P. aeruginosa strains,

including mucoid and non-mucoid phenotypes. In mucoid AA43

strain the capsule may act as a physical barrier thus partially

preventing invasion by host phagocytes and can also mask the LPS

molecules to prevent complement deposition, as observed in other

microorganisms, such as E. coli, Haemophilus influenzae and Klebsiella

pneumoniae [21,22,23]. By contrast, for the non-mucoid AA44 the

absence of capsule may make this strain more susceptible to

phagocytosis. This issue could underline a major selective pressure

on AA44 to drastically reduce the immunostimulatory activity of

its LPS, promote intracellular survival and resistance to antimi-

crobial peptides through relevant structural changes in lipid A.

As previously described, P. aeruginosa strains with severe CF lung

disease lacked deacylated lipid A structures, suggesting that loss of

deacylase enzymatic activity (PagL) can occur during long-term

adaptation to the CF airway [10,24]. Retention of the 3-

hydroxydecanoic acid at the lipid A 3-O position is presumably

due to lack of expression of PagL, a recently identified 3-O

position lipid A deacylase [13]. However, genetic data in support

of biological activity have not been provided yet. Here, sequence

analysis and alignment of the three clonally related P. aeruginosa

Figure 4. Neutrophils recruitment and cytokines release in murine lungs after 16 h treatment with LPS derived from clinical P.
aeruginosa strains. C57Bl/6 mouse were exposed for 16 h to 10 mg/mouse of LPS derived from a P. aeruginosa reference strain (PAO1) and three
clinical isolates (AA2, AA43 and AA44). A) Total cells were recovered from the BALF and quantified. B, C and D) MIP-2, IL-1b and KC secretions were
quantified by ELISA in lung homogenates. *p,0.05, **p,0.01 in the Student’s t-test.
doi:10.1371/journal.pone.0008439.g004
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strains demonstrated for the first time pathoadaptive mutation in

pagL of late AA44 strain. These results indicate that P. aeruginosa

modified lipid A upon pagL inhibition contributes to reduce

TLR4-signalling correlating with data previously obtained for

other gram-negative bacteria as Salmonella typhimurium [12] and

Bordetella pertussis [13].

In contrast to AA44, the early AA2 and the late AA43 strains

were equipped essentially by penta- and hexa-acylated lipid A but

differed in their ratio. The lipid A isoforms have profound

implications for human disease, owing to altered recognition by

the TLR4 complex [14]. A variety of studies in different bacterial

species indicated that the acylation state of lipid A can alter TLR4-

mediated responses [25]. In general, production of fully hexa-

acylated lipid A is associated with a more strong TLR4 mediated

inflammatory response while lipid A with lower levels of acylation

triggers reduced cellular responses [25]. This notion has been also

demonstrated in P. aeruginosa when single species of penta- or hexa-

acylated lipid A were tested [11], while in Salmonella hepta-acylated

isoforms display significantly lower stimulatory activity as

compared to the hexa-acylated species [26]. Interestingly, our

results suggested that, in addition to the isoforms, also the ratio of

penta- and hexa-acylated lipid A had an impact on the biological

activity. As shown previously, lipid A under-acylated with respect

to hexa-acylated is not only reduced in its ability to stimulate host

cellular immune responses, but can also act as antagonist capable

of blocking the immunopotential of hexa-acylated E. coli LPS lipid

A [27,28,29,30,31]. In particular, penta-acylated lipid A of P.

aeruginosa could antagonize TLR-4 dependent responses of the

human cells to hexa-acylated lipid A from E. coli [32].

On the basis of the previous notions it was not surprising that in

our study LPS of the late AA43, harbouring a mixture of hexa-

and under-acylated lipid A, and AA44, presenting hexa-acylated

and hepta-acylated lipid A moieties, displayed a reduced

immunomodulatory TLR4-mediated activity compared to LPS

of early AA2. In particular, the LPSs of AA43 and AA44 showed

weak NF-kB and IL-8 inflammatory response when tested in

HEK293 cells expressing TLR-4. Similar results were confirmed

in macrophage-like THP-1 cells, in a CF airway epithelial IB3-

1cell line and in its isogenic non-CF C38 cells, even though the

latter were reported as generally less responsive to stimuli when

compared to IB3-1 [33]. In the lung of mice neutrophils

recruitment was higher after stimulation with lipid A from early

AA2 strain with respect to lipid A from late strains AA43 and

AA44. A pool of cytokines including MIP-2, KC and IL-1b were

found decreased confirming a reduced inflammation for the LPSs

of late strains. Altogether these results emphasize the reduced

immunopotential of LPS extracted from late colonizer P. aeruginosa

strains, in line with other reports that demonstrated the lost of

large arsenal of virulence factors during chronic infection [7].

We supported the findings described above on LPS by analysing

PGN, as additional structure, in our P. aeruginosa strains. The

concept that bacteria could modulate PGN composition to escape

the immune surveillance has been recently reported for pathogens

and commensals but not in P. aeruginosa [34,35,36,37,38]. In

accordance with data of lipid A composition, structural analysis of

PGN fragments derived by muramidase digestion of PGN from

the three clonal strains of P. aeruginosa showed a different relative

amount of muropeptides.

Despite these differences and in agreement with the biological

impact of lipid A of the three clinical isolates, muropeptides of the

late AA43 and AA44 strains displayed a dramatic reduced ability

to stimulate the Nod1 receptor in HEK293 and CF cells, with

respect to PGN of the early AA2 strain. Nod1 and not Nod2 is

involved in the NF-kB and IL-8 mediated response to P. aeruginosa

PGN, as shown in HEK293 cells expressing alternatively these two

PRRs or silenced for Nod1. This result is consistent with another

previous study [39] that reported the peculiar ability of P. aeruginosa

to elicit a Nod1-mediated response. At our knowledge, this is a first

report that shows an immune evasion strategy involving the in vivo

selection of pathogenic morphotypes harboring PAMP variants

able to modulate recognition by different PRRs.

The minimal structure recognized by Nod1 is the dipeptide D-

c-glutyamyl-meso-diaminolimelic acid (iEDAP) [40] while it is

evident that the intact macromolecular PGN does not stimulate

Nod1. It was initially described that the Nod1 recognition system

Figure 5. Murine lung histology after treatment with LPS
derived from clinical P. aeruginosa strains. Mice exposed for 16 h
to 10 mg/mouse of LPS derived from three P. aeruginosa clinical isolates
(AA2, AA43 and AA44). After H&E staining, extensive recruitment of
inflammatory cells is visible in the bronchial lumen (asterisk) of animals
treated with LPS of AA2 strain (A and B), whereas treatment of mice
with LPS of AA43 (C and D) and AA44 (E and F) showed limited
accumulation.
doi:10.1371/journal.pone.0008439.g005
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requires the exposure of the DAP moiety [40]. Then, other

reports, employing synthetic compounds, demonstrated that an

exposed DAP moiety is not essential for sensing by Nod1 [41,42].

However, the identity of major Nod1 stimulatory molecule(s), as

well as that of putative antagonistic molecules, remains still

unknown.

Therefore, as the molecular details of the PGN-Nod1

relationship are not yet elucidated, we are not able to clarify the

mechanisms underlining the reduction of Nod1 activation

observed with the PGN of the P. aeruginosa strains isolated from

the chronic stage of the infection. Difference in muropeptide

composition suggests that the enzymatic mechanisms accounting

for PGN modifications in AA2, AA43 and AA44 are different or at

less differently regulated in these strains. For example, we may

observe a reduced amount of GlcNAc2MurNAc(Anh)1MurNA-

c1Ala4Glu2DAP2 in the PGN of AA44 strain with respect to the

other two strains. This might indicate that the activity of the P.

aeruginosa lytic transglycosylases already identified on the P.

aeruginosa genome [43] is different in AA44 with respect to the

other strains.

However, we might address the question of how the reduced

activation of TLR4 and Nod1 could help the persistence of the P.

aeruginosa strains associated to late stage of CF infection. Actually,

the reduced production of inflammatory mediators following

activation of TLR4 by LPS of late colonizer strains could account

for an impaired ability of the host to mount an adequate reaction

aimed at P. aeruginosa clearance. Likewise, the role of Nod proteins,

and in particular Nod1, has been recently demonstrated in the lung

infections sustained by bacterial pathogens, such as Chlamydophila

pneumonia [44,45]. In particular, it has been reported that in a

Table 1. Peptidoglycan composition of P. aeruginosa strain AA2, AA43 and AA44 after mutanolysin hydrolysis.

AA2 m/z*
% compared to total
area of peaks

% compared to more
abundant peak

1- GlcNAc1MurNAc1Ala1Glu1DAP1 870 10.4% 40.9%

2-GlcNAc1MurNAc1Ala1Glu1DAP1Gly1 927 5.0% 19.7%

3- GlcNAc1MurNAc1Ala1Glu1DAP1Lys1 998 7.7% 30.2%

4- GlcNAc1MurNAc1Ala2Glu1DAP1 942 25.6% 100%

5- GlcNAc2MurNAc2Ala2Glu2DAP2 1722 3.7% 14.7%

6/7- GlcNAc2MurNAc2Ala3Glu2DAP2Lys1/ 1922/ 6.9% 26.9%

GlcNAc2MurNAc2Ala3Glu2DAP2 (eluted in the same peak) 1794

7- GlcNAc2MurNAc2Ala3Glu2DAP2 1794 4.4% 17.1%

8- GlcNAc2MurNAc2Ala4Glu2DAP2 1865 22.3% 87.1%

9-GlcNAc2MurNAc(Anh)1MurNAc1Ala4Glu2DAP2 1845 13.9% 54.3%

AA43 m/z*
% compared to total
area of peaks

% compared to more
abundant peak

1- GlcNAc1MurNAc1Ala1Glu1DAP1 870 13.3% 42.2%

2-GlcNAc1MurNAc1Ala1Glu1DAP1Gly1 927 2.4% 7.5%

3- GlcNAc1MurNAc1Ala1Glu1DAP1Lys1 998 7.5% 23.8%

4- GlcNAc1MurNAc1Ala2Glu1DAP1 942 31.5% 100%

5- GlcNAc2MurNAc2Ala2Glu2DAP2 1722 1.2% 3.7%

6/7- GlcNAc2MurNAc2Ala3Glu2DAP2Lys1/ 1922/ 5.7% 18.2%

GlcNAc2MurNAc2Ala3Glu2DAP2 (eluted in the same peak) 1794

7- GlcNAc2MurNAc2Ala3Glu2DAP2 1794 2.3% 7.2%

8- GlcNAc2MurNAc2Ala4Glu2DAP2 1865 22.0% 69.5%

9-GlcNAc2MurNAc(Anh)1MurNAc1Ala4Glu2DAP2 1845 14.0% 44.4%

AA44 m/z*
% compared to
total area of peaks

% compared to more
abundant peak

1- GlcNAc1MurNAc1Ala1Glu1DAP1 870 16.0% 65.5%

2-GlcNAc1MurNAc1Ala1Glu1DAP1Gly1 927 5.7% 23.5%

3- GlcNAc1MurNAc1Ala1Glu1DAP1Lys1 998 7.5% 30.8%

4- GlcNAc1MurNAc1Ala2Glu1DAP1 942 24.4% 100%

5- GlcNAc2MurNAc2Ala2Glu2DAP2 1722 7.0% 28.7%

6- GlcNAc2MurNAc2Ala3Glu2DAP2Lys1 1922 1.9% 7.6%

7- GlcNAc2MurNAc2Ala3Glu2DAP2 1794 10.0% 41.1%

8- GlcNAc2MurNAc2Ala4Glu2DAP2 1865 18.2% 74.6%

9-GlcNAc2MurNAc(Anh)1MurNAc1Ala4Glu2DAP2 1845 9.1% 37.3%

*mass/charge.
The percentage are based on peak areas derived by HPLC analysis.
doi:10.1371/journal.pone.0008439.t001
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murine model of infection the absence of Rip2, which acts as an

adaptor molecule in Nod signalling, favors significant delay in C.

pneumonia clearence from the lungs and promotes more severe and

chronic lung inflammation.

Taken together our results, obtained by comparing sequential

strains isolated from one CF patient, showed that the synergy of

the action of the two modified P. aeruginosa PAMPs, PGN and lipid

A, could drastically impair the CF host immune detection system

thus preventing the eradication of the infection with this pathogen.

This failure occurs despite the deleterious consequence of the

persistent inflammatory reaction that leads to the decline of lung

function and likely to fatal outcome of the disease. These findings

emphasize further studies to determine the generality of this

mechanism with additional P. aeruginosa clonal lineages or to

establish whether other bacterial ligands play a critical role in

evading immune system thus promoting survival and establishing

favourable conditions for chronic persistence in CF patients.

Materials and Methods

Ethics Statement
Animal studies were conducted according to protocols approved

by the San Raffaele Scientific Institute (Milan, Italy) Institutional

Animal Care and Use Committee (IACUC) and adhered strictly to

the Italian Ministry of Health guidelines for the use and care of

experimental animals.

Research on the bacterial isolates from the individual with CF

has been approved by the responsible physician at the CF center at

Hannover Medical School, Germany. All patients gave informed

consent before the sample collection. Approval for storing of

biological materials was obtained by the Hannover Medical

School, Germany.

Bacterial Strains and CF Patient
P. aeruginosa clinical isolate AA2 was obtained from sputa or

throat swabs from CF patient homozygous for DF508 cftr mutation

attending the Medizinische Hochschule of Hannover, Germany at

the onset of chronic colonization. AA43 and AA44 were collected

7.5 years after acquisition and before patient’s death. Two

intermediate P. aeruginosa strains, AA11 and AA12, were also

isolated after one year of infection from this patient [8]. Additional

clinical data were reported in the online data supplement (Figure

S1). Genotypic and phenotypic data of P. aeruginosa strains were

published previously [8,46,47]. In particular, to establish the

mucoid phenotype quantitative determination of alginate produc-

tion by P. aeruginosa strains was carried out by carbazole assay as

already reported elsewhere [46,8]. PAO1 was used as reference

strain [48]. P. aeruginosa was cultured in Pseudomonas isolation agar

(PIA) or Trypticase Soy Broth (TSB) at 37uC.

LPS and PGN Extraction and Lipid A and Muropeptide
Identification

See Supporting Information File S1.

Sequence Analysis
One loop of a single P. aeruginosa colony, grown on PIA, was

processed for DNA extraction using a commercial DNA isolation kit

(Qiagen) according to the instructions of the manufacturer. PCR

amplifications of the entire pagL, phoP, phoQ, lpxO1 and lpoO2 genes

were carried out using Taq DNA polymerase (Qiagen). The primers

used were detailed in the Online data supplement (Table S1 in

Supporting Information File S1). The amplified DNA samples were

sequenced by standard automated DNA sequence technology

employing the primers described above. The sequence results were

Figure 6. Stimulation of HEK 293-Nod1/psiNod1 and HEK 293-Nod2 with PGN derived from the three clinical isolates of P.
aeruginosa AA2, AA43 and AA44. A, D) Fold of activation of NF-kB after 18 h of stimulation with different concentration of PGN (0,5 mg/mL; 1 mg/
mL; 10 mg/mL); triDAP and MDP were used as controls. B, E) IL-8 mRNA induction after stimulation with 1 mg/mL of PGN for 18 h. C, F) IL-8 secretion
after stimulation with 1 mg/mL of PGN for 24 h. *p,0.05; **p,0.01 in the Student’s t-test.
doi:10.1371/journal.pone.0008439.g006
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compared with the PAO1 sequence (www.pseudomonas.org) by the

BLAST programme at the NCBI database (www.ncbi.nlm.nih.gov/

blast/) and within the strains of the AA lineage in order to determine

the occurrence of sequence variants.

Cell Cultures and Transfections
The human embryonic Kidney epithelial cell line HEK 293 was

grown in D-MEM supplemented with 10% of FBS (both by

Cambrex Bio Science). Stably transfected cell line HEK 293-

hTLR4/MD2-CD14 (InvivoGen) was cultured in DMEM with

10% FBS and 10 mg/mL Blasticidin-S and 50 mg/mL Hygro-

GoldH (both by InvivoGen). HEK293 cells were transiently

transfected with PolyFect Transfection Reagent (Qiagen) accord-

ing to the manufacturer’s instructions. For NF-kB studies, the cells

were transfected overnight with a reaction mix composed by 1 mL

of PolyFect Transfection Reagent (Qiagen), 150 ng of Firefly

luciferase reporter constructs, pGL3.ELAM.tk (containing NF-kB

promoter sequences), and 15 ng of Renilla luciferase reporter

plasmid, pRLTK (as an internal control).

To study Nod(s) activity, HEK293 cells were transfected with

10 ng of hNod1 (pcDNA3-Nod1-FLAG) or 1 ng hNod2 (pUNO-

hNOD2a – InvivoGen). Vector plasmids (pcDNA3) were used as

controls in all transfection experiments.

siRNA Assay
siRNA inhibition of Nod1 was carried out as previously

described [49] by using psiRNAh-Nod1(InvivoGen). Briefly

HEK293 were transfected with 1 ng of plasmid expressing

psiRNA or vector control (containing a scramble sequence)

together with the plasmid expressing hNod1. Nod1 inhibition

was evaluated through western blot analysis with mouse mAbs

anti-DYKDDDK (Clone 2EL-1B11, Chemicon International) as

previously reported [49].

Cell Cultures of CF Origin
IB3-1 cells, an adeno-associated virus-transformed human

bronchial epithelial cell line derived from a CF patient (DF508/

W1282X) and C38 cells, the rescued cell line which expresses

a plasmid encoding a copy of functional CFTR, have been

obtained from LGC Promochem [50,51]. Cells were grown

in LHC-8 media (Biosource) supplemented with 5% foetal

bovine serum (FBS) (Cambrex Bio Science). All culture flasks

Figure 7. Response of IB3-1 and C38 cells after stimulation with PGN derived from the three clinical isolates of P. aeruginosa AA2,
AA43 and AA44. A) Fold of induction of TNF-a and (B) IL-8 mRNA after stimulation with 1 mg/mL of PGN for 4 h. The values represent the
expression levels relative to untreated IB3-1 (means6SD). C) IL-8 secretion after stimulation with 1 mg/mL of PGN for 24 h. *p,0.05, **p,0.01,
***p,0.001 in the Student’s t-test.
doi:10.1371/journal.pone.0008439.g007

P. aeruginosa PAMPs Adaptation

PLoS ONE | www.plosone.org 10 December 2009 | Volume 4 | Issue 12 | e8439



and plates were coated with a solution of LHC-basal medium

(Biosource) containing 35 mg/mL bovine collagen (BD Biosci-

ences), 1 mg/mL bovine serum albumin (BSA, Sigma) and 10 mg/

mL human fibronectin (BD Bio Science) as described [50].

Cells were seeded at the density of 86104 cells/cm2 for

4 h experiments and 46104 cells/cm2 for the 24 h experiments.

The day after cells were treated with 100 ng/mL of LPS derived

from the clinical isolates AA2, AA43 and AA44. LPS from

P. aeruginosa serotype 1022 (source strain ATCC 27316) (Sigma)

was used as control at the same concentration. In the presence of

each LPS for 48 h at 100 ng/mL the cell viability was .95% as

determined by Tripan Blue exclusion test. Cells seeded at the

density described above were also transfected with 0.5% of

PolyFect Transfection Reagent and 1 mg/mL of PGN derived

from the clinical isolates AA2, AA43 and AA44. cTriDAP (L-Ala-

D-Glu-meso-DAP), chemically synthesized by AnaSpec (San Jose,

CA), and MDP (MurNAc-L-Ala-D-isoGln) (InvivoGen) were used

as positive controls at the concentration of 1 mg/mL. Growth

media were collected at the end of incubation, centrifuged and

stored at –80uC, while cells were lysed.

Culture of a Macrophagic Cell Line
The non-adherent human myelomonocytic THP-1 cells,

obtained from LGC Promochem, were grown in RPMI-1640

supplemented with 10% FBS. Cells were seeded at the density of

86104 cells/cm2 and allowed to differentiate to macrophage like

cells by induction with 60 ng/mL of phorbol myristic acid (PMA)

for 36 h, as described previously [52]. The differentiated cells were

treated for 6 h with 100 ng/mL of LPS derived from the clinical

isolates AA2, AA43 and AA44. LPSs from P. aeruginosa serotype

1022 and from E. coli serotype OIII:B4 (Sigma) were used as

controls. Growth media were collected at the end of incubation,

centrifuged and stored at –80uC.

LPS and PGN Stimulations and NF-kB Activity Assessment
For LPS, the day before stimulation HEK 293-hTLR4/MD2-

CD14 cells were transiently transfected with the NF-kB reporter

constructs as above. Twenty-four hours post-tranfection, cells were

left untreated or incubated during 4 (to measure NF-kB and IL-8

mRNA) or 24 (for ELISA) h with different concentration of LPS

purified from the clinical isolates AA2, AA43, and AA44.

Commercial LPS of P. aeruginosa PAO1 (10–50–100 ng/mL)

(Sigma) was used as positive controls.

For PGN, HEK 293 cells were simultaneously transfected

with (i) hNod1 or hNod2 (ii) NF-kB reporter constructs and

(iii) muramidase mutanolysin-digested PGN (Sigma) purified by

the three P. aeruginosa clinical isolates AA2, AA43, and AA44,

at different concentrations (0,5–1–10 mg/mL). cTriDAP and

MDP were used as positive controls at the concentration of

1 mg/mL.

NF-kB-dependent luciferase activation and IL-8 mRNA eval-

uation was measured at 18 h of post-transfection while IL-8

ELISA was performed at 24 h post-transfection.

To measure NF-kB activity, cells stimulated with LPS or PGN,

were lysed in 30 mL of passive lysis buffer, and 10 mL of lysate

were assayed for Firefly and Renilla activity according to the

manufacturer’s instructions. The data shown represent the mean

values6S.D. of three separate experiments performed in dupli-

cate. Results are reported as fold induction of relative luciferase

units (RLU) over unstimulated cells. Relative luciferase activity is

calculated as the ratio between the value of the NF-kB inducible

Firefly luciferase and that of the constitutive Renilla luciferase

reporter.

RNA Quantification
Total RNA was extracted from lysed cells with the Total RNA

Isolation kit (Roche), converted to cDNA with High Capacity cDNA

Archive Kit (Applied Biosystems) and random primers and finally

amplified using the PlatinumH SYBRH Green qPCR SuperMix-

UDG (Invitrogen) as described [53]. Primer sets for TNF-a and IL-8

have been reported previously (Sigma-Genosys) [54,53].

IL-8 and TNF-a Secretion
Released IL-8 and TNF-a were determined in supernatants

collected from the cell cultures using ELISA kits (Biosource

Europe and R&D Systems). According to the manufacturer the

sensitivities of the assays are less than 0.7 pg/ml for IL-8 and

11 pg/ml for TNF-a. Measurements were performed at least in

duplicate. Values were normalized to 106 cells; results were

expressed as mean6SD.

Animals
C57Bl/6 mice (20–22 gr) were purchased by Charles River.

Mice were housed in filtered cages under specific-pathogen

conditions and permitted unlimited access to food and water.

Mice were exposed to intranasal injection of LPS (10 mg/mouse)

derived from P. aeruginosa. Control animals were exposed to PBS.

Sixteen hours after exposure, mice were sacrificed by CO2

administration. Bronchoalveolar lavage (BAL) was performed by

washing the lungs three times with 1 ml of RPMI (Euroclone) with

proteinase inhibitors. Lungs were removed and homogenized in

1 ml of PBS with ions containing proteinase inhibitors. BAL cells

were pelletted by centrifugation and counted in a hemacytometer,

and differentials were determined by examination of cytocentri-

fuge slides stained with May Grunwald Giemsa staining (Sigma).

The lung homogenates and BALF were centrifuged at 13000 rpm

for 30 minutes at 4uC, the supernatants were stored at 220uC for

cytokine analysis.

Measurement of Murine Cytokines
IL-1b, KC and JE concentration in lung homogenates were

determined by ELISA (R&D Systems), according to manufacturer

instructions using antibody pairs and recombinant standards from

R&D System.

Histology
For histopathology, lungs were removed en bloc and fixed in 4%

paraformaldehyde/PBS, at 4uC for 24 h, and processed for

paraffin embedding. Longitudinal sections of 5 mm taken at

regular intervals were obtained using a microtome from the

proximal, medial and distal lung regions. Sections were stained

with H&E according to standard procedures.

Statistical Analysis
Statistical calculations and tests were performed using Student’s

t test considering p#0.05 as limit of statistical significance. All data

were expressed as mean6standard deviation (SD).

Supporting Information

Figure S1 P. aeruginosa sequential isolates from patient AA.

Found at: doi:10.1371/journal.pone.0008439.s001 (0.16 MB TIF)

Figure S2 Sequence alignment of pagL in sequential P. aeruginosa

isolates.

Found at: doi:10.1371/journal.pone.0008439.s002 (0.93 MB TIF)

Figure S3 RP-HPLC analysis of PGNs fragments.

Found at: doi:10.1371/journal.pone.0008439.s003 (0.43 MB TIF)
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Figure S4 MS-MS analysis of dimer muropeptide.

Found at: doi:10.1371/journal.pone.0008439.s004 (0.16 MB TIF)

Supporting Information File S1 Results concerning full

structural assignments of lipid A and muropeptides; experimental

procedures; list of primers used for P. aeruginosa gene sequences

(Table S1).

Found at: doi:10.1371/journal.pone.0008439.s005 (0.08 MB

DOC)
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Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lacto-

coccus lactis. Microbiology 153: 3275–3285.

37. Herbert S, Bera A, Nerz C, Kraus D, Peschel A, et al. (2007) Molecular basis of

resistance to muramidase and cationic antimicrobial peptide activity of lysozyme

in staphylococci. PLoS Pathog 3.

38. Wang G, Olczak A, Forsberg LS, Maier RJ (2009) Oxidative stress-induced

peptidoglycan deacetylase in Helicobacter pylori. J Biol Chem 284:

6790–6800.

39. Travassos LH, Carneiro LA, Girardin SE, Boneca IG, Lemos R, et al. (2005)

Nod1 participates in the innate immune response to Pseudomonas aeruginosa.

J Biol Chem 280: 36714–36718.

40. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, et al. (2003) An

essential role for NOD1 in host recognition of bacterial peptidoglycan

containing diaminopimelic acid. Nat Immunol 4: 702–707.

41. Wolfert MA, Roychowdhury A, Boons GJ (2007) Modification of the structure of

peptidoglycan is a strategy to avoid detection by nucleotide-binding oligomer-

ization domain protein 1. Infect Immun 75: 706–713.

42. Uehara A, Sugawara Y, Kurata S, Fujimoto Y, Fukase K, et al. (2005)

Chemically synthesized pathogen-associated molecular patterns increase the

expression of peptidoglycan recognition proteins via toll-like receptors, NOD1

and NOD2 in human oral epithelial cells. Cell Microbiol 7: 675–686.

43. Blackburn NT, Clarke AJ (2001) Identification of four families of peptidoglycan

lytic transglycosylases. J Mol Evol 52: 78–84.

44. Shimada K, Chen S, Dempsey PW, Sorrentino R, Alsabeh R, et al. (2009) The

NOD/RIP2 pathway is essential for host defenses against Chlamydophila

pneumoniae lung infection. PLoS Pathog 5.

45. Sorrentino R, de Souza PM, Sriskandan S, Duffin C, Paul-Clark MJ, et al.

(2008) Pattern recognition receptors and interleukin-8 mediate effects of Gram-

positive and Gram-negative bacteria on lung epithelial cell function.

Br J Pharmacol 154: 684–871.

P. aeruginosa PAMPs Adaptation

PLoS ONE | www.plosone.org 12 December 2009 | Volume 4 | Issue 12 | e8439



46. Bragonzi A, Wiehlmann L, Klockgether J, Cramer N, Worlitzsch D, et al. (2006)

Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates
from patients with cystic fibrosis. Microbiology 152: 3261–3269.

47. Montanari S, Oliver A, Salerno P, Mena A, Bertoni G, et al. (2007) Biological

cost of hypermutation in Pseudomonas aeruginosa strains from patients with
cystic fibrosis. Microbiology 153: 1445–1454.

48. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, et al. (2000)
Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic

pathogen. Nature 406: 959–964.

49. Nigro G, Fazio LL, Martino MC, Rossi G, Tattoli I, et al. (2008)
Muramylpeptide shedding modulates cell sensing of Shigella flexneri. Cell

Microbiol 10: 682–695.
50. Zeitlin PL, Lu L, Rhim J, Cutting G, Stetten G, et al. (1991) A cystic fibrosis

bronchial epithelial cell line: immortalization by adeno-12-SV40 infection.
Am J Respir Cell Mol Biol 4: 313–319.

51. Egan M, Flotte T, Afione S, Solow R, Zeitlin PL, et al. (1992) Defective

regulation of outwardly rectifying Cl- channels by protein kinase A corrected by

insertion of CFTR. Nature 358: 581–584.

52. Verma N, Chaudhury I, Kumar D, Das RH (2009) Silencing of TNF-a
receptors co-ordinately suppresses TNF-a expression through NF-kB activation

blockade in THP-1 macrophage. FEBS Letters 583: 2968–2974.

53. Cigana C, Assael BM, Melotti P (2007) Azithromycin selectively reduces tumor

necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrob

Agents Chemother 51: 975–981.

54. Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P (2006) Anti-inflammatory

effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophys

Res Commun 350: 977–982.

P. aeruginosa PAMPs Adaptation

PLoS ONE | www.plosone.org 13 December 2009 | Volume 4 | Issue 12 | e8439


