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Abstract

Phylogenetic trees inferred using commonly-used models of sequence evolution are

unrooted, but the root position matters both for interpretation and downstream applications.

This issue has been long recognized; however, whether the potential for discordance

between the species tree and gene trees impacts methods of rooting a phylogenetic tree

has not been extensively studied. In this paper, we introduce a new method of rooting a tree

based on its branch length distribution; our method, which minimizes the variance of root to

tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations

from the strict molecular clock are random. Like midpoint rerooting, the method can be

implemented in a linear time algorithm. In extensive simulations that consider discordance

between gene trees and the species tree, we show that the new method is more accurate

than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene

trees depends on the size of the dataset and levels of deviations from the strict clock. We

show high levels of error for all methods of rooting estimated gene trees due to factors that

include effects of gene tree discordance, deviations from the clock, and gene tree estimation

error. Our simulations, however, did not reveal significant differences between two equiva-

lent methods for species tree estimation that use rooted and unrooted input, namely, STAR

and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.

Introduction

Commonly-used models of sequence evolution, such as GTR [1], are time reversible and can

therefore be used to reconstruct unrooted phylogenetic trees. The correct placement of the

root is often of intrinsic interest as evident by long debates on the correct rooting of the uni-

versal tree-of-life [2–7], and other major groups (e.g., [5, 8, 9]). Moreover, the knowledge of

the root is often needed for downstream applications of phylogenetic trees, such as ancestral

state reconstruction [10], comparative genomics [11], taxonomic profiling of metagenomic

samples [12, 13], and dating.
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Several approaches have been proposed for this long recognized issue [14]. The current pre-

vailing practice is to simply use outgroups [10]. An outgroup is a species known apriori to be

outside the group of interest (referred to as the ingroup). Outgroup selection is an art that

requires balancing two opposite goals; the outgroup needs to be divergent enough from the

ingroup to make its outgroup status unambiguous, but at the same time not so distant that

strong long branch attraction [15–17] negatively impacts the resolution of the ingroup, the

placement of the outgroup, or both [18–22]. Nevertheless, several studies have found out-

groups to be competitive with more complex methods [23, 24] that use evidence from molecu-

lar data for rooting.

At one end of the spectrum, rooting an unrooted tree is trivial when the rooted tree is ultra-

metric (i.e., all leaves are equidistant to the root). Only one rooting of an unrooted tree can cre-

ate an ultrametric tree, and that rooting can be obtained by midpoint (MP) rooting; i.e., root

the tree at the middle point of the longest path between any two leaves of the tree. A phyloge-

netic tree with branch lengths measured in the expected number of mutations will be expected

to be close to ultrametric if mutations follow a strict molecular clock (i.e., rates of mutation are

constant). When a strict molecular clock is not followed in the data, one can still use the mid-

point rooting, hoping that divergences from a strict clock are small and that midpoint rooting

can still be a good proxy for the correct root [25]. At the other end of the spectrum, non-

reversible models of sequence evolution, such as the General Markov Model [26–28], or those

that incorporate nonstationarity [29, 30], can be used to infer a rooted tree from the data; how-

ever, these methods have not yet enjoyed broad application because of statistical issues related

to model complexity and lack of scalability to large datasets (but see [31] for recent advances).

Despite the long history of thinking about tree rooting, we believe the question should be

revisited in the phylogenomic era. The potential for discordance among gene trees and incon-

gruence with the species tree due to factors such as incomplete lineage sorting (ILS) is now

well-understood [32–34] and many empirical analyses strive to account for it [35–39] (but see

[40–43] for the ongoing debate on this issue).

Rooting phylogenies needs fresh thinking in the phylogenomic area for several reasons.

Firstly, an outgroup is a species believed to be outside the ingroups in the true species tree;

however, depending on how the outgroup is chosen, its true position may or may not be out-

side the ingroups in every single gene tree. As an example, according to the multi-species

coalescent model [44], an outgroup separated from the ingroups by a branch of length 2 in

coalescent units [33] (corresponding to 8 millions years assuming a diploid effective popula-

tion size of 200,000 and a generation time of 10 years) is expected to be mixed with the

ingroups in 9% of genes only because of ILS effects and optimistically assuming that all basal

branches of the ingroups are so long that only two lineages have to coalesce in the branch

below the root. Thus, even if outgroups are reliable methods of rooting a species tree, they may

fail to root every gene tree accurately. A second reason to revisit rooting is related to the prac-

tice of species tree estimation. The most scalable pipeline for estimating a species tree first esti-

mates a set of gene trees and then uses a “summary method” to combine the estimated gene

trees to reconstruct a species tree. Some summary methods (e.g., MP-EST [45], STAR/STEAC

[46], and GLASS [47]) rely on rooted input gene trees, while more recent methods (e.g,

ASTRAL [48, 49] and NJst [50, 51]—also known as USTAR/NJ [52]) can combine unrooted

gene trees. Even though the question has never been directly addressed before, the accuracy of

methods based on unrooted trees tends to be superior to rooted trees on simulated and empiri-

cal data [41, 48–50, 53]. It remains to be tested if these trends relate to incorrect rooting of

gene trees, as suggested by some studies [41]. Finally, reconciliation between gene trees and a

species tree may provide a way to root them. Gene duplication history, the number of deep

coalescences, and distributions of unrooted gene trees have all been used to root gene trees,
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species trees, or both [54–58]. However, in this manuscript, we will focus on rooting gene trees

individually and not collectively or with reference to a known species tree.

Beyond phylogenomics, the ever-expanding size of phylogenetic trees is another factor that

should be considered in discussions of rooting. Trees with thousands of leaves are routinely

inferred and used currently, and trees with many hundreds of thousands of leaves are also in

use [5, 59–61]. We should ask whether rooting such large trees with existing methods is com-

putationally feasible, and if so, whether they are accurate.

In this paper, we address the problem of rooting large phylogenomic datasets. We introduce

a new rooting method that minimizes the variance of the root to tip distances. We implement

our new method, called min-var (MV) rooting, in an algorithm that scales linearly with the

tree size, just like the MP rooting (note that the term minimum variance used here does not

relate to statistical minimum variance estimators). We compare MV and MP with outgroup

(OG) rooting under a wide range of conditions where gene trees and the species tree can be

discordant, with a range of dataset sizes, with several ways of choosing an outgroup, and with

various levels of divergence from a strict clock. We then go on to compare several species tree

reconstruction methods, including those that use inferred unrooted trees, or trees rooted

using the three rooting approaches. Our rooting tool is publicly available at https://uym2.

github.io/MinVar-Rooting/.

Materials and methods

Min-var (MV) rooting

Notations and definitions. Let an unrooted tree be represented as a connected acyclic

undirected graph G = (V, E), and let each edge e = (u, v) 2 E be weighted by a length we. To

root G at an edge e = (u, v) 2 E and a position x� we from u, we first divide e to two edges by a

vertex p and replace e with edges (p, u) and (p, v) with lengths x and we − x, respectively. Then,

we convert G to a directed graph by pointing all its edges away from p. The resulting graph is a

rooted tree, T, and is a rooting of G.

We use the following notations for a rooted tree T. Each node u in T, except the root rT,

has a parent, p(u), and the child set of a node u is denoted by c(u). A node u is either internal
and has two or more children or is a leaf and has no children. The set of leaves is denoted by

L = {1. . .n}. For any node u, we denote the length of the edge (p(u), u) by eu. For each point p
on this edge (including u), we let Cld(p) denote the set of leaves descending from node u and

|p| is used for the size of Cld(p). For two points p and p0, potentially on different edges, we let

d(p, p0) denote the total length of the undirected path from p to p0, and use di(p) = d(i, p) as a

shorthand for i 2 L. We set mean(p) = 1/n∑i2L di(p), var(p) = 1/n∑i2L(di(p) − mean(p))2,

SI(p) = ∑i2Cld(p) di(p), and ST(p) = ∑i2L di(p).

We call a p0 a local MV of tree T if and only if for any point p and x = d(p0, p),

lim
x!0

varðpÞ � varðp0Þ

x
¼ 0 ð1Þ

and the second derivative of var(p0) is non-negative (i.e., var(p) > var(p0)).

The global MV of a tree is a point p0 that has the minimum var(p0) among all positions on

all branches of the tree. Unless otherwise specified, we use the terminology MV to refer to the

global MV.

Minimum variance rooting
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A point p is said to be a balance point of T if the average of tip distances to p are equal on

any two sides of p in the unrooted version of T; that is, p is a balance point if

1

juj

X

i2CldðuÞ

diðpÞ ¼
1

n � juj

X

i=2CldðuÞ

diðpÞ ð2Þ

for all ways of choosing u such that p is on the edge (p(u), u) (including both ends).

Problem statement. MP rooting can be framed as an optimization problem that seeks the

rooting position that minimizes the maximum distance from any leaf to the root. Our pro-

posed approach, MV rooting, is based on a similar idea, but minimizes the variance instead of

the maximum.

The MV problem is: Given an unrooted tree G, find a rooting T� of G such that

T� ¼ argmin
T

varðrTÞ : ð3Þ

Thus, we seek the root that minimizes the variance of root to tip distances.

Motivation for MV rooting. We start with the following propositions (proofs are shown

in S1 Appendix)

PROPOSITION 1. A point p on tree T is a local MV if and only if it is a balance point.
Based on Proposition 1, we refer to local MV and balance point interchangeably.

PROPOSITION 2. Any tree has at least one local MV.

PROPOSITION 3. The global MV of any tree is one of its local MVs.
When the strict molecular clock is followed, the true rooted phylogenetic tree is ultrametric

with zero root-to-tip distance variance. For ultrametric trees, only the true rooting position is

a balance point, and therefore, the tree has a unique local MV at the correct root, which is also

its global MV (Proposition 3). Since local MVs are also balance points, they provide a natural

choice for rooting when there are randomly distributed deviations from the molecular clock.

Among several local MVs, the global MV also minimizes the total variance, and arguably is

the best choice. We now describe a simplified model under which we can prove that MV is in

expectation the correct root.

Random deviations model: Consider a model where a rooted tree T is generated from an

ultrametric tree T0 by multiplying the length of each edge (u, v) by a random variable αv drawn

from any distribution with support [1 − �, 1 + �] and expected value 1. Let h be the height of T0

and r be the position of the true root on T, which it inherited from T0. We have the following

two propositions (proofs are shown in S1 Appendix).

PROPOSITION 4. Let p denote the global MV of T. If

� � min
w2cðrÞ

ew
n

n � jwj
hþ ew

0

B
@

1

C
A

then there exists a child w of r such that p 2 e = (r, w)

Following Proposition 4, the global MV is guaranteed to be on one of the adjacent edges of

r if � is sufficiently small. Note that the restriction on � is a sufficient but not a necessary condi-

tion. Regardless of the value of �, we can also show the following.

PROPOSITION 5. When the global MV is on one of the adjacent edges of r, let a random variable
X indicate the distance of the global MV to the root; then, E(X) = 0.

COROLLARY 1. Under our random deviations model where deviations from the strict molecular
clock are independent and bounded, the MV rooting will find the correct branch, and in expecta-
tion, will also have zero distance on that branch to the correct rooting position.

Minimum variance rooting
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Although the random deviations model considerably simplifies real biological processes, it

is useful in motivating the MV rooting approach in general.

Algorithm 1 Linear time MinVar rooting algorithm
FunctionMinVarRoot(T)
For node u in pre-order(T) # Top-downtraversal
Computed(u, rT) = d(p(u),rT) + eu for i 2 Ln{rT}

minvar σ2({di(rT)|i 2 L}) # σ2 is variance
For node u in post-order(T) # Bottom-uptraversal
Store |u| = 1 if u 2 L, else |u| = ∑v2c(u)|v|
Store SI(u)= 0 if u 2 L, else SI(u)= ∑v2c(u)(SI(v)+ ev|v|)

globalMV rT
For node v and u = p(v) in pre-order(T) # Top-downtraversal
Computeand storeST(v)using Eq 6
Computeand storevar(v)usingEq 4
Computex� usingEq 7 and call the correspondingpoint p�

Computevar(p�) usingEq 4
if minvar> var(p�)
minvar var(p�)
globalMV p�

rerootT at p�

The MV rooting algorithm. The algorithm is based on the following proposition (proof

is shown in S1 Appendix)

PROPOSITION 6. Let p be a point on an edge (u, v) of tree T with distance d(p, u) = x. If we let p
vary along edge (u, v) and consider var(p) as a function of variable x with parameters u and v,

then:

varðpÞ ¼ varðx; u; vÞ ¼ ð1 � b
2
Þx2 þ a �

2STðuÞb
n

� �

x þ varðuÞ ð4Þ

in which

a ¼
2STðuÞ � 4ðSIðvÞ þ jvjevÞ

n
and b ¼ 1 �

2jvj
n

ð5Þ

To find the MV root, we first arbitrarily root the unrooted tree at rT to get a rooted tree T.

We then use Algorithm 1 to traverse T three times to search for local MVs. At the end, we

select the local minimum with the lowest variance value as the global MV.

Traversal 1 and 2 (Preprocessing): In the first top down traversal, we trivially compute the

distance to root (i.e., d(u, rT)) for all nodes of the tree, and then simply compute the variance

of root-to-tip distances. Next, in a post-order traversal, for each node u, we compute the size of

its clade (i.e., |u|) and the sum of distances to the tips in its clade (i.e., SI(u)), both of which are

simple to compute.

Traversal 3: The final top-down traversal finds the local MV along each edge (u, v) if it

exists, and records the local MV with the minimum root-to-tip variance as the global MV. We

set ST(rT) = SI(rT) and for other nodes we compute and store:

STðvÞ ¼ STðpðvÞÞ þ ðn � 2jvjÞev: ð6Þ

According to Proposition 6, for any point p along the edge (u, v) with x = d(u, p), we can

compute var(p) (the variance of root-to-tip distance if we root at p) using Eq 4. Let a = (1 − β2),

b ¼ α � 2STðuÞb
n

� �
, and c = var(u); Eq 4 is a standard quadratic function ax2 + bx + c with a> 0

(because |β|< 1) and with the restriction x 2 [0, ev]. Thus, var(p) is minimized on a point p�

Minimum variance rooting
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with distance x� from u where:

x� ¼

� b
2a
; if

� b
2a
2 ½0; ev�

argmin x2f0;evg
ðvarðx; u; vÞÞ; otherwise

ð7Þ

8
><

>:

and p� is a local MV of T only if x� ¼ � b
2a . Since we compute this for all edges, at the end, we have

all local MVs and their corresponding root-to-tip variance; we simply select the local MV point

that has the lowest variance and reroot T on that point. Derivation of Eq 6 and the proof for

Proposition 6 are shown in S1 Appendix.

THEOREM 1. Algorithm 1 is guaranteed to find the global MV.

Proof. It is clear that Eq 7 minimizes Eq 4 given the constraint x 2 [0, ev] (recall that the sec-

ond derivative a> 0) and thus finds local MV points. According to Proposition 6, Eq 4 gives

the correct variance of root-to-tip distances for any point on the tree. By the definition of

global MV and Propositions 2 and 3, the global MV p is always the local MV with the mini-

mum var(p). Because Algorithm 1 checks all edges for all local MVs and compute root-to-tip

variance at all of those points, it guarantees to find the correct global MV.

PROPOSITION 7. The running time of Algorithm 1 scales linearly with the number of leaves in
the tree.

Proof. Algorithm 1 visits each edge in T exactly three times, each of which involves only

constant time operations. After the rooting position is found, rerooting the tree also takes no

more than linear time assuming that the tree is represented with the usual pointer structure.

Thus, the overall time complexity of Algorithm 1 is O(n).

Similar to MV, MP rooting can be done in linear time using two tree traversals (Algorithm

2). Interestingly, at least one phylogenetic package in common use, Dendropy, seems to have

opted not to implement this simple algorithm, and instead uses an approach that scales

quadratically with n (our attempt to use ape [62] failed). We re-implemented MP using the

Dendropy package to solve this shortcoming.

Experimental design

Simulated datasets. We study four simulated datasets, including two that were previously

published. One of the published datasets, RNASim [63], includes only one gene tree and is

used here only to evaluate the scalability of rooting methods. The other datasets all use SimPhy

[64] to generate gene and species trees under the multi-species coalescent (MSC) model [44]

and heterogeneous parameters. We then used Indelible [65] to simulate nucleotide sequence

evolution on gene trees according to the GTR+Γ model with varying sequence length and dif-

ferent sequence evolution parameters (Supplementary methods in S1 Appendix). Then, Fas-

tTree2 [66] was used to estimate gene trees based on the GTR+Γ model.

Algorithm 2 Linear time midpoint rooting algorithm.
FunctionMidpointRoot(T)
For node u in post-order(T) # Bottom-uptraversal
MI(u) max({MI(v)+ ev|v 2 c(u)})

MO(rT) 0
For node v in pre-order(T) # Top-downtraversal
MO max({MO(p(v))}[{MI(s) + es|s 2 c(p(v))− {v}})
x�  (MI(v)− MO + ev)/2
if x� � 0 and x� � ev
rerootT at (u, v) with distancex� from u and return

MO(v) MO + ev
The three main datasets with species trees and gene trees are:

Minimum variance rooting
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• D1—30-taxon heterogeneous dataset: Here, the number of ingroup species was fixed to 30.

We simulated 100 replicates, each with a different species tree and 500 gene trees. This data-

set is used for extensive analysis of all methods.

• D2—Large heterogeneous dataset: This dataset includes two subsets, one with 2000 and

another with 5000 taxa, and is used for testing performance on large datasets. For both data-

sets we created 20 replicates with different species trees and 50 gene trees.

• D3—ASTRAL-II dataset: We reused a previously published dataset [49] to investigate per-

formance for intermediate number of species (i.e, 10, 50, 100, 200, 500, and 1000).

The new datasets, D1 and D2 are simulated using a similar approach. For each number of

species in both D1 and D2, we simulated 10 different model conditions where we changed

parameters that control divergence from the strict clock and the distance of the outgroup to

the ingroups. Seven out of ten model conditions included an outgroup. The outgroup is added

as a sister to the ingroups on the species tree. The length of the branch above ingroups (con-

necting them with the root) is decided by multiplying a fixed number by the height of the

ingroup species tree; we refer to that fixed number as the root to crown ratio (R/C). For exam-

ple, an R/C of 0.5 indicates that the branch connecting the root of the ingroups to the root of

the tree is half the height of the ingroup tree. The choice of the R/C ratio directly impacts how

often the species tree outgroup is also a gene tree outgroup (Fig 1C).

Beyond the R/C ratio, model conditions are also distinguished by two parameters of Sim-

Phy that control deviations from the clock: (i) gene by lineage specific rate heterogeneity,

which is a multiplier drawn from a gamma distribution for each branch of each gene tree, and

(ii) species specific branch rate heterogeneity rate, which is also a multiplier drawn from a

gamma distribution per species and is used to scale all gene tree branches for that species uni-

versally. The gamma distributions are mean-preserving, and therefore are specified with one

shape parameter. We draw the value of that shape parameter from a log normal distribution

with the scale hyperparameter σ = 1 and a varying location hyperparameter, which controls

the level of deviation from the strict clock. We refer to the log normal location (which is the

log of the mean of the distribution minus 0.5) as the clock deviation parameter; the higher val-

ues correspond to gamma distributions more closely centered around one, and thus, less devi-

ation from the clock, while lower values correspond to more deviation (Fig 1D).

In six model conditions, the clock deviation parameter is fixed to a moderate value of 1.5,

and the R/C ratio is varied between 0 (no outgroup), 0.25, 0.5, 1, 2, and 4. In the remaining

model conditions, the R/C ratio is fixed to either 0 or 1 and the clock deviation parameter is

changed between 0.15, 1.5, and 5 to get high, moderate, and low levels of deviations, respec-

tively. Note that the two model conditions with heterogeneity hyperparameter 1.5 are common

with six conditions that varied the R/C ratio; thus, in total we have ten model conditions for

each number of species.

Other parameters of the SimPhy simulation procedure are sampled from distributions as

described in Tables A and B in S1 Appendix. In D2, the expected species tree height in is set to

14.7 million generations, which is much higher than the 3 million used for the 30-taxon data-

set. We chose different heights for small and large datasets because having 30 surviving species

in a span of 3 million generations is reasonable, but having many thousands of extant species

in such a short evolutionary time is unlikely. Thus, for the D2 dataset, we increased the height

to obtain more realistic conditions.

The portion of quartet trees induced by gene trees that are found in the species tree can be

used as a measure of ILS [68], where values close to 1/3 indicate extremely high levels of ILS

and values close to 1 indicate no ILS. Our datasets varied between these two extremes (Fig 1A).

Minimum variance rooting
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Fig 1. Properties of simulated datasets D1 and D2. A: The level of ILS, measured by the quartet score of true species tree with respect to true gene

trees with R/C = 1 for (left) the D1 dataset, broken down by the clock divergence parameter and (right) both D1 and D2 datasets. B: gene tree estimation

error, measured as the normalized Robinson-Foulds (RF) distance [67] between true and estimated gene trees for the D1 dataset with R/C = 1 and

Minimum variance rooting
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The gene tree estimation error, measured by RF distance between true gene trees and esti-

mated gene trees, was similarly heterogeneous and was also substantially impacted by devia-

tions from the clock (Fig 1B); with low and medium deviations, median gene tree error was

respectively 25% and 32%, while for high deviations, the error increased to 49%.

A major point of the current paper is that an outgroup species is not always an outgroup in

gene trees, even in the true gene trees. When the R/C ratio is low, many of the true gene trees

do not have the outgroup species in the outgroup position (Fig 1C). Interestingly, with the

30-taxon dataset, only at the extremely high R/C = 4 the outgroup is outside the ingroups in

close to all gene trees of all replicate datasets. At the other extreme, with R/C = 0.25, in more

than 50% of replicate runs, more than 50% of our 500 true gene trees did not have the out-

group species in the outgroup position. The larger datasets, which had higher numbers of gen-

eration and higher levels of ILS (Fig 1A) had fewer cases of outgroup mixing with ingroups in

true gene trees.

Evaluation metrics. To estimate the accuracy of a rooted gene tree, we measure the pro-

portion of all
n

3

 !

triplets in the reference (i.e., true) tree that are also found in the estimated

tree. This measure is a function of both the accuracy of the unrooted topology of the estimated

tree and the accuracy of the rooting. To separate the rooting error from the tree error, for the

small 30-taxon dataset where it is feasible, we examine all possible root placements and find

the “ideal” rooting that results in the lowest possible triplet distance (the ideal triplet distance

is zero if and only if the unrooted tree is correct). We then define “delta triplet distance” as the

difference between the triplet distance of the estimated tree with the rooting of interest (OG/

MV/MP) and the triplet distance of the estimated tree with the ideal rooting. For the small

trees with 30 leaves, we also afford to compute the rooted SPR distance using SPRDist [69];

however, for larger trees, SPR could not be computed. Finally, for the true unrooted gene trees

that are rooted using an algorithm, we also report normalized branch distance, defined as the

number of branches between the correct root and the estimated root, normalized by the maxi-

mum number of branches from any leaf to the root.

Beyond triplet distance, we use the normalized RF distance to measure the accuracy of

unrooted trees, and we use percentage of quartets in the gene trees also present in the true

gene trees (as computed by ASTRAL [48]) as a measure of ILS. For species trees, we also report

the Matching Split measure [70]. We also report running time, measured on Intel EM64T

Xeon nodes with 64GB memory.

Implementations. We implemented both MP and MV (https://uym2.github.io/MinVar-

Rooting/) using the Dendropy package for phylogenetic manipulations [71]. As expected, the

running time of the algorithm increases linearly with the number of leaves (Fig 2); an RNASim

[63] tree with 200,000 leaves could be rooted in just under a minute. In contrast, Dendropy

seems to use a quadratic implementation of MP rooting (Fig 2A).

Results

We will examine the following research questions using simulated and empirical data:

varying clock divergence parameters. C: The empirical cumulative distribution for the proportion of true gene trees where the outgroup species is not an

outgroup; thus, each point (x, y) on a line indicates that y out of 100 replicates had at most x × 500 true gene trees where the species tree outgroup was

not the gene tree outgroup. Boxes correspond to the three datasets with different sizes. D: The ratio between standard deviation to mean (i.e.,

coefficient of variation) of root to leaf distances of gene tree branches, as an empirical measure of divergence from the clock; 0 corresponds to strict

molecular clock and higher values correspond increased divergence (the x axis is in the log scale). Refer to Figs B and C in S1 Appendix for model

conditions not shown here.

https://doi.org/10.1371/journal.pone.0182238.g001
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• RQ1: Does our novel MV rooting improve the root placement accuracy compared to MP

and OG rooting for datasets with varying numbers of species?

• RQ2: How are MP, MV, and OG impacted by (i) gene tree estimation error, (ii), divergence

from the clock, and (iii) outgroup distance to ingroups (R/C)?

• RQ3: What is the impact of rooting error on the species tree estimation, and is STAR less

accurate than its unrooted counterpart, NJst?

Simulation results

RQ1: MV for varying numbers of leaves. On the D1 (30-taxon) dataset with estimated

gene trees, MV matched or improved the triplet accuracy of MP in all 10 model conditions

(Figs 3 and 4B, and Fig E in S1 Appendix). Overall, MV had lower error than MP (mean triplet

error: 0.238 and 0.244, respectively), and the differences were statistically significant according

to an analysis of variance (ANOVA) test comparing the two methods (p< 10−5), and consider-

ing divergence from the clock or the outgroup distance as other independent variables (to be

discussed in RQ2). However, averaged over all 7 conditions of D1 where outgroups were avail-

able, OG rooting was more accurate than MV rooting, a pattern that was not universal and

will require a nuanced consideration of parameter effects (RQ2).

When we combine D1, D2, and D3 to get a heterogeneous dataset that ranges between 10

to 5000 taxa, a clear pattern emerges. While with smaller numbers of species, OG performs the

best, when the number of taxa is increased to 1000 and beyond, MV gradually becomes the

most accurate method (Fig 3A). Increasing the number of taxa from 10 to 5,000 gradually

increases the error for all methods, but OG is impacted more than MV (an increase from 0.1

triplet distance to 0.4 for OG, but from 0.2 to 0.35 for MV). MP is never the most accurate

method but with trees of 5000 taxa, it is not worse than OG either. It is interesting to note that

2000 and 5000-taxon datasets, which have higher average tree height than 30-taxon datasets,

have lower numbers of true gene trees where the outgroup species is not the gene tree out-

group (Fig 1C). Thus, the sharp decrease in the accuracy of OG is not related to increased

impacts of ILS and has to be attributed to increased error in the estimated gene trees. When

we focus on our new datasets (D1 and D2), it becomes clear that improvements of MV over

OG are the most pronounced with lower deviations from the clock (Fig 3B).

RQ2: Impact of error, clock, and outgroup distance. We focus our discussion on D1,

but patterns on the D2 dataset are similar Fig E in S1 Appendix. On D1, we focus on the triplet

error, but SPR distance gives similar results Fig F in S1 Appendix.

Fig 2. Running time of MP and MV. A: comparison of our implementation of MV/MP with the implementation of MP in Dendropy, which employs a quadratic

algorithm, on datasets D1, D2, and D3 with up to 5,000 leaves; B: Linear time scaling of our implementation, tested on the RNASim dataset with up to

200,000 leaves.

https://doi.org/10.1371/journal.pone.0182238.g002
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Fig 3. Absolute triplet distance as a function of the number of taxa. A: Results from D1, D2, and D3 are combined in one figure; 30 on the x-axis

corresponds to D1, 2000 and 5000 to D2, and the remaining cases to D3. For D1 and D2, we fixed R/C = 1 and the clock divergence parameter to medium to

best match the conditions of D3. B: Results for D1 and D2 with R/C = 1 and difference levels of clock divergence.

https://doi.org/10.1371/journal.pone.0182238.g003

Fig 4. Rooting error above ideal rooting on 30-taxon dataset. Top: delta triplet error with both true and estimated gene trees for (A) medium

divergence from the clock and varying R/C ratios and (B) R/C = 1 and varying levels of divergence from the clock. C: Delta triplet error versus gene tree

estimation error, measured by RF distance, shown for high, medium, and low divergence from the clock; each point is an average of all gene trees in all

replicates that had an identical RF gene tree error. A loess regression is fitted to the data using R.

https://doi.org/10.1371/journal.pone.0182238.g004
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While MV is always at least as good as MP in our simulations, on D1, improvements of MV

compared to MP are significantly impacted by both the level of divergence from the clock and

the R/C ratio (p = 0.002 and p< 10−5, respectively, according to the two-way ANOVA test).

The improvements of MV over MP are higher when divergence from the clock is less and

when the outgroup distance is smaller; the highest difference is for the case with no outgroup

(Fig 4A, and Figs E-F in S1 Appendix).

The OG rooting is extremely accurate if true gene trees were known (Fig 4A and 4B, and

Figs D and F in S1 Appendix); cases of error are limited to when the root is not very diverged

from the ingroups (R/C< 1). In contrast, MV and MP, while are better than OG with low

divergence from the clock, can have very high error rate even on true gene trees if divergences

from the clock are sufficiently large (Fig 4B and Figs D and F in S1 Appendix). For example,

MV (MP) finds a root that on average has 25% (30%) normalized branch distance to the cor-

rect root (Fig D in S1 Appendix); i.e., the inferred root is away from the correct root by a quar-

ter of the maximum tree height.

On estimated gene trees, however, the accuracy of OG rooting severely degrades. The delta

triplet error (triplet error above ideal rooting) of OG is only slightly better than MV with vari-

ous R/C ratios with medium divergence from the clock (Fig 4A) and is worse than MV with

low divergence from the clock (Fig 4B); OG remains substantially more accurate than MV

with high divergence from the clock. Confirming this pattern, considering all individual genes

in all replicates, as gene tree error increases from 0% to approx. 50%, delta triplet error seems

to increase for all methods but the increase is more pronounced for OG (Fig 4C). Beyond 60%

gene tree error (RF), delta triplet error actually goes down perhaps because even the ideal root-

ing has very high error, leaving little or no room for extra error due to rooting alone.

The delta triplet error of estimated gene trees rooted with OG reveals an interesting (U-

shape) pattern. Choosing very small or very large R/C ratios (e.g., very close or distant out-

groups) is not ideal (Fig 4A). Instead, the best performance is obtained by R/C = 1. This ratio

seems to give outgroups that are as close as possible to the ingroups to reduce LBA effects

while remaining sufficiently long to reduce impacts of ILS.

RQ3: Species tree error. We focus on the average RF distance here; using RF distribu-

tions (Fig G in S1 Appendix) or average distances according to the MS metric (Table C in S1

Appendix) do not change any of our conclusions.

The average RF error of species trees run on estimated gene trees with inferred roots ranges

between 9.1% and 9.5% (Table 1). STAR run on the true gene trees with the true root has an

average RF error of 5.8%; thus, a substantial part of the species tree error can simply be attrib-

uted to ILS and lack of insufficient number of gene trees to find a perfect species tree. STAR

Table 1. Species tree estimation accuracy using rooted and unrooted gene trees.

Methods compared p-value Mean RF ST error

method clock par. 1st method 2nd method

STAR True vs STAR Ideal <10−5 0.126 0.058 0.086

STAR Ideal vs STAR OG 0.551 0.0009 0.086 0.091

STAR Ideal vs STAR MV 0.144 <10−5 0.086 0.095

STAR OG vs STAR MV 0.476 <10−5 0.091 0.095

STAR OG vs NJst 0.623 0.00005 0.091 0.093

ANOVA tests were performed on the D1 (30-taxon) dataset for pairs of methods. RF error is used as the metric. The tests were performed on the subset of

D1 where outgroup exists. For true gene trees, the true root is known. For estimated gene trees, the Ideal is the rooting position that minimizes triplet error to

the true gene trees. p-values are shown for the significance of differences between the error of the two methods specified in each row, and for the

differences in error among the three levels of clock divergence parameter, respectively.

https://doi.org/10.1371/journal.pone.0182238.t001
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run on the gene trees with ideal rooting has 8.6% RF error, which is a 48% increase from

STAR run on true gene trees. These differences are statistically significant according to a two-

way ANOVA test where the clock divergence parameter is the second independent variable.

Therefore, the second substantial contributor to the species tree error is the gene tree estima-

tion error.

Despite all the differences observed in the accuracy of rooting individual gene trees, we sur-

prisingly found no clear evidence that the rooting error has a significant impact on the species

tree accuracy. The RF error of STAR species trees run on estimated gene trees with ideal root-

ing (which uses the known true gene tree) was not significantly different from that of the

STAR run on estimated gene trees rooted using OG or MV (Table 1). We also saw no statisti-

cally significant differences between species trees estimated from gene trees rooted using MV

or OG. Thus, given estimated gene trees, which in our dataset had high rates of error (Fig 1B),

the delta error due to rooting inaccuracies does not seem to lead to much further reduction in

accuracy. Consistent with this hypothesis, we also observed no statistically significant differ-

ences (Table 1) between STAR rooted using OG and NJst (which due to its strong parallels

with STAR can be called unrooted STAR [52]).

On estimated gene trees, all rooting methods are negatively impacted by increased devia-

tions from a strict clock (Table 1 and Table C in S1 Appendix). The reduction may relate to

increased unrooted gene tree estimation error with increased deviations (Fig 1B); it may also

be related to the fact that rooting becomes successively harder with stronger deviations from

the strict clock (Fig 4B).

Biological results

We tested MV rooting on an angiosperm dataset with 46 species and 310 genes [72], where the

correct rooting has been a point of debate [42]. This dataset includes a single outgroup (Selagi-
nella). We rooted each gene tree using both OG and MV, and compared gene trees with the

published MP-EST species tree [49, 72] using the triplet distance after removing the outgroup

from the gene trees and the species tree. The motivation for using this score is that we conjec-

ture an incorrect rooting will tend to increase observed discordance of gene trees with the spe-

cies tree. On this dataset, OG and MV essentially result in the same average triplet distance to

the MP-EST species tree (19.2% for OG and 19.3% for MV) and their differences are not statis-

tically significant (p-value = 0.9). It’s worth noting that excluding outgroups could have had

reduced gene tree estimation error, and therefore, may have been a better approach overall.

Discussion

Our simulations made it clear that even if the outgroup distance to ingroups is twice as much

as the most distant ingroups (i.e., R/C = 1), there can still be many true gene trees that fail to

have the outgroup as sister to the ingroups (Fig 1C). How often such cases of outgroup/

ingroup mixing happens depends on the level of ILS, and by extension on the depth of the spe-

cies tree and population size. Our 30-taxon dataset had numbers of generations that ranged

between 407K and 9.1M generations in 90% of replicates; thus, our trees range between rela-

tively shallow to moderately deep. Overall congruence of gene trees with the species tree, as

measured by the quartet score, was high (> 0.8) for 43% of replicates, and was moderate

(0.6 – 0.8) for another 34%. Thus, despite having realistic conditions, we observe outgroups

mixed with ingroups in true gene trees.

Making outgroups maximally distant from ingroups, however, won’t solve the problem. As

Rosenfeld et al. have pointed out [22], making the outgroups distant can lead to random

assignment of outgroups in the gene trees, thereby increasing the apparent discordance. In
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agreement with their results, and much of the literature, we found that very distant outgroups,

while placed as desired in the true gene trees, can lead to increased overall error (Fig 4A).

There is a trade-off between making the outgroup closer to ingroups to minimize LBA and

making it more distant to reduce ILS; in our 30-taxon dataset and under our conditions of

simulations, the optimal setting was R/C = 1, corresponding to outgroups that are twice as dis-

tant from any of the ingroups as the most two divergent ingroups. The exact optimal value,

however, likely depends on the exact parameters of a biological dataset and the choice of R/

C = 1 cannot be blindly prescribed.

Increased divergence from the clock substantially increased unrooted gene tree estimation

error (Fig 1B), but impacted the accuracy of rooting only when MP or MV were used (Fig 4B).

The strong dependence of gene tree estimation on clock assumptions leads us to suggest that

simulations of the MSC process should always include conditions where the strict clock are

violated. Many methods are proved consistent and tested empirically only under the strict

clock assumption, a situation that we hope our results will change. New simulation tools such

as SimPhy make it easy to simulate datasets that deviate from the strict clock assumption.

A surprising result of our simulation studies was that while gene tree rooting error was gen-

erally high, we could not detect a significant impact on the species tree. Two explanations have

to be considered. It could be that in general the impact of rooting error on species tree estima-

tion is minimal. On the other hand, the lack of power to detect significant impact may be lim-

ited to specifics of our simulation procedure. Several important parameters of the simulation

may have reduced the effect of rooting error on species tree estimation error. We always had

five hundred genes, which is relatively high considering that we only had 30 ingroup species.

Impact of rooting error for datasets with more species and/or fewer genes may be different, a

problem that we did not get to address here because of computational limitations. Moreover,

we conjecture that at least part of the reason for this lack of observed impact is that our datasets

had high levels of gene tree estimation error even for the unrooted tree. It is conceivable that

the impact from mis-rooting is drawn out by the impact of topological error and is hard to

detect with a datasets of 100 replicates, simulated with heterogeneous parameters drawn from

wide parameter distributions. We note that our simulation setup was designed mainly to

address the question of gene tree rooting error and to enable a comparison between our new

MV and existing MP and OG rooting methods. Moreover, we focused only on comparing NJst

and STAR because of their deep mathematical connection; our current study cannot be gener-

alized to other methods such as ASTRAL and MP-EST (which can in principle be altered to

take as input both rooted and unrooted trees). Thus, while our results are suggestive that there

may be considerable robustness to gene tree rooting error at least among some methods, to

arrive at a more nuanced understanding of impacts of rooting, simulation setups designed

directly to answer this questions will be needed in future.

Several other limitations of our study should be noted. In our simulations, we always

included only one outgroup (a limitation of SimPhy), but the impact of selecting multiple

outgroups will be important to examine. We inferred gene trees under the exact model of

sequence evolution that generated the data, but the impact of factors such as LBA are known

to be exacerbated by model misspecification. Our deviations from the clock were random and

did not depend on time. Finally, more realistic models of change in evolutionary tempo may

result in more systematic biases and different conclusions.

Conclusion

We introduce a new method for rooting phylogenetic trees, which relies on minimizing the

variance of the root to tip distances. The method can be efficiently implemented in an
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algorithm that scales linearly with increased number of species and runs in less than a minute

for datasets of up to 200,000 leaves. Our new approach is more accurate than the traditional

midpoint rooting and its relative accuracy compared to the dominant method of outgroup

rooting depends on the number of species; with very large trees, minimizing root to tip vari-

ance outperforms outgroup rooting whereas for small and moderate size datasets outgroups

are more accurate. Regardless of the relative accuracy of methods, we showed that rooting

gene trees is challenging because deviations from a strict clock make it hard for automatic

methods to find the correct root, while gene tree discordance makes outgroup rooting unreli-

able. However, within the limitations of our study, we detected no significant impact due to

gene tree error on the accuracy of the species tree accuracy for datasets with large numbers of

gene trees, many of them inferred from datasets with low phylogenetic signal. We leave a more

nuanced consideration of impacts of incorrect rooting on species tree error to future research.
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