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Quantum deep reinforcement 
learning for clinical decision 
support in oncology: application 
to adaptive radiotherapy
Dipesh Niraula1*, Jamalina Jamaluddin2, Martha M. Matuszak2,3, Randall K. Ten Haken3 & 
Issam El Naqa1

Subtle differences in a patient’s genetics and physiology may alter radiotherapy (RT) treatment 
responses, motivating the need for a more personalized treatment plan. Accordingly, we have 
developed a novel quantum deep reinforcement learning (qDRL) framework for clinical decision 
support that can estimate an individual patient’s dose response mid-treatment and recommend an 
optimal dose adjustment. Our framework considers patients’ specific information including biological, 
physical, genetic, clinical, and dosimetric factors. Recognizing that physicians must make decisions 
amidst uncertainty in RT treatment outcomes, we employed indeterministic quantum states to 
represent human decision making in a real-life scenario. We paired quantum decision states with a 
model-based deep q-learning algorithm to optimize the clinical decision-making process in RT. We 
trained our proposed qDRL framework on an institutional dataset of 67 stage III non-small cell lung 
cancer (NSCLC) patients treated on prospective adaptive protocols and independently validated our 
framework in an external multi-institutional dataset of 174 NSCLC patients. For a comprehensive 
evaluation, we compared three frameworks: DRL, qDRL trained in a Qiskit quantum computing 
simulator, and qDRL trained in an IBM quantum computer. Two metrics were considered to evaluate 
our framework: (1) similarity score, defined as the root mean square error between retrospective 
clinical decisions and the AI recommendations, and (2) self-evaluation scheme that compares 
retrospective clinical decisions and AI recommendations based on the improvement in the observed 
clinical outcomes. Our analysis shows that our framework, which takes into consideration individual 
patient dose response in its decision-making, can potentially improve clinical RT decision-making by 
at least about 10% compared to unaided clinical practice. Further validation of our novel quantitative 
approach in a prospective study will provide a necessary framework for improving the standard of care 
in personalized RT.

The efficacy of radiotherapy (RT), as one of the main clinical cancer treatments, has the potential to be improved 
by personalization according to each patient’s estimated treatment response. In a study by Bryant et al., it was 
estimated that about 3.05 million cancer survivors in 2016 were treated with radiation, accounting for 29% of all 
cancer survivors. The number of radiation-treated cancer survivors was expected to be 3.38 million by 2020 and 
is projected to be 4.17 million by 20301. However, the current population-based one-size-fits-all clinical practice, 
where RT regimens are almost identical for all similar staged cancer patients, is sub-optimal due to the subtle 
physiological and genetic heterogeneity among individual patients that can result in diverse treatment responses 
and outcomes even when treated under identical protocols. Therefore, personalizing RT treatment according 
to a patient’s estimated treatment response is crucial for optimizing RT outcomes and ultimately increasing the 
rate of cancer survivorship. We hypothesize that a robust clinical decision support system (CDSS)2 that can 
quantitatively estimate long term treatment responses from pre and during treatment analyses and recommend 
proper prescription adjustments accordingly will be necessary to improve the standard of care in personalized RT.
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One proposed way of personalizing RT is shown in Fig. 1, which presents a schematic for knowledge-based 
response-adapted RT (KBR-ART)3–5. In a typical RT regimen for non-small cell lung cancer (NSCLC), a patient 
is given 60 Gray (Gy) of radiation in 30 fractions which takes a total of 6 weeks to administer6. The proposed 
KBR-ART will follow the initial treatment plan for the first two-thirds, or week 1 to week 4, of the regimen 
during which the patient’s treatment response is evaluated. Any necessary treatment adjustment (increase or 
decrease in dose per fraction) is carried out during the last one-third, or week 5 to week 6 of the regimen. The 
adjustment is intended to ensure an optimal treatment outcome, i.e., maximize tumor control and minimize 
radiation induced complication. Note that although we have chosen lung cancer for this study, the KBR-ART 
scheme is applicable to all types of cancer.

While the procedure for KBR-ART may be clear, obtaining the necessary information to create a standardized 
clinical protocol is difficult. The main challenge of KBR-ART is to quantify the relationship between radiation 
dose and treatment outcome. One way of measuring treatment response would be through direct (non-clinical; 
wide range of radiation dose) human experimentation, though such an approach would be unethical. Another 
challenge emerges from the complex biological processes that involves hundreds, if not thousands, of biological 
and clinical factors, which makes it an extremely difficult task to establish a quantitative relationship between 
radiation dose and treatment outcome, consequently complicating the task of making objective dose-adaptation 
decisions.

Advanced machine learning methods such as deep learning, model-based reinforcement learning, and feature 
selection can alleviate the aforementioned challenges. Deep learning models are computational models that 
are made up of multi-layer neural networks that can combine data representation with the learning task in the 
same framework7,8. Deep learning techniques have considerably improved the field of computer vision, speech 
recognition, natural language processing, drug discovery and genomics, among other domains. Reinforcement 
learning (RL) is an area of machine learning concerned with teaching an artificially intelligent (AI) agent how to 
take optimal actions in a given environment to maximize a reward function9. Deep RL has also made a significant 
progress in creating AI systems that have even surpassed human-level intelligence in certain tasks such as Atari 
videogames10 and the Go board game11. Based on those advanced data driven techniques, we have designed a 
quantitative framework for KBR-ART using model-based reinforcement learning12 to model an artificial radio-
therapy environment (ARTE) for dose adaptation optimization and using a Bayesian Network approach for 
relevant feature selection13. Our framework utilizes a hybrid of prior knowledge-based process-driven techniques 
and deep learning-based data-driven techniques in modeling an ARTE that can estimate RT treatment outcome 
for a given patient and radiation dose. The hybridization and application of prior knowledge provides a significant 
improvement to an earlier work by Tseng et al.12, which ensures that ARTE does not violate clinically observed 
facts which might not be easily apparent from the data alone. Incorporating prior knowledge also helped in 
mitigating overfitting pitfalls and reducing the model error; this allowed us to work with continuous numerical 
values, further improving the earlier work which only considered discrete values. Furthermore, we have defined 
the patients’ state in ARTE using the 5 important features selected from a multi-objective Bayesian network 
study13. A schematic of ARTE is presented in Fig. 2. For dose optimization, ARTE assigns a reward value for 

Figure 1.   Schematics of response-adapted lung cancer radiotherapy. Response-adapted radiotherapy evaluates 
treatment response in the first two-thirds (week 1 to week 4) of the treatment period and then makes necessary 
adaptation in the last third (week 5 to week 6), with the goal of optimizing the treatment plan. For the case of 
lung cancer, optimization translates into maximizing tumor (local) control (LC) and minimizing radiation-
induced pneumonitis of grade 2 or higher (RP2).
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Figure 2.   Quantum deep reinforcement learning algorithm for optimal decision making in knowledge-
based adaptive radiotherapy. Schematic of a quantum deep reinforcement learning (qDRL) algorithm for 
optimal decision making in knowledge-based adaptive radiotherapy. qDRL employs deep q-net as a decision 
optimization algorithm and employs quantum state as the decision. Here, qDRL is a model-based algorithm 
that utilizes an artificial radiotherapy environment (ARTE) as the RL model. The qDRL artificially intelligent 
(AI) agent feeds in patient’s state st in its memory (deep q-net) and obtains a set of q-values for a range of 
dose (

{

q|d�t
}

) . The agent then selects the dose with the highest q-value and performs quantum amplification 
of that dose on a superimposed quantum dose decision state, |D� . A quantum measurement is performed on 
the amplified state. The obtained dose measurement, |d�t , along with the state st is fed into the ARTE. ARTE is 
composed of three functions in succession: (1) transition function, (2) RT outcome estimator, and (3) reward 
function, which predicts the patient’s next state st+1 , RT treatment outcome in terms of probability of local 
control, pLC , and probability of radiation induced pneumonitis of grade 2 or higher, pRP2 , and reward value, 
rt+1, for the state-dose-decision pair. st+1 , and rt+1 are then used by the quantum agent to update its memory. 
This cycle is repeated until the agent finds a terminating state, after which a new cycle is initiated for a different 
patient. Five relevant biophysical features from radiomics, cancer and normal tissue radiation, cytokines, and 
genetics, were selected to represent the patient’s state based on our earlier work13.
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every pair of patient’s states and radiation dose, which is then accumulated by the deep reinforcement learning 
(DRL) algorithm in finding the optimal dose adaptation for that patient. However, even with the improvements 
to ARTE, the earlier approach alone is insufficient to model the intrinsic ‘noise’ in patient’s data generated by 
the uncertainty in physician’s decision-making process.

In this work, we have introduced a novel modeling approach for clinical application, where we model the 
clinical decisions with quantum states to represent the indeterminism in the clinical decision-making process 
during RT treatment due to the unavailability of complete information on RT treatment course and outcomes. 
Decisions made under uncertainty are typically influenced by personal preference14, which are subject to change 
with varying information in a situation, and several experiments have demonstrated preference reversal in 
human decision-making15,16. Considerable efforts have been made to describe anomalies in human decision-
making, such as preference reversal, based on the laws of classical probability theory, in terms of subjective 
utility and subjective probability17,18; however, they have not been successfully generalized, and several other 
experiments have shown violation of these principles19. These inadequacies of classical decision-making theory 
can be overcome by quantum probability theory-based models of human decision-making processes16,20–22. 
Because quantum states are noncommutative, quantum probabilities are intrinsically asymmetric, providing a 
consistent mathematical framework to overcome the shortcomings of classical probability that primarily arises 
from its symmetrical property.

We, however, directly modeled human decision as quantum states and decision-selection as quantum inter-
action, bypassing the utility-based quantum theoretic approach. Our approach is similar to the value-based 
quantum reinforcement learning (QRL) framework by Li et al.23–25. Li et al. in their study25 demonstrated a QRL 
framework to be a better alternative for mimicking human decision-making, in which 2 QRL and 12 classical 
RL models were compared in modeling human decision-making among healthy and cigarette-smoking sub-
jects while performing the Iowa Gambling Task. The authors argued that quantum-like features exist in human 
decision-making, in which making a choice can influence the subjective values of the alternatives; since quantum 
states can exist in a superimposed state, (i.e., a state representing all the alternatives at once) any operation, for 
instance selecting a choice, will influence the value of all other alternatives.

Our framework, though similar in concept with Li’s QRL, varies in its implementation. We have employed 
deep q-net26 technology for optimizing decision prediction and to provide a more complete representation of a 
patient’s state due to its ability to function with nonlinear complex systems over a continuous space. Additionally, 
we have designed a novel quantum controller circuit that allows our framework to run on a quantum processor 
for modeling decisions with realistic quantum states and decision-selection with real quantum interaction. By 
combining the quantum computation and deep q learning, we have developed a novel quantum deep reinforce-
ment learning (qDRL) framework for modeling optimal decision-making processes in KBR-ART (Fig. 2).

In this work, we demonstrate the first application of a qDRL framework to real-world clinical data for deci-
sion-making, particularly in the case of NSCLC. For comparison, we trained and validated three frameworks: 
DRL, qDRL trained on a Qiskit quantum computing simulator27, and qDRL trained on an IBM quantum (IBMQ) 
16 Melbourne 15-qubit processor28. We trained our framework on 67 stage III NSCLC patient datasets from a 
single institution13 and validated our framework on an independent multi-institutional cohort of 174 NSCLC 
patients treated under the Radiation Therapy Oncology Group- (RTOG-) 0617 protocol29.

This paper is organized as follows. In the Results section, we present the AI recommendations generated from 
three RL frameworks and compare the results with one another and the clinical decisions. Since our framework 
is not a supervised learning algorithm, a direct performance comparison is not possible; instead, we developed 
comparison metrics based on the radiation dose to treatment outcome relationship. The Discussion section pre-
sents the analysis of the results and describes the limitations and the potential of our framework. The Methods 
section describes the details of our framework including the mathematical details of qDRL, the design of a novel 
quantum amplification method called a Controller Circuit, the description of the utilized patient features, and 
details of the various components of the proposed ARTE.

Results
Optimal AI recommendations (dose per fraction for the last 1/3 of treatment) obtained from qDRL models 
trained in the IBMQ quantum processor are shown in Fig. 3. AI recommendations from other models are 
presented in the Supplementary Material. We repeated every experiment 5 times for rigorous statistical report-
ing of the average recommendations and standard error of mean as uncertainty as shown in Fig. 3. For visual 
comparison, we added the retrospective clinical dose decision for each patient, color-coded with the respective 
clinical outcomes. Altogether the binary outcomes can be classified into 4 classes, among which the class with 
successful local tumor control (LC = 1) and no occurrence of radiation induced pneumonitis (RP2 = 0) is the 
clinically desirable outcome.

For additional information on the AI decision-making, we have color-coded AI recommendations with their 
corresponding q-value (quality value) obtained from the deep q-net. Deep q-net serves as the memory of the AI 
agent, which assigns a q-value for every possible pair of the patient’s state and dose decision. Mathematically, the 
q-value is the expected return (time-average) of recommending a series of dose to a patient until the AI agent 
either achieves the desirable treatment outcome estimates or exceeds a user-defined terminating steps (in our 
case 10 steps). At every step of dose decision-making, the AI agent gets a reward based on the treatment outcome 
estimates, which is then aggregated into q values throughout the training process. We assigned positive rewards 
for successfully attaining the desirable outcomes and negative rewards for failing to do so. Since an agent always 
selects the greedy decision (decisions with the maximum q value), the q-value can be loosely translated as the 
AI’s confidence in a recommended dose. A positive q-value corresponds to the decision that most likely results 
in a desirable outcome, and while a negative q-value still corresponds to the best decision for a particular case, 
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it is less likely to result in a desirable outcome. Note that the absolute magnitude of q value will change with 
different reward scheme and training parameters.

Because our framework is not supervised learning, we devised the following 2 complementary metrics for 
evaluating model performance.

1.	 Similarity score (root mean square error [RMSE] between retrospective clinical decisions and the AI recom-
mendation): Similarity score provides a direct metric to compare the closeness of the AI recommendation to 
the clinical practice. Although the goal of our modeling is not to replicate the retrospective clinical decision, 
because the KBR-ART paradigm is based on the premise that the current practice is suboptimal, the RMSE 
metric can still provide some level of information regarding the quality of the model since the current prac-
tice is based on clinically validated measures. This means that a 0 Gray/fraction (Gy/frac) RMSE similarity 
score is undesirable, however a low RMSE generally indicates a good recommendation.

2.	 Self-evaluation scheme (evaluation based on the radiation dose to outcome relationship). This scheme is also 
based on retrospective clinical decisions but factors in the clinical outcomes12. The scheme is summarized 
in Table 1, which assumes that higher radiation dose simultaneously increases the probability of controlling 
tumor as well as the risk of complications. This assumption is based on the observation that radiation kills 
both cancer cells and healthy cells. For instance, if the clinical outcome for a patient was no local control 
(LC = 0) and no occurrence of radiation induced pneumonitis (RP2 = 0), then an AI dose recommendation 
higher than the clinical decision can be considered as a good recommendation (i.e., the patient would have 
benefited from dose escalation at week 4 of the treatment period) and vice-versa. Out of the four possible 
permutations, LC = 1 and RP2 = 0 is the only clinically optimal outcomes. Since its impossible to evaluate 
recommendations for the desirable outcomes, we have used ‘unsure’ and ‘good’ tags for the AI recommenda-
tion. When an AI recommendation falls outside 0.5 Gy/frac of the clinical dose decision, we tag the recom-
mendation as ‘unsure’. This uncertainty is due to the lack of knowledge about individual patients’ sensitivity 
to dose adaptation. However, when an AI recommended dose falls inside the 0.5 Gy/frac margin of the clini-
cal decision, we can tag the dose as a good recommendation with higher confidence. Among the clinically 
undesirable outcomes, patients with LC = 0 and RP2 = 0 could have received a higher dose to increase the 
chance of LC while patients with LC = 1 and RP2 = 1 could have received a lower dose to decrease the chance 

Figure 3.   Clinical decision support system dose adaptation recommendation. Comparison between 
retrospective clinical decision and AI recommendations obtained from the quantum deep reinforcement 
learning (qDRL) model trained in the IBMQ quantum processor. Each datapoint corresponds to the dose 
decision (dose per fraction) for the last one-third treatment period for the training dataset. The clinical data 
points are color-coded according to the four possible binary clinical outcomes: LC = 0 (no local control) and 
RP2 = 0 (no radiation induced pneumonitis of grade 2 or higher), LC = 0 and RP2 = 1, LC = 1 and RP2 = 1, and 
LC = 1 and RP2 = 0. Here LC = 1 and RP2 = 0 is the clinical desirable outcome. The AI recommendation is color-
coded according to the q-value (expected return of recommending a dose), which can be loosely interpreted as 
the AI’s confidence in its recommendation. Here, the AI recommendations are averages of 5 identically trained 
models with standard error of mean as uncertainty. For clarity, this figure is rotated and presented in landscape 
format in the Supplementary Material.
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of RP2. However, for LC = 0 and RP2 = 1, the outcome of increasing or decreasing the dose is unclear. We 
took into consideration the fact that, clinically, the amount of dose administered is limited by the likelihood 
of causing RP2—the side-effect on any treatment should be minimized. So, when AI recommends a dose 
that is less than the clinical dose decision, we tag it as a ‘good’ recommendation. Additionally, for assurance, 
we added a cushion of 0.1 Gy/frac and defined ‘good’ as the AI recommendation that is less than clinical 
decision minus 0.1 Gy/frac.

Analysis of model performance based on the above two metrics is presented as bar charts in Fig. 4. Similarity 
scores for DRL, qDRL trained in Qiskit Simulator (qDRL + simulator), and qDRL trained in IBMQ quantum 
processor (qDRL + IBMQ) for the training dataset were 0.57 Gy/frac, 0.54 Gy/frac, and 0.55 Gy/frac, respectively, 
and for the validation dataset were 0.70 Gy/frac, 0.66 Gy/frac, and 0.71 Gy/frac, respectively. The similarity 
scores were calculated between the averaged recommendations and the clinical decisions. The results from the 
self-evaluation scheme were converted into percentage of the total number of patients. The self-evaluation results 
for the training datasets are as follows: the percentages of good recommendations for DRL, qDRL + simulator, 
qDRL + IBMQ, and clinical dose were 58%, 61%, 60%, and 49%, respectively; the percentages of bad recom-
mendations were 19%, 16%, 16%, and 51%, and the percentages of unsure recommendations were 22%, 22%, 
24%, and 0%. Similarly, the self-evaluation results for the validation datasets are as follows: the percentages of 
good recommendations for DRL, qDRL + simulator, qDRL + IBMQ and clinical dose were 41%, 45%, 42%, and 
26%, respectively; the percentages of bad cases were 46%, 43%, 45%, and 74%, and the percentages of unsure 
cases were 13%, 12%, 13%, and 0%. Note that the analysis of clinical doses is based on the clinical outcomes.

Discussions
Analysis of our result indicates that our framework can potentially improve clinical RT treatment outcome by 
at least about 10%. This metric corresponds to the minimum difference between the percentage of good recom-
mendations and clinical decision as shown in Fig. 4, for the combined training and validation results. Precisely, 
it’s the difference between DRL and the clinical decision. We recognize that the self-evaluation scheme alone 
provides partial information on the performance, thus we base our conclusion by considering both the self-
evaluation scheme and similarity score; the similarity score shows that our framework is close to clinical deci-
sions with a RMSE value of at most 0.71 Gy/frac. With a smaller similarity score and better performance under 
the self-evaluation scheme, we have shown that our framework can recommend doses close to medical experts 
with a higher chance of successful treatment of NSCLC patients. However, we would like to acknowledge that 
our analysis depends on having an accurate representation of the RT environment model and the accuracy of the 
outcome estimator. Modeling of a multimodal treatment environment including immunotherapy and surgical 
and medical oncology will be necessary for a more comprehensive assessment of our framework.

Our analysis showed that qDRL + simulator models are slightly different than the qDRL + IBMQ. The reason 
for this difference is twofold: (1) the simulator lacks any machine error including the quantum decoherence error 
(i.e., inability of maintaining a coherent quantum phase), (2) the decision selection mechanism of qDRL + simula-
tor is different from qDRL + IBMQ. The former reason results in higher noise but could be more representative 
of the human decision-making process. The latter reason comes from the physical necessity to design a quantum 
circuit of length shorter than the quantum coherence length of a quantum processor. Any quantum algorithm 
(strictly speaking its equivalent quantum circuit) that is longer than the system’s coherence length will result in 
error. We designed a novel quantum controller circuit that was much shorter, thus easier to design and use, than 
the Grover amplification process (the decision selection mechanism of qDRL + simulator derived form QRL). 
Note that the quantum controller circuit is by no means a replacement of the Grover’s amplification process as 
a search algorithm; it is, however, a pragmatic and scalable alternative for the decision selection mechanism.

Table 1.   Self-evaluation scheme. Evaluation scheme for AI recommendation based on the radiation dose to 
outcome relationship—the probability of both LC and RP2 increases with increase in radiation dose. Here 
LC and RP2 are retrospective treatment outcome and LC = 1 and RP2 = 0 are the clinically desired outcome. 
For a patient with known treatment outcome, we can evaluate an AI recommendation by comparing it with 
the retrospective clinical dose decision. For instance, for a patient with LC = 0 and RP2 = 0, we can say that 
the patient should have been given a higher dose. a � = AI recommendation – Clinical decision. 0: no event, 1: 
event. LC local control, RP2 radiation-induced pneumonitis of grade 2 or higher.

LC RP2 Dose difference ( �)a Remark

0 0 � ≤ 0 Bad

0 0 � > 0 Good

0 1 � < −0.1 Good

0 1 � ≥ −0.1 Bad

1 0 |�| ≤ 0.5 Good

1 0 |�| > 0.5 Unsure

1 1 � < 0 Good

1 1 � ≥ 0 Bad
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Although our analysis showed only a small improvement in performance between DRL and the qDRL algo-
rithm, our hybrid quantum–classical machine learning algorithm possesses both conceptual and computational 
advantages. We found qDRL models exhibited slightly smaller similarity score than the DRL models, i.e., about 
0.03 Gy/frac difference for training dataset and about 0.04 Gy/frac difference for validation dataset (best case). 
Similarly, in terms of self-evaluation scheme, qDRL models made more good recommendations and less bad 
recommendations, i.e., about 3% difference for both good and bad recommendations for both training and 
validation dataset (best case). While it is difficult to favor the qDRL algorithm over the DRL algorithm solely 
based on the performance metrics, the qDRL algorithm has the following two advantages: (1) modeling of human 
decision with quantum state has a sound theoretical background and (2) a hybrid quantum–classical machine 
learning algorithm can harness quantum properties such as superposition, parallelism, and entanglement. In 
this work we designed our framework with value based DRL methods and, as a next iteration, plan to explore 
and incorporate advanced policy based DRL methods to our qDRL framework for additional improvement.

Our approach of combining quantum computation, deep learning techniques, and statistical ensemble pro-
vides the necessary robustness for a clinically viable CDSS. Modeling of human-decision as a quantum state 
is not only theoretically consistent but also takes into consideration the intrinsic indeterminism of the human 

Figure 4.   Training and validation results. (a) similarity scores and (b) self-evaluation results for the training 
and validation data sets. A total of 5 numerical experiments were carried out for each of the models: Deep 
reinforcement learning (DRL), quantum DRL (qDRL) trained in simulator, and qDRL trained in IBMQ 
quantum processor. In particular, we used Double DQN algorithm for DRL. All the results correspond to the 
average model. The results of the Self-Evaluation I scheme are converted into the percentage of the total patients. 
The similarity score is the root mean square error (RMSE) value between the retrospective clinical dose decision 
and the AI recommendation while the self-evaluation value is calculated based on the clinical outcome and the 
clinically established relationship between radiation dose and RT outcome.
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decision-making process. Deep learning techniques use redundancy of a large number of nodes to handle (desen-
sitize) data noise. Averaging over the ensemble of multiple trained models makes our approach less sensitive 
to stochastic training methods used in deep learning training. For clinical application, further improvement 
is necessary, which can be achieved by using a larger training dataset, further infusing expert knowledge in 
modeling of ARTE, more independent validation and testing, and the development of a graphical user interface. 
Additionally, testing our framework in a prospective study will be necessary for future clinical implementation30.

Aside from data-related limiting factors, our framework will have to overcome several other limitations and 
consider concurrent complimentary technologies such as modern radiotherapy delivery techniques for future 
clinical application. Considering a patient-specific alpha-to-beta ratio would capture the heterogeneity among 
patients and boost the efficiency of the current framework. Combining the volatility of radiomics features for 
PET images into the uncertainty analysis would provide a more accurate representation of the predictability of 
the framework. Similarly, an extensive sensitivity analysis of the features will be necessary for better representa-
tion of the response prediction, range of variability, and the uncertainty estimates of our framework. In terms of 
application, our framework should be used in a complementary fashion and consistent with other clinical tools 
such as the RT treatment planner, plan optimizer, and image guidance system29 for clinical implementation.

In summary, a framework for a robust CDSS based on quantum computing and deep learning methods was 
designed and tested. The key feature of the framework was modeling the clinical decisions as quantum states. The 
novelty of our approach lies in combining quantum computation with deep learning to gain the best of both fields. 
A novel quantum circuit was designed and implemented in IBMQ quantum processor to utilize real quantum 
states and quantum interaction. Two complementary schemes were designed to analyze the performance of our 
weakly supervised framework. Based on our analysis, our framework showed potential of improving RT efficacy. 
Finally, our framework provides a clinically viable quantitative approach to decision-making in KBR-ART.

Methods
Quantum deep reinforcement learning.  Quantum deep reinforcement learning is a novel action value-
based decision-making framework derived from QRL23 and deep q-learning10 framework. Like conventional 
RL9,31, our qDRL based CDSS framework is comprised of 5 main elements: clinical AI agent, ARTE, radiation 
dose decision-making policy, reward, and q-value function. Here, the AI agent is a clinical decision-maker that 
learns to make dose decisions for achieving clinically desirable outcomes within the ARTE. The learning takes 
place by the agent-environment interaction, which can be sequentially ordered as: the AI decides on a dose and 
executes it, and in response, a patient (part of the ARTE) transits from one state to the next. Each transition pro-
vides the AI with feedback for its decision in terms of RT outcome and associated reward value. The goal of RL 
is for the AI to learn a decision-making policy that maximizes the reward in the long run, defined in terms of a 
specified q-value function that assigns a value to every state-dose-decision pair obtained from the accumulation 
of rewards over time (returns).

Assuming Markov’s property (i.e., an environment’s response at time t + 1 depends only on the state and 
dose-decision at time t  ), the qDRL task can be mathematically described as a 5-tuple (S, |D�,TF, P,R) , where 
S is a finite set of patient’s states, |D� is a superimposed quantum state representing the finite set of eigen-dose 
decision, TF : S × D → S′ is the transition function that maps patient’s state st and eigen-dose |d�t to the next 
state st+1 , PLC|RP2 : S′ → [0, 1] is the RT outcome estimator that assigns probability values pLC and pRP2 to the 
state st+1 , and R : [0, 1]× [0, 1] → R is the reward function that assigns a reward rt+1 to the state-decision pair 
(st , |d�t) based on the outcome probability estimates.

Eigen-dose |d� is a physically performable decision that is selected via quantum methods from the superim-
posed quantum state |D� which simultaneously represents all possible eigen-doses at once. In simple words, |D� 
is the collection of all possible dose options and |d� is one of those options which is selected after a decision is 
made. Selecting dose decision |d� is carried out in two steps: (1) amplifying the optimal eigen-dose |d�∗ from the 
superimposed state |D� (i.e., |D�′ = Âmp|d�∗ |D� ) and (2) measuring the amplified state (i.e., |d� = M̂easure(

∣

∣D′
〉

).
The optimal eigen-dose |d�∗ is obtained from deep Q-net, which is the AI’s memory. Deep Q-net, 

DQN : S → Rd , is a neural network that takes patient’s state as input and then outputs q-value for each eigen-
dose ( 

{

q|d�
}

 ). The optimal dose is then selected following greedy policy where the dose with the maximum 
q-value is selected (i.e., |d�∗ =

argmax
∣

∣d′
〉 {q|d�} ). We have applied a double Q-learning 32 algorithm in training the 

deep Q-net. The schematic of a training cycle is presented in Fig. 2 and additional technical details are presented 
in the Supplementary Material.

Quantum amplification method and controller circuit.  We initially employed Grover’s amplification 
procedure33,34 for the decision selection mechanism. While Grover’s procedure works on a quantum simulator, it 
fails to correctly work in a quantum computer. The quantum circuit depth of Grover’s procedure (for 4 or higher 
qubits) is much greater than the coherence length of the current quantum processor35. Whenever the quantum 
circuit length exceeds the coherence length, quantum state becomes significantly affected by the system noise 
and loses vital information. Therefore, we designed a quantum controller circuit that is shorter than the coher-
ence length and is suitable for the task of decision selection. The merit of our design is its fixed length; since its 
length is fixed for any number of qubits, it is suitable for higher qubit systems, as much as permitted by the circuit 
width. Technical details regarding its implementation in quantum processor is presented in the Supplementary 
Materials.

An example of a controller circuit is given in Fig. 5. Controller circuits use twice the number of qubits (n), 
which can be divided into control and main. Optimal eigen-states obtained from deep Q-net are created in the 
control by selecting the appropriate pre-control gates. Then the control is entangled with the qubits from the main 
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via controlled NOT (CNOT) gates. CNOT gates are connected between a control qubit from the control and a 
target qubit from the main. CNOT gates flip the target qubit from |1� to |0� only when the control is in |1� state and 
does not perform any operation otherwise. Because all the main qubits are prepared in |0� state, we introduced 
the reverse gates (n X-gates in parallel) to flip them to |1� . X-gates flip |0� to |1� , and vice-versa. The CNOT flips 
all the qubits whose controls are in |1� state, creating a state that is element-wise opposite to the marked state. 
Finally, another set of reverse gates is applied to the main before making a measurement.

Another advantage of the controller circuit is controlled uncertainty level. The controller circuit has additional 
degrees of freedom that can control the level of uncertainty that might be needed to model a highly dubious 
clinical situation. By replacing the CNOT gate by a more general CU3(θ ,φ, �) gate, we can control the level of 
additional stochasticity with the rotation angles θ , φ , and � , which corresponds to the angles in the Bloch sphere. 
The angles can either be fixed or, for additional control, changed with training episode.

Figure 5.   Quantum controller circuit for a 5 qubit (32 bit) system. (a) Quantum controller circuit for the 
selection of the state |10101� . The probability distribution corresponding to (b) failed Grover’s amplification 
procedure for one iteration run in the 5-qubit IBMQ Santiago quantum processor and (c) successful quantum 
controller selection run in the 15-qubit IBMQ Melbourne quantum processor.

Table 2.   Description of the patients’ features. Description of the five features used to define 
patients’ state in the artificial radiation therapy environment of our framework.

Patient variable Biological/clinical characteristics References

IP10 (Cytokine/Signaling molecule)
IP10 (Interferon gamma-induced protein 10) is secreted in response to IFN-γ by various cells including 
monocytes, endothelial and fibroblasts. (i) Acts as chemoattractant for monocytes/macrophages, T cells, 
NK (natural killer) cells, and dendritic cells. (ii) Promotes T cell adhesion to endothelial cells. (iii) Antitu-
mor activity (iv) Inhibition of bone marrow colony formation (v) Angiogenesis

36–38

GLSZM-ZSV (Tumor PET Imaging 
features/Radiomics)

Radiomics features: the zone-size variance (ZSV) feature of a gray-level size zone matrix (GLSZM) is 
defined as 

1
Ng×Lz

i=1
∑

Ng

j=1
∑

Lz

(

jp
(

i, j
)

− µj

)2 , refer to Appendix A5 of Ref.34 for the Notations
39

Tumor gEUD (tumor radiation)

Generalized equivalent uniform dose (gEUD) of tumor converted from EQD2 (Equivalent Dose at 
standard 2 Gy per fraction) dose distribution: gEUD =

(

∑

i

νieqd
a
2

)
1
a and eqd2 = Nfrac × d ×

d+α/β
2+α/β

 where 

α/β = 10 Gy, is the radiation fractionation sensitivity of cell, a =  − 10 is an organ specific parameter, and ν 
is the fractional organ volume obtained from the 3D dose distribution

40

Lung gEUD (lung radiation)
Generalized equivalent uniform dose (gEUD) of lung converted from EQD2 (Equivalent Dose at standard 
2 Gy per fraction) dose distribution: gEUD =

(

∑

i

νieqd
a
2

)
1
a and eqd2 = Nfrac × d ×

d+α/β
2+α/β

 where α/β = 4 Gy, 
and a = 1

40

Cxcr1-Rs2234671 (genetics)
A single nucleotide polymorphism (SNP) in the gene cxcr1, also known as Interleukin 8 receptor alpha 
(IL8RA), related to radiation induced toxicity in non-small cell lung cancer. SNP is a substitution of single 
nucleotide that occurs at a specific position in the genome via mutation

41
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Patient characteristics.  The patient’s state in the ARTE is defined by 5 biological features: cytokine (IP10), 
PET imaging feature (GLSZM-ZSV), radiation doses (Tumor gEUD and lung gEUD), and genetics (cxcr1- 
Rs2234671). Their descriptions are presented in Table 2. These 5 variables were selected from a multi-objective 
Bayesian Network study13, which considered over 297 various biological features and found the best features for 
predicting the joint LC and RP2 RT outcomes.

The training data analyzed in this study are obtained from the University of Michigan study UMCC 2007.123 
(NCI clinical trial NCT01190527) and the validation data analyzed in this study are obtained from the RTOG-
0617 study (NCI clinical trial NCT00533949). Both trials were conducted in accordance with relevant guidelines 
and regulations and informed consent was obtained from all subjects and/or legal guardians. Details on training 
and validation datasets, and necessary model imputation carried out to accommodate the differences in the 
datasets are presented in the Supplementary Materials.

Transition function.  Deep Neural Networks (DNN) were applied as transition functions for IP10 and 
GLSZM-ZSV features. They were trained with a longitudinal (time-series) dataset, with the pre-irradiation 
patient state and corresponding radiation dose as input features and post-irradiation state as output. For lung 
and tumor gEUD, we utilized prior knowledge and applied a monotonic relationship for the transition function 
since we know that gEUD should increase with increasing radiation dose. We assumed that the change in gEUD 
is proportional to the dose fractionation and tissue radiosensitivity,

Here g(tn) is the gEUD at time point tn , dn is the radiation dose fractionation given during the nth time period, 
and α/β ratio is the radiosensitivity parameter which differs between tissue type. Note that we first applied con-
strained training42 to maintain monotonicity with DNN model, however the gEUD over time trend was flatter 
than anticipated, thus we opted for a process-driven approach in the final implementation. The technical details 
on the NNs and its training are presented in the Supplementary Material.

RT outcome estimator.  DNN classifiers were applied as the RT outcome estimator for LC and RP2 treat-
ment outcomes. They were trained with post irradiation patient states as input and binary LC and RP2 outcomes 
as its labels.

RT outcome estimator must also satisfy a monotone condition between increasing radiation dose and increas-
ing probability of local control as well as probability of radiation induced pneumonitis. To maintain this mono-
tonic relationship, we used a generic logistic function,

where g(t6) is the gEUD at week 6, and µ and T are two patient-specific parameters that are learned from training 
the DNN. Here, µ and T are the outputs of two neural networks that are fed into the logistic function and tuned 
one after the other, leaving the other fixed. The training details are presented in the Supplementary Materials.

Reward function.  The task of the agent is to determine the optimal dose that maximizes pLC while mini-
mizing pRP2 . Accordingly, we built a reward function on the base function P+ = PLC(1− PRP2) as shown in 
Fig. 6. The algebraic form is as follows,

Here the AI agent receives additional 10 points for achieving clinically desirable outcome (i.e., 
pLC > 70% and pRP2 < 17.2% ), 5 points for achieving computationally desirable outcome (i.e., 
pLC > 50% and pRP2 < 50% ), and -1 point for failing to achieve a desirable outcome altogether. The nega-
tive point motivates the AI agent to search for the optimal dose as soon as possible.

Wasserstein generative adversarial network with gradient penalty (WGAN‑GP).  To compen-
sate for low number of data points we employed WGAN-GP43, which learns the underlying data distribution 
and generates more data points. We generated 4000 additional data points for training qDRL models. Having a 
larger training dataset helps the reinforcement learning algorithm in accurately representing the state space. The 
training details are presented in the Supplementary Material.

(1)
g(tn)− g(tn−1)

tn − tn−1
∝ dn

(

1+
dn
α
β

)

.

(2)pLC|RP2 =
1

1+ exp
(

g(t6)−µ

T

) ,

(3)R =







P+ + 10 if70% < pLc < 100% and 0% < pRP2 < 17.2%
P+ + 5 if50% < pLc < 70% and 17.2% < pRP2 < 50%
P+ − 1 if0% < pLc < 50% and 50 < pRP2 < 100%
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Data availability
The training data analyzed in this study are obtained from the University of Michigan study UMCC 2007.123 
(NCI clinical trial NCT01190527). Restrictions apply to the availability of these data, which were used under 
data sharing protocol for this study. The validation data analyzed in this study are obtained from the RTOG-0617 
study (NCI clinical trial NCT00533949) and is publicly available in NCTN/NCORP Data Archive. Restrictions 
apply to the availability of these data, which were used under license for this study. Data are available from the 
authors upon reasonable request with the permission of NCI.

Code availability
Software codes used in this study will be made available from the corresponding author on reasonable request.
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