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Existing adaptive locomotion control mechanisms for legged robots are usually aimed at

one specific type of adaptation and rarely combined with others. Adaptive mechanisms

thus stay at a conceptual level without their coupling effect with other mechanisms

being investigated. However, we hypothesize that the combination of adaptation

mechanisms can be exploited for enhanced and more efficient locomotion control as

in biological systems. Therefore, in this work, we present a central pattern generator

(CPG) based locomotion controller integrating both a frequency and motor pattern

adaptation mechanisms. We use the state-of-the-art Dual Integral Learner for frequency

adaptation, which can automatically and quickly adapt the CPG frequency, enabling

the entire motor pattern or output signal of the CPG to be followed at a proper high

frequency with low tracking error. Consequently, the legged robot can move with high

energy efficiency and perform the generated locomotion with high precision. The versatile

state-of-the-art CPG-RBF network is used as a motor pattern adaptation mechanism.

Using this network, the motor patterns or joint trajectories can be adapted to fit the

robot’s morphology and perform sensorimotor integration enabling online motor pattern

adaptation based on sensory feedback. The results show that the two adaptation

mechanisms can be combined for adaptive locomotion control of a hexapod robot in

a complex environment. Using the CPG-RBF network for motor pattern adaptation,

the hexapod learned basic straight forward walking, steering, and step climbing. In

general, the frequency and motor pattern mechanisms complement each other well and

their combination can be seen as an essential step toward further studies on adaptive

locomotion control.

Keywords: legged robot, locomotion control, frequency adaptation, motor pattern adaptation, central pattern

generator

1. INTRODUCTION

Adaptation is an essential aspect of legged locomotion. By skillfully manipulating the movement,
animals can adapt their behavior in accordance with the environment, morphological variations,
and external and intrinsic perturbations. This is a vital trait when moving in complex and
unstructured environments where legs are especially advantageous. Within the robotics domain,
there have been many attempts to create adaptive locomotion controllers. One promising approach
is to use artificial central pattern generators (CPGs), inspired by their biological counterparts. These
CPGs can generate rhythmic motor signals and are, when coupled with sensory feedback, also able
to adapt their outputs accordingly.
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Frequency adaptation is one branch of CPG-based adaptation
techniques that have also been observed in animals such
as cockroaches (Bender et al., 2011), stick insects (Cruse,
1990; Grabowska et al., 2012), and cats (Forssberg and
Grillner, 1973). Frequency adaptation mechanisms seek to
optimize the movement speed of robots based on feedback
(entrainment). The consequences of using a wrongly tuned
CPG frequency include loss of precision, unwanted movement,
and energy-inefficient locomotion (Thor and Manoonpong,
2019a). Frequency adaptation mechanisms are often realized
by expanding CPGs with local sensory feedback for robot
locomotion (Aoi et al., 2011; Fukuoka et al., 2015; Owaki and
Ishiguro, 2017; Ambe et al., 2018). Moreover, as frequency and
phase are related, many works on frequency adaptation also
inherit the adaptation of different walking gaits or interlimb
coordination (for a detailed review, see Aoi et al., 2017). In this
work, the frequency and phase are separated and do not affect
each other.

Berendes et al. (2016) measured the coupling between the
amputated limbs of a Drosophila and intact legs, allowing them
to highlight the role of sensory feedback across walking speeds.
In their experiments, low frequency walking showed almost
no cycle-to-cycle coupling between stumps and intact legs as
compared to the strong coupling displayed during high frequency
walking. The finding that sensory feedback is more important for
slow walking animals is reinforced by Mantziaris et al. (2017)
in their study on deafferented stick insects. They found that
while the CPG networks interact on a pre-motor level to create
coordination patterns, these outputs are not observed in live
animals, leading to their conclusion that sensory feedback is
required to shape the basic coordination pattern produced by the
neural architecture. On the contrary, Sponberg and Full (2008)
establish that sensory feedback is less important for the faster
walking cockroach. They observed the gait of a cockroach
running on rough vs. smooth terrain. Even though the speed,
pitch, roll, and yaw of the body varied when running on
rough terrain, the animal maintained an alternating tripod
gait, indicating that sensory feedback was not contributing in
a significant way. Our study finds that frequency also slows
down during complex motion when sensory feedback is more
necessary.

Another important branch is motor pattern adaptation,
where the goal is to find motor patterns or joint trajectories
that solve a specific task or enable the robot to move in
a certain way. First of all, it is essential for legged robots
that the motor pattern is adapted to their morphology since
different robots require different motor patterns. Moreover,
suppose the robot is to be used in non-ideal environments.
In that case, it is also necessary that the motor pattern
can be adapted online to deal with the environment and
external perturbations. Furthermore, it could be a requirement
to learn new motor patterns for new tasks. Motor pattern
adaptation has been applied both to CPG-based locomotion
controllers (Nakanishi et al., 2004; Oliveira et al., 2011) and
deep neural network locomotion controllers (Clune et al., 2011;
Hwangbo et al., 2019; Lee et al., 2020; Schilling et al., 2020a,b;
Yang et al., 2020).

Although the techniques mentioned above have been
investigated and applied to robot locomotion control, they are
rarely combined (Aoi et al., 2017). Thus, their work stays at
a conceptual level where a single adaptation is shown without
putting it into a bigger picture and seeing the coupling effect
betweenmethods. However, we hypothesize that if the adaptation
mechanisms can be combined and appropriately exploited, the
locomotion behaviors of legged robots will become enhanced
and more efficient like their biological counterparts. To address
this hypothesis, we propose for the first time an adaptive
CPG-based locomotion controller that combines two state-of-
the-art CPG adaptation mechanisms for frequency and motor
pattern adaptations. While the two fundamental adaptation
mechanisms have been proposed and implemented on artificial
legged systems, they are employed separately. Their synergy or
coupling has not been fully addressed and validated on a legged
system because mutual adaptation can lead to conflict, involve
complex dynamical processes, and possibly require different
adaptation time scales.

As a frequency adaptation mechanism, we use the error-based
Dual Integral Learner (DIL) presented in Thor andManoonpong
(2019a,b). In this approach, the tracking errors between desired
and actual positions of the joints are used to adapt a CPG
frequency such that the legged robot’s locomotion speed matches
its motor performance (see Figure 1). The consequences of
running the system at too high a frequency (i.e., high tracking
error) are, as mentioned previously, loss of precision, unwanted
movement, energy inefficiency, and in the worst-case, motor
collapse (Thor and Manoonpong, 2019b). Thus, low tracking
error is especially important for motor pattern adaptation
where the generated trajectories are excreted to be followed. In
Thor and Manoonpong (2019a,b), the error-based DIL approach
has shown good performance on various robots where it can
quickly adapt the CPG frequency for energy-efficient locomotion
with low tracking error, prevent leg damage and deal with a
variety of motor performances.

As a motor pattern adaptation mechanism, we use the
modular CPG-RBF network proposed in Thor et al. (2020)
and Thor and Manoonpong (2021). The CPG-RBF network
comprises a CPG and radial basis function (RBF) network
(see Figure 1). Combining the CPG-RBF network with
the DIL mechanism for frequency adaptation is, therefore,
straightforward. The main features of the CPG-RBF network
are as follows: it is simple, minimal, and intuitive to use;
it has few control parameters resulting in fast learning; it
is scalable; finally, it is generic and thus can be applied to
legged robots with different morphologies (Thor et al., 2020).
Furthermore, the network is modular, and new sub-behaviors
or sensorimotor coordination can be learned independently and
added on the fly. In this work, the robot learns three different
motor patterns using an open-loop behavior for walking
straight, a closed-loop sub-behavior module for steering, and
a closed-loop sub-behavior module for climbing steps. It is
important to note that while (Thor and Manoonpong, 2021)
investigate the possibility of creating a modular CPG-based
mechanism with motor pattern adaptation, we investigate the
possibility and advantage of combining such a mechanism
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FIGURE 1 | Combining frequency adaptation (DIL) and motor pattern adaptation (CPG-RBF network) into an integrated adaptive CPG-based locomotion controller.

with an additional CPG-based adaptation mechanism for
frequency adaptation.

In the following sections, we provide a detailed introduction
to both the DIL mechanism for frequency adaptation (section
2.1) and the CPG-RBF network for motor pattern adaptation
(section 2.2). We then present the novel locomotion controller,
comprising both the frequency and motor pattern adaptation
mechanism (section 2.3). Finally, we evaluate the proposed
locomotion controller on the Modular Robot Framework
(MORF) (Thor et al., 2018) in a complex environment (sections
3 and 4). MORF is a 0.42 m long hexapod robot weighing 4.2
kg. Each leg is 0.25 m long when fully stretched and has three
actuated degrees of freedom, resulting in a total of 18 degrees of
freedom. Each degree of freedom is controlled with a Dynamixel
XM430 coreless electric motor set to position mode using the
built-in PID controller.

2. MATERIALS AND METHODS

2.1. CPG Network With Frequency
Adaptation
The core of both the frequency and motor adaptation
mechanisms is an artificial CPG. As mentioned in the
introduction, CPGs can generate rhythmic motor signals but
may also use sensory feedback to adapt their outputs. A
biological CPG is a group of nerve cells or interconnected
neurons within the thoracic ganglia of invertebrates and spinal
cords of vertebrates (Biewener, 2003). These CPGs are used for
locomotion and other rhythmic movements such as chewing,
swallowing, or breathing (Aoi et al., 2017; Nachstedt et al.,
2017; Grillner and El Manira, 2020). Over the years, various
artificial CPG models with differing degree of complexity
have been proposed: conceptual biological models (Brown,
1914), detailed biophysical models (Hellgren et al., 1992),
connectionist models (Ekeberg, 1993), and abstract models
(Ijspeert, 2008; Yu et al., 2014). Within the field of robot control,
most studies have implemented abstract CPG models due to

their simplicity and many advantages (Ijspeert et al., 2007;
Manoonpong et al., 2013b; Spröwitz et al., 2013; Fan et al.,
2016; Nordmoen et al., 2019; Degroote et al., 2020; Thor and
Manoonpong, 2021). From a control perspective, the advantages
of CPGs are their robustness against perturbations, easy
and smooth frequency modulation, suitability for distributed
implementation, and the fact that they use few control
parameters.

Both the frequency and motor pattern adaptation
mechanisms, presented in the following sections, use
the abstract neural SO(2)-oscillator based CPG model
(Pasemann et al., 2003). The SO(2)-based CPG network
comprises two fully-connected standard additive discrete-time
neurons (N0 and N1 in Figure 1) both using a sigmoid transfer
function. The outputs of the two neurons in the SO(2)-oscillator
are given by

oi(t + 1) = tanh





N
∑

j = 0

wij(t)oj(t)



 , (1)

where oi is the output from neuron i,N is the number of neurons,
andwij is the synaptic weight from neuron i to j. The two neurons
produce rhythmic outputs with a phase shift of π/2.

As proven in Pasemann et al. (2003), the CPG network
produces a quasi-periodic output when the weights are selected as

(

w00(t) w01(t)
w10(t) w11(t)

)

= α ·

(

cos ϕ(t) sinϕ(t)
− sin ϕ(t) cosϕ(t)

)

, (2)

with 0 < ϕ(t) < π as the frequency-determining parameter.
Parameter α determines the amplitude and the non-linearity of
the output oscillations.

The frequency-determining parameter of the SO(2)-oscillator
(ϕ) can be easily and smoothly modulated online. To adapt ϕ for
energy-efficient and accurate locomotion we use the error-based
DIL approach proposed in Thor and Manoonpong (2019a,b)
(see frequency adaptation in Figure 1). The DIL mechanism
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comprises slow and fast learners, acting on different time-scales
in parallel. Both the fast and slow learners receive the same error
and incorporate a proportion of it into their current estimation
of the perturbation (Wolpert et al., 2011). This is shown in the
following equations:

xf (n) = Af · xf (n− 1)+ Bf · e(n)+ Cf ·
∫

e(n)

xs(n) = As · xs(n− 1)+ Bs · e(n)+ Cs ·
∫

e(n)

e(n) = (f (n− 1S)− s(n))+ β

x(n) = xs(n)+ xf (n)

ϕ(n) = ϕ0 − x(n)

(3)

where e(n) is the joint tracking error calculated as the difference
between the forward model (f (n + 1S)) with the system delay
(1S) and system output (s(n)). The forward model is used to
translate the CPG output and sensory feedback into expected
joint positions. Since the CPG-RBF network does exactly this, it
can itself be used as the forwardmodel. The output of the forward
model or CPG-RBF network is compared to the system output,
which is the joint position feedback from the actual joints on the
robot. The system delay (1S) is used to account for the delay
between sending the joint position command to it being executed
on the robot. In this way, the forward model output (i.e., desired
joint position) and system output (i.e., actual joint position) can
be directly compared. It should be noted that a small bias (β =

0.02) is added to the error. In this way, the DIL mechanism
will receive a positive tracking error when the forward model
and system joint positions match and try to increase the CPG
frequency. In other words, the β-parameter also enables the DIL
mechanism to increase the CPG frequency when the system can
run at a faster frequency without increasing the tracking error.
xf (n) and xs(n) are the states of the fast and slow learners, each
consisting of three terms with x(n) being the learner output. The
computation of each learner state is straightforward. The first
term is the product of the previous learner state (xf ,s(n−1)) and a
constant retention factor (Af ,s). The second term is the product of
the error feedback (e(n)) and a constant learning rate (Bf ,s). The
final term is a product of the integrated or summed error (

∫

e(n))
over time and a constant integral rate (Cf ,s). The parameters Af ,s,
Bf ,s, and Cf ,s are under the constraints of Af < As, Bf > Bs,
and Cf > Cs. Thus the fast learner learns more rapidly as
indicated by a higher learning rate but also forgets more rapidly
as indicated by a lower retention factor. The main advantages of
the dual learner setup include fast and stable learning, savings in
relearning, tracking error reduction, and spontaneous recovery of
previously learned parameters (Thor and Manoonpong, 2019a).
In this work, we use Af = 0.35, As = 0.7, Bf = 0.2, Bs = 0.02,
Cf = 0.001, and Cs = 0.0001.

When used for frequency adaptation, the DIL mechanism
calculates a new CPG frequency (ϕ(n)) as the difference between
the dual learner output (x(n)) and an arbitrary initial CPG
frequency (ϕ0). In this way, the CPG frequency will be adapted
to minimize the joint tracking error (e(n)). When the tracking
error is high, the CPG frequency decreases, such that the joints
are given more time to track the desired target positions. In
Thor and Manoonpong (2019a,b), the tracking error is calculated

by comparing the desired and actual joint position amplitudes
using post-processing units. Recall, that the actual joint positions
are given by the system output, while the desired joint positions
are calculated using a forward model that can translate the
CPG outputs into expected sensor signals. In this work, the
process of calculating the tracking error is greatly simplified. By
implementing the system delay (1S) into the forward model
(f (n)), the actual and desired joint positions can be compared
directly, thus removing the need for post-processing units to
extract the amplitude. This also enables the frequency adaptation
mechanism to work with motor pattern adaptation mechanisms,
where the amplitude of the arbitrarily shaped motor patterns can
be difficult to calculate online. As input to the DIL mechanism,
the low-pass filtered summation of the absolute tracking error for
all joints is used.

2.2. CPG Network With Motor Pattern
Adaptation
In this work, the CPG-RBF network is used for motor pattern
adaptation (see motor pattern adaptation in Figure 1). The CPG-
RBF network consists of a SO(2)-based CPG and an RBF network
to reshape the otherwise fixedwave-shapedCPG output. The RBF
network is a three-layered neural network that uses radial basis
activation functions (Broomhead and Lowe, 1988). In the case of
the CPG-RBF network, two-dimensional Gaussian functions are
used with transfer functions that can be described as

oPh = e
−

(

(o0−µh,0)
2
+(o1−µh,1)

2

σ2RBF

)

,
(4)

where, µh,0 and µh,1 are two means of RBF neuron Ph, σ 2
RBF

is the common variance, and oPh is the output of the RBF
neuron when receiving inputs o0 and o1 from the CPG. The two
means are manually chosen such that the RBF kernels are equally
distributed along one CPG signal period (Thor et al., 2020). This
is achieved by

µh,n = on

(

(h− 1) · T

H − 1

)

, (5)

where n is the CPG output index, T is the period of the
CPG signal (T ≈ 1/0.30 Hz), and H is the total number
of RBF neurons. The advantages of equally distributing the
means along one period of the CPG output signal are that it
is possible to modify discrete parts of the CPG signal shape
and the means of the neurons do not need to be learned
(Thor et al., 2020).

The reshaping of the CPG signal is encoded in the weights of
the synapses connecting the RBF layer to themotor neurons (Wb0
in Figure 1). The complexity of the output signal is controlled
by the number of RBF neurons, H. A high number of neurons
enables complex output signals, while a small number can only
produce simple signals. However, the use of many RBF neurons
also results in slower convergence when learning the synaptic
weights. While the number of RBF neurons controls the signal
complexity, their variance, σ 2

RBF , controls its smoothness. A low
variance results in high frequency outputs, while a higher one
results in smooth signals. This creates a trade-off, and as in
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Thor et al. (2020), we use H = 20 and σ 2
RBF = 0.04, allowing

the learning of smooth, complex control policies at acceptable
convergence rates. Furthermore, the CPG-RBF network can
automatically scale to different CPG frequencies as the RBF
neuron’s activation encodes the joint position at a particular
phase in the stepping cycle. This means that the motor pattern
will keep the same shape for different frequencies. This is also
what allows it to be combined with the frequency adaptation
mechanism.

The weight set Wb0 encodes an open-loop behavior for
walking straight. To also facilitate online motor pattern
adaptation, sub-behavior modules (see gray box with neurons
B1−2 in Figure 1) integrating sensory feedback (S1−2) are added
in parallel to the synapses, connecting the RBF layer and motor
neurons (Thor andManoonpong, 2021). The parallel neurons are
shunting inhibition neurons, set up such that their outputs are
the product of the RBF neuron outputs and sensory feedback.
Based on the sensory feedback and weights of the synapses
connecting the parallel neurons to the motor neurons (Wb1 and
Wb2 in Figure 1), these parallel modules can modify the already
learned open-loop motor pattern output. With the parallel
closed-loop sub-behavior modules, the motor neuron output can
be formulated as

Mj = oPh ·Wb0 +

(

2
∑

n = 1

oPh · Sn ·Wbn

)

, (6)

where Mj is the motor pattern output to motor j and oPh is the
output from RBF neuron Ph.

Due to its flexibility, the CPG-RBF network can be
implemented as a centralized or decentralized controller. When
implemented as a central controller, all joints in a leg will learn
unique trajectories but they will be the same across all legs. In this
case, the phase relationship between legs needs to be predefined.
When the controller is decentralized, the individual legs will
learn different joint trajectories and increasingly complex control
policies can be learned. However, decentralization comes at
the price of additional policy parameters, and thus a slower
convergence (for details, see Thor et al., 2020). In this work,
we implement the CPG-RBF network as a centralized controller
because of its simplicity and use a fixed leg phase relationship
where contralateral legs operate in a reciprocal fashion, resulting
in a tripod gait. This gait behavior is also often seen in walking
animals (Biewener, 2003).

To learn the weights of the CPG-RBF network (Wb0 , Wb1 ,
and Wb2 ), the state-of-the-art simplistic learning mechanism
PIBB (Stulp and Sigaud, 2013) is employed. The PIBB is a
probability-based black box optimization approach that follows
a direct policy search to improve the policy parameters with
respect to a reward function. The reward function rewards
intended behaviors (e.g., walking fast) and penalizes unwanted
ones (e.g., unstable movement) such that the behavior or policy
is trained to exhibit the intended behaviors. In this work, we
use three different task specific reward functions, as explained
in section 3. The complete explanation and pseudocode for PIBB

and how the reward functions are used can be found in the
Supplementary Material.

2.3. CPG Network With Frequency and
Motor Pattern Adaptation
Combining the frequency and motor pattern adaptations is
straightforward (see Figure 1). The simplicity of combining
the adaptation mechanisms is not only because both use an
artificial CPG but also because the DIL can work on arbitrarily
shaped signals, due to the modification introduced in this work,
and the CPG-RBF network automatically scales with respect to
frequency.

The overall adaptation process can be described as follows.
First, the weights of the CPG-RBF network and its sub-behavior
modules are learned using a low CPG frequency. This ensures
that motor patterns can be learned with high precision and
without tracking error. Next, the DIL is added to the CPG
in order to adapt the CPG frequency online. The DIL will
increase and decrease the frequency based on the motor pattern,
environment, and external or internal perturbations to keep the
tracking error low and the frequency at the highest possible level.
This frequency can be seen as the resonance frequency because
it is the highest frequency at which the system moves with the
highest possible amplitude or lowest tracking error.

2.4. Simulation Environment
For evaluating the locomotion controller on MORF, we use
the robot simulation framework CoppeliaSim from Coppelia
Robotics (Rohmer et al., 2013) with the Vortex physics engine
by CM Labs. CoppeliaSim offers real-world parameters (i.e.,
corresponding to physical units) for many physical properties,
making it both realistic and precise. The MORF robot is set
up in simulation such that its morphology, weight, sensors,
and motor performance match that of the real robot. Both the
control loop frequency and simulation step size are set to 60 Hz.
Finally, all communication with the controller and simulation is
implemented in the robot operating system (ROS) such that the
controller can be easily transferred to a physical version ofMORF
in future work.

3. RESULTS

3.1. Motor Pattern Adaptation
To assess the performance of the proposed locomotion controller
with frequency and motor pattern adaptation, we start by
learning three motor pattern behaviors with the CPG-RBF
network: an open-loop behavior and two closed-loop behaviors.
The open-loop behavior (Wb0 ) can be considered as the
base behavior as it lays the foundation for the two closed-
loop behaviors. The open-loop behavior encodes a basic
straight forward walking behavior without requiring any sensory
feedback, and it is learned in a simple environment without any
obstacles, as shown in Figure 2A. After learning this behavior, the
two closed-loop sub-behavior modules can be learned in parallel
with the open-loop behavior. The first closed-loop sub-behavior
module encodes a steering behavior (Wb1 ). It uses heading
orientation sensory feedback from an inertial measurement unit
and compares it to the desired heading direction to get an error
(S1). A negative heading error is projected to the legs on the
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FIGURE 2 | (A) The simulated environment and learned open-loop behavior for walking straight. (B) The mean reward and standard deviation per iteration. (C) The

motor patterns during learning for a single leg. The solid lines are converged patterns, and the transparent lines are intermediate patterns during learning. (D) The

simulated environment and learned closed-loop sub-behavior module for steering. A sphere specifying the desired heading direction will spawn after 2 s. (E) The

mean reward and standard deviation per iteration. (F) The heading direction error with and without the sub-behavior module. (G) The learned motor patterns for a

single leg with and without the sub-behavior module enabled. (H) The simulated environment and learned closed-loop sub-behavior module for climbing steps. (I) The

mean reward and standard deviation per iteration. (J) The normalized optic distance sensor feedback with and without the sub-behavior module enabled. (K) The

learned motor patterns for a single leg with and without the sub-behavior module enabled. For (A,D,H) the blue MORF shows an earlier time-step of the sub-behavior.

Modified from Thor and Manoonpong (2021).

right side and a positive to the legs on the left side. The sub-
behavior is trained to minimize this error in an environment
where a sphere specifying the desired heading direction will
spawn after 2 s, as shown in Figure 2D. The second closed-loop
sub-behavior module encodes a step climbing behavior (Wb2 ).
It uses binary sensory feedback from an optic distance sensor
mounted at the front of MORF. The sensor feedback is filtered
using three low-pass single-pole infinite impulse response (IIR)
filters in series. Putting the IIR filters in series enables memory

and, consequently, the ability to retain the sensory feedback for
some time. The sensory feedback is only projected onto the two
front legs as they are responsible for lifting the body over the
step. The step climbing behavior is trained in an environment
where MORF walks toward a 0.04m thick plate, as shown in
Figure 2H. The overall modular design and learning parameters
are similar to those used in Thor et al. (2020) and Thor and
Manoonpong (2021). This includes a fixed walking frequency of
0.30 Hz (ϕ ≈ 0.01π) during learning. All three motor patterns
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are learned five times for 100 iterations to calculate the mean and
standard deviation of the return.

3.1.1. Learning Open-Loop Behavior for Walking

Straight
The open-loop behavior for walking straight is learned in the
simulated environment shown in Figure 2A using the following
reward function:

Rk = wd · d − (wγ · γ + wξ · ξ + wς · ς). (7)

where wd = 3, wγ = 1, wξ = 3, and wς = 0.75. The reward
function consists of several measures: distance (d), instability (γ ),
body height error (ξ ), and slippage (ς). The distance measure
rewards fast straight locomotion, while the instability measure
penalizes instability during movement. It comprises the sum
of variance in body tilt, roll, pan, and body height. A pan of
0◦ means that MORF is walking straight ahead, whereas a tilt
and roll equal to 0◦ means that MORF is parallel with the
ground. Instability thereby penalizes movements that are not in
the walking direction. The body height error is measured as the
difference between mean body height during walking and the
desired walking height. The slippage sub-reward considers how
much each leg of the robot slips on the ground. The slippage
return is unitless and calculated as the amount a leg tip moves
(i.e., having a velocity greater than some threshold) while in
ground contact (i.e., when the leg tip and walking surface are
in collision). The slippage is normalized between 0 and 1 and
the leg with the highest slippage is used as return. A slippage
return of 1 thus implies that one or more legs slip on the ground
whenever in contact with it. Note that each measurement is
multiplied by a weight (wd, wγ , wξ , and wς ) to ensure similarity
in magnitude and range. The instability measure is limited at 8 to
avoid negative returns becoming too large. In Equation (7), the
distancemeasurement can be regarded as the dominating reward.
Finally, the open-loop behavior is learned using an exploration
noise (ǫk) of 0.02 and a roll-out execution time of 6 s.

Figure 2B shows the mean reward and standard deviation for
each iteration, and Figure 2C shows the resulting motor patterns
during learning.

3.1.2. Learning Closed-Loop Sub-behavior Module

for Steering
The closed-loop sub-behavior module for the steering behavior is
learned in the simulated environment shown in Figure 2D using
the following rewards function:

Rk = wd · d − (wγ · γ + wξ · ξ + wς · ς + wδ · δ). (8)

where wd = 0.1, wγ = 1, wξ = 3, wς = 1 and wδ = 6. The
reward function is similar to that of the open-loop behavior for
walking straight but uses a lower wd and higher wς . Moreover, a
heading direction error (δ) that measures the difference between
target and current heading direction is included to penalize
movement not in the target direction. Finally, the sub-behavior
module for steering is learned using an exploration noise (ǫk) of
0.02 and a roll-out execution time of 10 seconds.

Figure 2E shows the mean reward and standard deviation
for each iteration, while Figure 2F shows the heading direction
error with and without the learned sub-behavior module. Finally,
Figure 2G shows the motor patterns with and without the
learned sub-behavior module. Here, the motor patterns of the
open-loop behavior are modulated to steer the robot toward the
target.

3.1.3. Learning Closed-Loop Sub-behavior Module

for Climbing Steps
The closed-loop sub-behavior module the step climbing behavior
is learned in the simulated environment shown in Figure 2H

using the following rewards function:

Rk = wd · d − (wγ · γ + wξ · ξ + wς · ς). (9)

where wd = 0.5, wγ = 1, wξ = 0, and wς = 0.5. Again, the
reward function is similar to the open-loop behavior for walking
straight, but this time with the exclusion of the body height error
measure (ξ ), a lower wd, and a lower ς . The reason for not using
the body height error measure is that it will penalize MORF
when crawling onto a step. Finally, the closed-loop sub-behavior
module for climbing steps is learned using an exploration noise
(ǫk) of 0.02 and a roll-out execution time of 14 s.

Figure 2I shows the mean reward and standard deviation for
each iteration, while Figure 2J shows the normalized distance
measured by the optic distance sensor with and without the
learned sub-behavior module. Figure 2K shows the motor
patterns with and without the learned sub-behavior module.
Here, the motor patterns of the open-loop behavior are
modulated to step onto the platform.

3.2. Online CPG Frequency Adaptation
After learning the CPG-RBF network weights, the DIL is added
to the CPG for online frequency adaptation. The combined
controller is tested repeatedly 10 times in the environment shown
in Figure 3A where MORF will need to use all the learned motor
patterns. The walking path of MORF is predetermined but could
be provided by high-level control algorithms like the pathfinding
algorithms in Patle et al. (2019) and Goldschmidt et al. (2017)
for increased autonomy. When MORF passes the wall (snapshot
4 in Figure 3A), the motor performance or maximum motor
velocity is reduced by 30% for 1.5 m, as shown in Figure 3B.
Consequently, the walking frequency has to be adapted to
minimize the tracking error.

Figure 3C shows the mean tracking with standard deviation
for the 10 trials. It is low-pass filtered, and the β-parameters
have been subtracted, enabling the DIL to increase the frequency
as explained in section 2.1. Recall that the input to the DIL
mechanism is the low-pass filtered summation of the absolute
tracking error for all joints. Figure 3D shows the mean walking
frequency with standard deviation. The DIL modulates the
walking frequency online based on the environment, motor
pattern, and motor performance to reduce the tracking error.
Overall, the results show that the DIL quickly adapts the walking
frequency to 1.13 Hz for straight walking (snapshot 1). In
snapshots 3–5, the frequency is lowered to enable complex motor
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FIGURE 3 | (A) The simulated environment and nine snapshots of MORF when using the locomotion controller with frequency and motor pattern adaptation. Each

snapshot is highlighted on the plots below. (B) The motor performance (i.e., maximum velocity), which is lowered by 30% when MORF has passed the wall until it

reaches the first step (red zone on the plots). (C) The mean tracking error. (D) The CPG frequency.

patterns for steering with low tracking error. In snapshot 5, the
motor performance (i.e., maximum velocity) is lowered by 30%,
and the frequency is adapted accordingly. Finally, in snapshots
6–9, the frequency is lowered several times to enable complex
motor patterns for climbing steps with low tracking error.

3.3. Comparing to Fixed Frequencies
Two experiments using fixed frequencies are additionally
conducted and repeated ten times to show the effect and
advantage of using frequency adaptation. The first fixed
frequency is set to 0.30 Hz, which can be considered a base
case since it is equal to the one used when learning the control
modules of the CPG-RBF network. 0.30 Hz is a relatively low
frequency where the motor patterns can be followed with no
error. The second fixed frequency is set to 1.6 Hz, which is used
to test how a high walking frequency impacts the performance of
the controller.

First, we compare the cost of transport (CoT). CoT is a
dimensionless measurement that quantifies the energy efficiency
of moving an animal, robot, or vehicle from one place to another.
In this work, we calculate CoT as P

m·g·v , where m is the weight of

the entire robot in kg (4.2 kg), g is the gravity of earth (9.82m/s2),
v is the walking velocity of the robot in m/s, and P is the power
given as the joint torque in N ·m times the angular joint velocity
in rad/s. Figure 4A shows that when using frequency adaptation,
the CoT is significantly lower than both a fixed low frequency
(p > 0.999) and fixed high frequency (p = 0.983), with the fixed
high frequency having the lowest CoT of the two (p = 0.998).

Next, we compare the tracking error. The tracking error
presented in Figure 4B is raw, and does not include either the
β-parameter or low-pass filtering as in Figure 3C. As expected,
using a fixed low frequency does results in a lower tracking error

than both frequency adaptation (p > 0.999) and a fixed high
frequency (p > 0.999). Comparing frequency adaptation with
a fixed high frequency shows that the former results in the lowest
tracking error (p > 0.999).

Finally, we compare key performance measurements used
when learning the weights of the CPG-RBF network. The first
measurement, shown in Figure 4C, is the heading direction
error used when learning the sub-behavior module for steering.
Frequency adaptation resulted in a significantly smaller direction
error than when using a fixed low frequency (p = 0.974) or
a fixed high frequency (p > 0.999). The next measurements,
shown in Figures 4D,E, are the roll and tilt of MORF, used to
learn all three behaviors. The roll and tilt of MORF indicate how
stable it is during walking. For both roll and tilt, a fixed low
frequency resulted in themost stable locomotion when compared
to frequency adaptation (p > 0.999) and a fixed high frequency
(p > 0.999). When comparing frequency adaptation and a fixed
high frequency, it is clear that the former results in more stable
locomotion for both roll (p = 0.997) and tilt (p > 0.999). The
final measurement, shown in Figure 4F is slippage (the extent to
which each leg of the robot slips on the ground), which is also
used in the learning of all three behaviors. In this case, neither the
use of frequency adaptation nor a fixed high frequency resulted
in any significant difference (p = 0.266), while using a fixed low
frequency resulted in less slippage (both with p > 0.999).

Besides the quantitative results, visual inspection shows that
MORF has a hard time clearing the steps when using a fixed
high frequency (see snapshots 6–8 in Figure 3). As shown in
the Supplementary Video, its middle or hind legs became stuck
for a few seconds. Out of 10 trials, each involving the climbing
of three steps, MORF became stuck 66.67% of the time when
using a fixed high frequency. In contrast, it never became
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FIGURE 4 | Performance measurement when using online CPG frequency adaptation (DIL), a fixed high frequency, and a fixed low frequency. (A) The mean CoT. (B)

The mean raw tracking error. (C) The mean heading direction error. (D) The mean roll of MORF. (E) The mean tilt of MORF. (F) The mean slippage. All measurements

are shown with standard deviation.

stuck using frequency adaptation or a fixed low frequency.
However, the use of low walking frequency leads to low energy
efficiency (Figure 4A). Overall, the locomotion control with the
motor pattern and online frequency adaptations offers the best
compromise in comparison to motor pattern adaptation and a
fixed frequency.

4. DISCUSSION

In this work, we introduced a novel CPG-based locomotion
controller, combining both motor pattern and frequency
adaptations to enable a legged hexapod robot to efficiently
navigate a complex environment. The frequency adaptation
mechanism is error-based, meaning that it adapts the walking
frequency such that the robot can follow the learned motor
patterns with low error. The results show that when using the
proposed controller, the frequency is adapted several times:
initially for walking straight, then to variations in motor
performance, and finally whenever closed-loop control modules
enforce complex motor pattern adaptations. This is comparable
to the biological behaviors observed in animal locomotion.

Compared to using fixed frequencies, frequency adaptation
significantly reduces energy usage, as shown by the low CoT.
This is because the frequency is adapted to the highest frequency
at which the motor pattern is tracked with low error. Since this
frequency is the highest at which the system has the highest
amplitude (or lowest tracking error), it is comparable to the
resonance frequency.

The results also show that tracking error plays a crucial role
in executing the learned motor patterns, especially when adapted
online, based on sensory feedback. This is demonstrated by the
fact that when using a fixed high frequency where the tracking
error is large,MORF could not consistently climb steps or achieve
low direction error when turning. This was not a problem with a
low tracking error, i.e., when using either a fixed low frequency or
frequency adaptation. Furthermore, a low tracking error results
in more stable locomotion (i.e., low roll and tilt movement) and a

smaller direction error. Thus, the motor patterns emerging from
the fact that the robot cannot follow the learned patterns are
performing worse with regard to the performance measurements
used as reward feedback during learning. As in Thor et al.
(2020), where motor patterns are learned for a robot missing a
leg, motor patterns could likewise be explicitly learned for the
fixed high frequency. Although this would enable the robot to
perform the behaviors more consistently, it would also make
the motor pattern very frequency-dependent. This is because
the motor patterns are learned to perform the desired behaviors
with a specific tracking error. For a higher or lower tracking
error, corresponding to a higher and lower CPG frequency, the
performance of the desired behaviors cannot be guaranteed.
For example, when lowering the frequency and removing the
tracking error, the robot will use new and untested parts of
the motor patterns. These parts are partly random as they were
not included in the optimization process. In this work, we
avoid frequency-dependent motor patterns and instead use the
adaptive frequency mechanism to fit frequency to the learned
motor patterns. Another reason for this approach is that while
it takes a long time to learn the motor patterns, the frequency can
be adapted online within seconds.

Although the energy efficiency, tracking error, stability, and
direction error all improved when using frequency adaptation,
the slippage measurement only improved when applying a fixed
low frequency. There is no significant difference in slippage
between frequency adaptation and a fixed high frequency. As
can be seen from the results the tracking error is larger when
using frequency adaptation compared to a fixed low frequency.
As a consequence, frequency adaptation also results in higher tilt
movement, roll movement, and slippage. However, the amount of
tracking error when using frequency adaptation can be controlled
by the β-parameter of the DIL mechanism. If the tracking error
is vital to the system or task, the β-parameter could be tuned to
accommodate this. However, tuning the β-parameter to obtain a
low tracking error will be at the cost of slower convergence when
increasing the frequency, and a trade-off thus exists.
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Taken together, the results show that the frequency and motor
pattern adaptation mechanisms can be combined for enhanced
locomotion performance. When using a fixed low frequency (i.e.,
only motor pattern adaptation), the learned motor patterns can
be followed with a low tracking error, which has many advantages
but also low energy efficiency and high direction error. Using
a fixed high frequency results in better energy efficiency when
compared to a low frequency, but also a high tracking error
resulting in behavior inconsistency and poor performance.When
combining the motor adaptation mechanism with frequency
adaptation, the frequency is adapted online, resulting in a
good performance and high energy efficiency. Furthermore, the
frequency adaptation mechanism is flexible since it can be tuned
for either fast convergence or low tracking error.

For future studies, we plan to investigate parallel adaptation
and learning. In Manoonpong et al. (2013a), correlation-based
and reward-based learning was combined in neural control for
policy improvement. The authors found that using the learning
mechanisms in parallel compared to using a single learner
resulted in higher performance. It would be interesting to see
if it is likewise advantageous to use frequency adaptation in
parallel with the learning of motor patterns. Finally, it would
be interesting to investigate if any adaptation rule could be
applied to the β-parameter of the DIL mechanism for increased
performance.
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