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Abstract

Asthma is defined as a chronic inflammatory condition in the lung and is characterized by episodic 

shortness of breath with expiratory wheezing and cough. Asthma is a serious public health concern 

globally with an estimated incidence over 300 million. Asthma is a complex disease in that it 

manifests as disease of gene and environmental interactions. Sphingolipids are a unique class of 

lipids involved in a host of biological functions ranging from serving as key cellular membrane 

lipids to acting as critical signaling molecules. To date sphingolipids have been studied across 

various human conditions ranging from neurological disorders to cancer to infection to 

autoimmunity. This review will focus on the role of sphingolipids in asthma development and 

pathology with particular focus on the role of mast cell sphingolipid biology.
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1. Introduction

1.1. Asthma

Asthma is defined as a chronic inflammatory condition characterized by episodic shortness 

of breath with wheeze. It is characterized by intermittent airflow obstruction, airway 

hyperreactivity, and increased production of mucus. According to the U.S. Centers for 

Disease Control and Prevention (CDC), an estimated 24.6 million Americans, including over 

6 million children, have asthma. The estimated annual cost of asthma care in the U.S. is 

roughly $56 billion and asthma remains a leading cause of missed work and school. 

According the Global Asthma Network (GAN), it is estimated that over 330 million people 

worldwide have this disease and asthma is ranked in the top 20 of “most important 

disorders” due to chronicity of illness. Thus, asthma remains a universal and significant 

public health concern.
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Asthma is a complex, heterogeneous disease in which several variants exist, each with a 

different underlying immunopathology. Historically asthma was characterized as a TH2-

centric disease marked by high levels of IgE and eosinophilic infiltration into the lung. 

While a majority of patients with asthma do have a history of allergic disease, certain groups 

of patients present clinically with an asthma phenotype in the absence of atopy. The different 

underlying pathophysiological mechanisms suggest the need for additional molecular and 

genetic characterizations, the development of targeted, customized treatment modalities, and 

the value of biomarkers to improve diagnosis and treatment. Recently, work has highlighted 

different asthma endotypes that are segregated by clinical characteristics (Moore et al., 

2010) or through the use of genetic markers found in sputum (Peters et al., 2014). This 

clinical cluster modeling has enabled us to categorize endotypes of asthmatics into groups 

and better understand more of the molecular underpinnings of the disease process. The 

development of these clinical algorithms has advanced the goal of using precision-based 

medicine approaches for asthma. But despite these efforts, there are still clusters of patients 

with severe asthma in which drugs are lacking and specific biomarkers are unavailable.

1.2. Sphingolipids

In 1884, Dr. Johann L.W. Thudichum isolated a unique lipid moiety from the brain he called 

“sphingosine” which he named after the Great Sphinx due to its perplexing chemical nature 

(Thudichum, n.d.). This fatty amino alcohol serves as the backbone of a ubiquitous class of 

lipids found across various species called sphingolipids. Living up to the name, 

sphingolipids remain an enigmatic class of lipids involved in a host of biological functions 

ranging from serving as key cellular membrane lipids to acting as critical signaling 

molecules. To date sphingolipids have been studied across various human conditions ranging 

from neurological disorders to cancer to infection to autoimmunity. Sphingolipids exhibit 

great structural and functional diversity. The simple sphingolipid ceramide is often referred 

to as the nexus of sphingolipid metabolism due to its pivotal role in sphingolipid 

accumulation through de novo synthesis as well as serving as a predecessor for other 

sphingolipid family members (Hannun and Obeid, 2002). Whereas complex sphingolipids 

such as cerebrosides are glycosphingolipids and defects in their catabolism, as the name 

suggests, have significant effects on the nervous system (Futerman and Platt, 2017). 

Sphingolipid metabolites such as sphingosine-1-phosphate (S1P) and ceramide-1-phosphate 

(C1P) are potent bioactive mediators that are critical, especially in relation to immune 

responses and inflammatory processes as they regulate immune cell migration and play a 

role in cancer immunopathology (Nitai C. Hait and Maiti, 2017; Spiegel and Milstien, 

2011).

In addition to structure and function, the regulation of these lipids is also complex. There are 

multiple enzymatic processes that regulate the interconversion amongst these lipid species 

and each enzyme serves as another layer of control in maintaining homeostasis. The year 

1993 was a pivotal year in sphingolipid research as two seminal papers, both appearing in 

Nature, showed that sphingolipids could both induce cell death (Obeid et al., 1993) and cell 

proliferation (Olivera and Spiegel, 1993). These papers highlighted differing and opposing 

roles of ceramide and S1P respectively. Three years later, the Spiegel laboratory uncovered 

the molecular cross-talk between these pathways and coined the term the “sphingolipid 
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rheostat” (Cuvillier et al., 1996) which provided further insight into the regulation and 

activity of this complex class of lipids.

1.3. Sphingolipids in the lung

The notion that sphingolipids could play a role in pulmonary pathophysiology was first 

alluded to in the 1940s when Thannhauser et al. isolated and described lipid species in 

various animal lungs (Thannhauser et al., 1946). Almost twenty years later, Matthews et al. 

showed that the secretions from patients with either cystic fibrosis (CF) or bronchiectasis 

had a much higher lipid content when compared to controls (Matthews et al., 1963). It was 

this work that led Harlan et al. to examine pulmonary secretions to better understand the 

contributions of lipids other than phosphatidylcholine, the major lipid species found in 

pulmonary surfactant (Harlan WR, Margraf and Said, 1966). Years later Sahu and Lynn 

showed that the bronchoalvealoar lavage (BAL) fluid from patients with asthma contained 

sphingomyelin species as well as glycolipids in the form of hexosylceramides which served 

as some of the first evidence for a role of sphingolipids in asthma (Sahu and Lynn, 1977).

1.4. Environmental causes of asthma

The National Institute of Environmental Health Sciences (NIEHS) has stated that the 

contribution of environmental allergens to the pathogenesis of asthma is a serious public 

health concern and research is warranted in the field. Air pollution has been shown to be 

both a contributing factor to asthma development (Wright and Brunst, 2013) and asthma 

exacerbations (Guarnieri and Balmes, 2014). Diesel exhaust has been shown to a major 

player in the environmental influences of asthma and diesel exhaust particles have been 

shown to upregulate both ceramide production and sphingosine kinase 1 (SphK1) activity in 

bronchial epithelial cells (Shaheen et al., 2016). Inhalation of carbonaceous pollutants in the 

form of carbon nanoparticles has also been linked to pulmonary dysfunction and exposure to 

these xenobiotic agents has been shown to alter ceramide accumulation in lung epithelial 

cells leading to aberrant inflammatory response generation in the lung (Peuschel et al., 

2012). Cigarette smoke either by direct or secondhand exposure have all been linked to 

asthma development and exacerbation (Thomson, 2004). Both conventional and electronic 

cigarette (e-cigs) vapors have shown to disrupt pulmonary endothelial barrier integrity by 

upregulating intracellular ceramide production (Schweitzer et al., 2015) in a neutral 

sphingomyelinase 2 (nSmase2) dependent fashion (Levy et al., 2009) as well as alter 

autophagy by inducing accumulation of lactosylceramide in lipid rafts (Bodas et al., 2015).

There is a mounting body of evidence that infectious agents also contribute to asthma 

incident and illness (Darveaux et al., 2014). Upper respiratory infections are the most 

common cause of acute illness across the lifespan. Certain pathogens have been strongly 

linked to the initiation of asthma such as respiratory syncytial virus (RSV) and human 

rhinovirus (HRV). In fact there is a significant increase in the likelihood that a child with 

develop asthma if they are infected with both HSV and HRV in the first three years of life 

(OR = 10.0) (Busse et al., 2010). Both of these viruses rely heavily on sphingolipid species 

for viral entry into the cell. RSV utilizes ganglioside GM1 for both viral entry and 

propagation (Sugrue et al., 2002) and has to ability to activate both neutral ceramidase and 

SphK1 in the lung (Monick et al., 2004). The activation of these enzymes leads to both the 
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downregulation of ceramide production and the upregulation of S1P production which in 

turns prolongs lung epithelial survival of virally infected cells. HRV also highjacks the host 

sphingolipid machinery. HRV has been shown to activate the acidic sphingomyelinase and 

induce the formation of ceramide-rich platforms to facilitate further viral entry (Grassmé et 

al., 2005). While these two viral culprits are most closely linked to asthma initiation, other 

viral species such as influenza have been strongly linked with exacerbations of asthma 

resulting in significant morbidity and mortality (Busse et al., 2010). Interestingly influenza 

also affects sphingolipid signaling by inhibition of S1P lyase, thus resulting in increased S1P 

levels in the infected cell (Vijayan and Hahm, 2014).

Bacterial infections have also been linked to asthma. Numerous studies have begun to 

examine alterations in the host microbiome and microbial exposures as it pertains to asthma 

development and severity (Scherzer and Grayson, 2018) whereas atypical pulmonary 

infections have been shown to aggravate established asthma. A major pathogen responsible 

for community acquired pneumonia, Mycoplasma pneumoniae, induces profound alterations 

in host cell sphingolipid composition by inducing activation of serine palmitoyltransferase 

(SPT), the rate limiting step in de novo sphingolipid production (Yu et al., 2009). Fungi are 

also a significant environmental contributor to the disease burden of asthma and unlike most 

prokaryotes, multiple fungal species are capable of producing their own sphingolipids. In 

fact, fungal derived sphingolipids are found to play a role in their pathogenicity as is the case 

with Aspergillis niger (Sharma and Prakash, 2017) and inhalation of non-pathogenic fungal 

species such as Alternaria alternata can induce sphingolipid production from host airway 

epithelial cells (Worgall et al., 2013).

Allergens themselves can also influence sphingolipid signaling and contribute to asthma 

pathogenesis. In fact, it has been shown that pollen contains a wide array of sphingolipids 

(Ischebeck, 2016). House dust mite (HDM) is a prevalent antigen and a leading contributor 

of asthma. HDM is thought to be one of the most significant sources of indoor antigens 

associated with human asthma (De Alba et al., 2010) and it has been estimated that 50–85% 

of asthmatics world-wide are HDM allergic (Gregory and Lloyd, 2011). We recently 

reported that administration of HDM induces ceramide production in the murine lung and 

results in allergic airway disease (Oyeniran et al., 2015). Lastly, there has been robust 

research on how exogenous sphingolipids can directly activate immune cells and leads to 

pulmonary inflammation. Alpha-galactosylceramide (a-GalCer) is a synthetic sphingolipid 

derivative from sphingolipid species produced from the marine sponge Agelas 
mauritanianus. A-GalCer is widely used in the laboratory setting as it is a potent activator of 

invariant natural killer T cells (iNKT cells) and has shown a to play a role in the 

pathogenesis of asthma (Iwamura and Nakayama, 2010) by exaggerating TH2 immune 

responses.

Taken together there is mounting evidence demonstrating that environmental triggers can 

have a profound effect on asthma. The role of sphingolipids in asthma initiation is not well 

defined however the strong body of literature suggests that it is these early activation events 

resulting in altered sphingolipid pathways that may be a key aspect of asthma development 

and severity.
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1.5. Genetic causes of asthma

Aside from environmental contributions, there is also a strong genetic component to asthma. 

Several genome-wide association studies (GWAS) have demonstrated that polymorphisms in 

a region of chromosome 17q21, which includes the ORM (yeast)-like protein isoform 3 

(ORMDL3) gene, contribute to both childhood and adult-onset asthma in a number of 

ethnically diverse populations (Galanter et al., 2008; Moffatt et al., 2010, 2007; Vercelli, 

2008, 2016; Verlaan et al., 2009). In fact, identification of ORMDL3 as an asthma 

susceptibility gene ignited both a new era of research into genetics as well as sphingolipid 

regulation in the asthma field. However, despite the enthusiasm, the mechanism by which 

ORMDL3 contributes to asthma pathogenesis is not well understood. ORMDL3 is the only 

member of the evolutionary conserved family of three endoplasmic reticulum localized 

proteins, ORMDL1–3, that has been linked to asthma. In yeast, the ORM proteins negatively 

regulate sphingolipid homeostasis in response to physiological needs by forming a complex 

with and inhibiting serine palmitoyltransferase (SPT) (Breslow et al., 2010; Han et al., 

2010). Recent studies suggest that ORMDL3 also regulates ceramide biosynthesis in 

mammalian cells (Siow et al., 2015). Because ORMDL3 polymorphisms are associated with 

its high expression (Jin et al., 2012; Verlaan et al., 2009), it was suggested that this 

expression would correlate with decreased sphingolipid biosynthesis in asthma (Worgall et 

al., 2013). Yet elevations of sphingolipids rather than reductions have been linked to 

inflammatory responses in vitro. Additionally, elevated levels of ceramide and S1P have 

been reported in lung diseases, including asthma, thus presenting a biological paradox 

(Masini et al., 2007; Oskeritzian et al., 2007; Reinke et al., 2017). Work by our group and 

others imply that genetic regulation of sphingolipid homeostasis in asthma is much more 

complex than initially thought. We showed that although small increases in ORMDL3 

expression decrease ceramide levels, in agreement with its evolutionary conserved role as a 

negative regulator of SPT, remarkably however, higher expression in lung epithelial cells and 

macrophages increased ceramide production by the recycling/salvage pathway (Oyeniran et 

al., 2015). While our group has focused on the ORMDL3 regulation of sphingolipid 

biosynthesis itself, other groups have highlighted a role for this protein in the unfolded 

protein response (Löser et al., 2017), airway remodeling (Cheng and Shang, 2017), and 

airway smooth muscle biology (Chen et al., 2018) in asthma, again emphasizing the 

enigmatic role that sphingolipids may play in the complex immunopathology of asthma.

1.6. Mast cells

First described in 1878 by Paul Ehrlich, mast cells (MC) are an important immune cell of the 

myeloid lineage. MCs are key sentinel cells in the lung that release a host of inflammatory 

mediators including vasoactive amines, lipids, proteoglycans, proteases, and cytokines upon 

activation. These MC mediators are the culprits for the outward appearances of allergic 

responses and can be attributed to the major clinical symptoms of asthma including 

increased vascular permeability, increased airway smooth muscle contractions, and increased 

mucus production (da Silva et al., 2014). MCs are most notable for their role in asthma given 

their primary mechanism of action: IgE mediated responses via FcER1, the high affinity IgE 

receptor. Upon crosslinking of this receptor, MCs degranulate to release preformed 

mediators such as histamine and become activated to induce the synthesis and release of 

neoformed mediators responsible for the late phase responses such as IL-4.
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Aside from canonical IgE signaling, it is now appreciated that the MCs have a critical and 

multifaceted role in asthma immunopathology. MCs secrete a host of chemokines and 

cytokines that recruit effector cells into the lung such CXCL1 (De Filippo et al., 2013) and 

CCL11 (Hogaboam et al., 1998) to recruit neutrophils and eosinophils respectively. MCs can 

serve as antigen presenting cells to naïve T cells (Suurmond et al., 2013) and iNKT (Hong et 

al., 2014) cells in the microenvironment and enhance B cell IgE production via upregulation 

of CD40L to (Hong et al., 2013) to enhance local TH2 immune responses in the lung. 

Despite their fundamental role in asthma, effective therapies are lacking to specifically target 

MCs. Since MCs have historically been studied in the setting of IgE mediated allergic 

airway disease, Xolair (omalizumab), a monoclonal antibody that blocks IgE binding to its 

high affinity receptor has been developed and is now available clinically. It has shown 

promise in patients with severe asthma; however, unfortunately, initial enthusiasm regarding 

Xolair’s potential to reduce asthma symptomology has diminished due to its effects 

primarily on extreme cases of atopic asthma and its high cost (Normansell et al., 2014). 

Furthermore, recent research has highlighted roles for IgE-independent actions of MCs and 

the role of mast cells in innate immune responses; thus, examining multiple facets of MC 

function in the context of asthma may yield better therapeutic targets.

1.7. Mast cells and sphingolipids

The interplay between sphingolipid signaling and mast cell biology has long been 

appreciated, with the first report that sulfatides could be isolated from neoplastic mast cells 

in 1960 (GREEN & ROBINSON, 1960). Some 20 years later, Curtain et al. demonstrated 

that sensitizing rat peritoneal mast cells resulted in glycosphingolipid clustering in the 

plasma membrane which was critical for degranulation (Curtain et al., 1981). Katz et al. 

extended these studies to show that sphingolipid reorganization was not only a marker of 

mast cell activation but was useful in discerning subtypes of murine mast cells (Katz and 

Austen, 1986; Katz et al., 1985). It was later shown that the presence of these surface 

expressed sphingolipids could act of signaling receptors as well. Activation of gangliosides 

through binding of a specific monoclonal antibody, mab AA4, resulted in similar 

morphological and intracellular activation of MCs as compared to canonical IgE signaling 

(Oliver et al., 1992) and that these two signaling pathways shared Lyn as a common 

signaling intermediate (Minoguchi et al., 1994). While lipid moieties such as 

phosphoinositides and diacylglycerols had been implicated as second messengers in cell 

signaling, some of the first evidence that sphingolipid species could also act as signaling 

molecules in the immune system came in 1999. Choi et al. showed that FcER1 activation led 

to activation of SphK1 which in turn led to production of S1P as a primary mechanism for 

calcium mobilization in mast cells (Hong Choi, Kim and Kinet, 1996).

Sphk1 has been shown to be a fundamental kinase involved in MC biology. SphK1 rapidly 

phosphorylates sphingosine to form S1P and that S1P can either act as an intracellular 

switch for the activation of MCs or can be released from the cell to act extracellularly 

(Prieschl et al., 1999) via ATP binding cassette transporter 1 (ABCC1) (Mitra et al., 2006). 

With the discovery that S1P can bind a cluster of G protein coupled receptors on the cell 

surface of various cells (Lee et al., 1998) the concept of “inside-out” S1P signaling emerged 

(Takabe et al., 2008). S1P has been shown to transactivate MC S1P receptors 1 and 2 
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(S1PR1 and S1PR2) and be involved in MC migration and degranulation respectively (Jolly 

et al., 2004). Recent data has highlighted a role for SIPR4 in anaphylactic reactions 

(Kulinski et al., 2018), again highlighting the many roles of MCs and S1P signaling in 

immune responses.

While S1P has been shown to act as positive stimuli in terms of MC responses, ceramide and 

sphingosine function as negative regulators of MC biology, against reiterating the role of the 

“sphingolipid rheostat” in maintaining homeostasis. The addition of exogenous sphingosine 

diminished FcER1 mediated SphK1 activation (Prieschl et al., 1999) and along these lines it 

has been shown that sphingosine directly blocks calcium release-activated calcium current 

(ICRAC) in RBL cells (Mathes et al., 1998). Exogenous ceramide has been shown to induce 

MC apoptosis (Itakura et al., 2002), inhibit LPS induced cytokine production (Chiba et al., 

2007), and negatively regulate mast cell activation (Izawa et al., 2012).

While clearly other cell types are involved in the immunopathology of asthma, the focus on 

MCs was shown as an exemplar for the complex role of sphingolipid biology in this disease 

(Fig. 1). Thus, better understanding of the role of sphingolipid biology in mast cell responses 

may provide valuable insight into the development of novel therapeutics for disease 

management.

1.8. Targeting sphingolipids for disease control

While the majority of the data highlighted in this review show a correlative association 

amongst sphingolipids and asthma disease processes, there is also compelling evidence that 

sphingolipids exert a direct causative effect in the lung. Both the direct administration of 

either S1P (Ammit et al., 2001; Fuerst et al., 2014) or ceramide (Masini et al., 2007) induce 

airway smooth muscle contraction.

The utility of sphingolipid species as viable biomarkers is also an active area of 

investigation. The Spiegel laboratory has shown that both S1P (Rosenfeldt et al., 2003) and 

ceramide (Oyeniran et al., 2015) are elevated in the airway of patients with asthma. 

However, these studies did not take into account endotypes of asthma nor were validated 

biomarkers of disease such as periostin or FeNO assessed. Other groups have shown plasma 

S1P to be an asthma biomarker associated with adult disease control (McGeachie et al., 

2015) and severity (Reinke et al., 2017). One severe endotype of asthma is aspirin 

exacerbated respiratory disease (AERD). Recently Trihn et al. demonstrated that S1P is a 

potential biomarker for AERD (Trinh et al., 2016). Additionally sphingolipid levels in the 

serum of pediatric patients have also been examined and illustrate an upregulation of various 

ceramide species associated with childhood asthma (Perzanowski et al., 2017). Taken 

together, these highlight the importance of better understanding of the role of sphingolipid 

biology in specific asthma endotypes.

Lastly there have been several studies in animal models that suggest pharmacologic targeting 

of sphingolipid species may hold promise as a novel class of asthma therapeutics. The use of 

myriocin, which inhibits SPT, has shown mixed responses in the literature. There have been 

reports that myriocin exacerbates AHR both in the presence (Edukulla et al., 2016) and 

absence (Worgall et al., 2013) of allergen challenge. On the other hand Oyeniran et al. 
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showed a significant abrogation of HDM mediated allergic airway disease specifically in 

relation to AHR (Oyeniran et al., 2015). Part of the discrepancies across these studies could 

be related to pharmacokinetics of the drug itself and/or sphingolipid signaling. Oyeniran et 

al. utilized the inhibitor only in the later stages of allergen challenge and the drug was 

administered I.P. due to drug solubility issues. The two prior studies administered myriocin 

directly into the lung parenchyma and at different dosing strategies. Thus, targeting SPT as a 

viable mechanism of asthma control will need further investigation before these findings can 

be translated from mouse to man.

On the other hand, greater pharmacologic success has been found in relation to targeting 

either SphKs or S1P itself. FTY720 is a derivative of myriocin and a structural analog of 

sphingosine. It is a prodrug that is phosphorylated upon entry into the cell by SphK. It is this 

phosphorylated form that acts as a potent agonist of SIPRs. However newer studies have also 

shown that FTY720 may exert pleotropic effects on cellular responses by inhibiting 

ceramide synthases (Berdyshev et al., 2009) or acting as a histone deacyltase inhibitor (N C 

Hait et al., 2015). Intranasal administration of FTY720 has shown to alter dendritic cell 

function (Idzko et al., 2006), inhibit airway remodeling (Karmouty-Quintana et al., 2012), 

and dampen both inflammation and AHR (Oyeniran et al., 2015) in animal models of 

disease. On the other hand, targeting the kinase responsible for S1P generation has also 

shown promise. Using a specific inhibitor of SphK1 blocked both IgE production from 

human and murine B cells (Kim et al., 2014) as well as attenuated MC mediated AHR in 

vivo (Price et al., 2013).

2. Conclusions

Despite advances in our understanding of disease immunopathology, asthma remains a 

significant public health burden and a cause for morbidity and mortality worldwide. 

Sphingolipids play an important role in the susceptibility, initiation, and exacerbation of 

asthma and may be a key biomarker for identification of certain endotypes and a target for 

drug discovery. While this review focused on sphingolipid biology in the context of mast 

cells, sphingolipid have also been appreciated to play a critical role in other cellular 

mediators of asthma such as T cells, B cells, and airway smooth muscle cells thus better 

understanding of the complex role of sphingolipids in asthma may prove to yield effective 

therapeutics that target many facets of disease.
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Fig. 1. 
Model.
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